mirror of
https://github.com/opencv/opencv.git
synced 2024-12-25 10:08:03 +08:00
1898 lines
30 KiB
Plaintext
1898 lines
30 KiB
Plaintext
|
layer {
|
||
|
name: "data"
|
||
|
type: "AnnotatedData"
|
||
|
top: "data"
|
||
|
top: "label"
|
||
|
include {
|
||
|
phase: TRAIN
|
||
|
}
|
||
|
transform_param {
|
||
|
mirror: true
|
||
|
mean_value: 104
|
||
|
mean_value: 117
|
||
|
mean_value: 123
|
||
|
resize_param {
|
||
|
prob: 1
|
||
|
resize_mode: WARP
|
||
|
height: 300
|
||
|
width: 300
|
||
|
interp_mode: LINEAR
|
||
|
interp_mode: AREA
|
||
|
interp_mode: NEAREST
|
||
|
interp_mode: CUBIC
|
||
|
interp_mode: LANCZOS4
|
||
|
}
|
||
|
emit_constraint {
|
||
|
emit_type: CENTER
|
||
|
}
|
||
|
distort_param {
|
||
|
brightness_prob: 0.5
|
||
|
brightness_delta: 32
|
||
|
contrast_prob: 0.5
|
||
|
contrast_lower: 0.5
|
||
|
contrast_upper: 1.5
|
||
|
hue_prob: 0.5
|
||
|
hue_delta: 18
|
||
|
saturation_prob: 0.5
|
||
|
saturation_lower: 0.5
|
||
|
saturation_upper: 1.5
|
||
|
random_order_prob: 0.0
|
||
|
}
|
||
|
expand_param {
|
||
|
prob: 0.5
|
||
|
max_expand_ratio: 4.0
|
||
|
}
|
||
|
}
|
||
|
data_param {
|
||
|
source: "train_lmdb/"
|
||
|
batch_size: 16
|
||
|
backend: LMDB
|
||
|
}
|
||
|
annotated_data_param {
|
||
|
batch_sampler {
|
||
|
max_sample: 1
|
||
|
max_trials: 1
|
||
|
}
|
||
|
batch_sampler {
|
||
|
sampler {
|
||
|
min_scale: 0.3
|
||
|
max_scale: 1.0
|
||
|
min_aspect_ratio: 0.5
|
||
|
max_aspect_ratio: 2.0
|
||
|
}
|
||
|
sample_constraint {
|
||
|
min_jaccard_overlap: 0.1
|
||
|
}
|
||
|
max_sample: 1
|
||
|
max_trials: 50
|
||
|
}
|
||
|
batch_sampler {
|
||
|
sampler {
|
||
|
min_scale: 0.3
|
||
|
max_scale: 1.0
|
||
|
min_aspect_ratio: 0.5
|
||
|
max_aspect_ratio: 2.0
|
||
|
}
|
||
|
sample_constraint {
|
||
|
min_jaccard_overlap: 0.3
|
||
|
}
|
||
|
max_sample: 1
|
||
|
max_trials: 50
|
||
|
}
|
||
|
batch_sampler {
|
||
|
sampler {
|
||
|
min_scale: 0.3
|
||
|
max_scale: 1.0
|
||
|
min_aspect_ratio: 0.5
|
||
|
max_aspect_ratio: 2.0
|
||
|
}
|
||
|
sample_constraint {
|
||
|
min_jaccard_overlap: 0.5
|
||
|
}
|
||
|
max_sample: 1
|
||
|
max_trials: 50
|
||
|
}
|
||
|
batch_sampler {
|
||
|
sampler {
|
||
|
min_scale: 0.3
|
||
|
max_scale: 1.0
|
||
|
min_aspect_ratio: 0.5
|
||
|
max_aspect_ratio: 2.0
|
||
|
}
|
||
|
sample_constraint {
|
||
|
min_jaccard_overlap: 0.7
|
||
|
}
|
||
|
max_sample: 1
|
||
|
max_trials: 50
|
||
|
}
|
||
|
batch_sampler {
|
||
|
sampler {
|
||
|
min_scale: 0.3
|
||
|
max_scale: 1.0
|
||
|
min_aspect_ratio: 0.5
|
||
|
max_aspect_ratio: 2.0
|
||
|
}
|
||
|
sample_constraint {
|
||
|
min_jaccard_overlap: 0.9
|
||
|
}
|
||
|
max_sample: 1
|
||
|
max_trials: 50
|
||
|
}
|
||
|
batch_sampler {
|
||
|
sampler {
|
||
|
min_scale: 0.3
|
||
|
max_scale: 1.0
|
||
|
min_aspect_ratio: 0.5
|
||
|
max_aspect_ratio: 2.0
|
||
|
}
|
||
|
sample_constraint {
|
||
|
max_jaccard_overlap: 1.0
|
||
|
}
|
||
|
max_sample: 1
|
||
|
max_trials: 50
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
layer {
|
||
|
name: "data_bn"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "data"
|
||
|
top: "data_bn"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "data_scale"
|
||
|
type: "Scale"
|
||
|
bottom: "data_bn"
|
||
|
top: "data_bn"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "data_bn"
|
||
|
top: "conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 32
|
||
|
pad: 3
|
||
|
kernel_size: 7
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
variance_norm: FAN_OUT
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv1_bn_h"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "conv1_h"
|
||
|
top: "conv1_h"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv1_scale_h"
|
||
|
type: "Scale"
|
||
|
bottom: "conv1_h"
|
||
|
top: "conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv1_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv1_h"
|
||
|
top: "conv1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv1_pool"
|
||
|
type: "Pooling"
|
||
|
bottom: "conv1_h"
|
||
|
top: "conv1_pool"
|
||
|
pooling_param {
|
||
|
kernel_size: 3
|
||
|
stride: 2
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_conv1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv1_pool"
|
||
|
top: "layer_64_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 32
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_bn2_h"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_64_1_conv1_h"
|
||
|
top: "layer_64_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_scale2_h"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_64_1_conv1_h"
|
||
|
top: "layer_64_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_relu2"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_64_1_conv1_h"
|
||
|
top: "layer_64_1_conv1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_conv2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_64_1_conv1_h"
|
||
|
top: "layer_64_1_conv2_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 32
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_64_1_sum"
|
||
|
type: "Eltwise"
|
||
|
bottom: "layer_64_1_conv2_h"
|
||
|
bottom: "conv1_pool"
|
||
|
top: "layer_64_1_sum"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_bn1_h"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_64_1_sum"
|
||
|
top: "layer_128_1_bn1_h"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_scale1_h"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_128_1_bn1_h"
|
||
|
top: "layer_128_1_bn1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_relu1"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_128_1_bn1_h"
|
||
|
top: "layer_128_1_bn1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_conv1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_128_1_bn1_h"
|
||
|
top: "layer_128_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_bn2"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_128_1_conv1_h"
|
||
|
top: "layer_128_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_scale2"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_128_1_conv1_h"
|
||
|
top: "layer_128_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_relu2"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_128_1_conv1_h"
|
||
|
top: "layer_128_1_conv1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_conv2"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_128_1_conv1_h"
|
||
|
top: "layer_128_1_conv2"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_conv_expand_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_128_1_bn1_h"
|
||
|
top: "layer_128_1_conv_expand_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
bias_term: false
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_128_1_sum"
|
||
|
type: "Eltwise"
|
||
|
bottom: "layer_128_1_conv2"
|
||
|
bottom: "layer_128_1_conv_expand_h"
|
||
|
top: "layer_128_1_sum"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_bn1"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_128_1_sum"
|
||
|
top: "layer_256_1_bn1"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_scale1"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_256_1_bn1"
|
||
|
top: "layer_256_1_bn1"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_relu1"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_256_1_bn1"
|
||
|
top: "layer_256_1_bn1"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_conv1"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_256_1_bn1"
|
||
|
top: "layer_256_1_conv1"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_bn2"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_256_1_conv1"
|
||
|
top: "layer_256_1_conv1"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_scale2"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_256_1_conv1"
|
||
|
top: "layer_256_1_conv1"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_relu2"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_256_1_conv1"
|
||
|
top: "layer_256_1_conv1"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_conv2"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_256_1_conv1"
|
||
|
top: "layer_256_1_conv2"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_conv_expand"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_256_1_bn1"
|
||
|
top: "layer_256_1_conv_expand"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
bias_term: false
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_256_1_sum"
|
||
|
type: "Eltwise"
|
||
|
bottom: "layer_256_1_conv2"
|
||
|
bottom: "layer_256_1_conv_expand"
|
||
|
top: "layer_256_1_sum"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_bn1"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_256_1_sum"
|
||
|
top: "layer_512_1_bn1"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_scale1"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_512_1_bn1"
|
||
|
top: "layer_512_1_bn1"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_relu1"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_512_1_bn1"
|
||
|
top: "layer_512_1_bn1"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_conv1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_512_1_bn1"
|
||
|
top: "layer_512_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
bias_term: false
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1 # 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_bn2_h"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_512_1_conv1_h"
|
||
|
top: "layer_512_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_scale2_h"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_512_1_conv1_h"
|
||
|
top: "layer_512_1_conv1_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_relu2"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_512_1_conv1_h"
|
||
|
top: "layer_512_1_conv1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_conv2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_512_1_conv1_h"
|
||
|
top: "layer_512_1_conv2_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
bias_term: false
|
||
|
pad: 2 # 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
dilation: 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_conv_expand_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "layer_512_1_bn1"
|
||
|
top: "layer_512_1_conv_expand_h"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
bias_term: false
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 1 # 2
|
||
|
weight_filler {
|
||
|
type: "msra"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0.0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "layer_512_1_sum"
|
||
|
type: "Eltwise"
|
||
|
bottom: "layer_512_1_conv2_h"
|
||
|
bottom: "layer_512_1_conv_expand_h"
|
||
|
top: "layer_512_1_sum"
|
||
|
}
|
||
|
layer {
|
||
|
name: "last_bn_h"
|
||
|
type: "BatchNorm"
|
||
|
bottom: "layer_512_1_sum"
|
||
|
top: "layer_512_1_sum"
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 0.0
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "last_scale_h"
|
||
|
type: "Scale"
|
||
|
bottom: "layer_512_1_sum"
|
||
|
top: "layer_512_1_sum"
|
||
|
param {
|
||
|
lr_mult: 1.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2.0
|
||
|
decay_mult: 1.0
|
||
|
}
|
||
|
scale_param {
|
||
|
bias_term: true
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "last_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "layer_512_1_sum"
|
||
|
top: "fc7"
|
||
|
}
|
||
|
|
||
|
layer {
|
||
|
name: "conv6_1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "fc7"
|
||
|
top: "conv6_1_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_1_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv6_1_h"
|
||
|
top: "conv6_1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv6_1_h"
|
||
|
top: "conv6_2_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 256
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv6_2_h"
|
||
|
top: "conv6_2_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv6_2_h"
|
||
|
top: "conv7_1_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 64
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_1_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv7_1_h"
|
||
|
top: "conv7_1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv7_1_h"
|
||
|
top: "conv7_2_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 2
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv7_2_h"
|
||
|
top: "conv7_2_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv7_2_h"
|
||
|
top: "conv8_1_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 64
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_1_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv8_1_h"
|
||
|
top: "conv8_1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv8_1_h"
|
||
|
top: "conv8_2_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
pad: 0
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv8_2_h"
|
||
|
top: "conv8_2_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_1_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv8_2_h"
|
||
|
top: "conv9_1_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 64
|
||
|
pad: 0
|
||
|
kernel_size: 1
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_1_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv9_1_h"
|
||
|
top: "conv9_1_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_2_h"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv9_1_h"
|
||
|
top: "conv9_2_h"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 128
|
||
|
pad: 0
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_2_relu"
|
||
|
type: "ReLU"
|
||
|
bottom: "conv9_2_h"
|
||
|
top: "conv9_2_h"
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm"
|
||
|
type: "Normalize"
|
||
|
bottom: "layer_256_1_bn1"
|
||
|
top: "conv4_3_norm"
|
||
|
norm_param {
|
||
|
across_spatial: false
|
||
|
scale_filler {
|
||
|
type: "constant"
|
||
|
value: 20
|
||
|
}
|
||
|
channel_shared: false
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv4_3_norm"
|
||
|
top: "conv4_3_norm_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 16
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv4_3_norm_mbox_loc"
|
||
|
top: "conv4_3_norm_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv4_3_norm_mbox_loc_perm"
|
||
|
top: "conv4_3_norm_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv4_3_norm"
|
||
|
top: "conv4_3_norm_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 8 # 84
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv4_3_norm_mbox_conf"
|
||
|
top: "conv4_3_norm_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv4_3_norm_mbox_conf_perm"
|
||
|
top: "conv4_3_norm_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv4_3_norm_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "conv4_3_norm"
|
||
|
bottom: "data"
|
||
|
top: "conv4_3_norm_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 30.0
|
||
|
max_size: 60.0
|
||
|
aspect_ratio: 2
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 8
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "fc7"
|
||
|
top: "fc7_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 24
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "fc7_mbox_loc"
|
||
|
top: "fc7_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "fc7_mbox_loc_perm"
|
||
|
top: "fc7_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "fc7"
|
||
|
top: "fc7_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 12 # 126
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "fc7_mbox_conf"
|
||
|
top: "fc7_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "fc7_mbox_conf_perm"
|
||
|
top: "fc7_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "fc7_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "fc7"
|
||
|
bottom: "data"
|
||
|
top: "fc7_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 60.0
|
||
|
max_size: 111.0
|
||
|
aspect_ratio: 2
|
||
|
aspect_ratio: 3
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 16
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv6_2_h"
|
||
|
top: "conv6_2_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 24
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv6_2_mbox_loc"
|
||
|
top: "conv6_2_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv6_2_mbox_loc_perm"
|
||
|
top: "conv6_2_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv6_2_h"
|
||
|
top: "conv6_2_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 12 # 126
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv6_2_mbox_conf"
|
||
|
top: "conv6_2_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv6_2_mbox_conf_perm"
|
||
|
top: "conv6_2_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv6_2_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "conv6_2_h"
|
||
|
bottom: "data"
|
||
|
top: "conv6_2_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 111.0
|
||
|
max_size: 162.0
|
||
|
aspect_ratio: 2
|
||
|
aspect_ratio: 3
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 32
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv7_2_h"
|
||
|
top: "conv7_2_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 24
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv7_2_mbox_loc"
|
||
|
top: "conv7_2_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv7_2_mbox_loc_perm"
|
||
|
top: "conv7_2_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv7_2_h"
|
||
|
top: "conv7_2_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 12 # 126
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv7_2_mbox_conf"
|
||
|
top: "conv7_2_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv7_2_mbox_conf_perm"
|
||
|
top: "conv7_2_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv7_2_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "conv7_2_h"
|
||
|
bottom: "data"
|
||
|
top: "conv7_2_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 162.0
|
||
|
max_size: 213.0
|
||
|
aspect_ratio: 2
|
||
|
aspect_ratio: 3
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 64
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv8_2_h"
|
||
|
top: "conv8_2_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 16
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv8_2_mbox_loc"
|
||
|
top: "conv8_2_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv8_2_mbox_loc_perm"
|
||
|
top: "conv8_2_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv8_2_h"
|
||
|
top: "conv8_2_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 8 # 84
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv8_2_mbox_conf"
|
||
|
top: "conv8_2_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv8_2_mbox_conf_perm"
|
||
|
top: "conv8_2_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv8_2_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "conv8_2_h"
|
||
|
bottom: "data"
|
||
|
top: "conv8_2_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 213.0
|
||
|
max_size: 264.0
|
||
|
aspect_ratio: 2
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 100
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_2_mbox_loc"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv9_2_h"
|
||
|
top: "conv9_2_mbox_loc"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 16
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_2_mbox_loc_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv9_2_mbox_loc"
|
||
|
top: "conv9_2_mbox_loc_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_2_mbox_loc_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv9_2_mbox_loc_perm"
|
||
|
top: "conv9_2_mbox_loc_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_2_mbox_conf"
|
||
|
type: "Convolution"
|
||
|
bottom: "conv9_2_h"
|
||
|
top: "conv9_2_mbox_conf"
|
||
|
param {
|
||
|
lr_mult: 1
|
||
|
decay_mult: 1
|
||
|
}
|
||
|
param {
|
||
|
lr_mult: 2
|
||
|
decay_mult: 0
|
||
|
}
|
||
|
convolution_param {
|
||
|
num_output: 8 # 84
|
||
|
pad: 1
|
||
|
kernel_size: 3
|
||
|
stride: 1
|
||
|
weight_filler {
|
||
|
type: "xavier"
|
||
|
}
|
||
|
bias_filler {
|
||
|
type: "constant"
|
||
|
value: 0
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_2_mbox_conf_perm"
|
||
|
type: "Permute"
|
||
|
bottom: "conv9_2_mbox_conf"
|
||
|
top: "conv9_2_mbox_conf_perm"
|
||
|
permute_param {
|
||
|
order: 0
|
||
|
order: 2
|
||
|
order: 3
|
||
|
order: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_2_mbox_conf_flat"
|
||
|
type: "Flatten"
|
||
|
bottom: "conv9_2_mbox_conf_perm"
|
||
|
top: "conv9_2_mbox_conf_flat"
|
||
|
flatten_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "conv9_2_mbox_priorbox"
|
||
|
type: "PriorBox"
|
||
|
bottom: "conv9_2_h"
|
||
|
bottom: "data"
|
||
|
top: "conv9_2_mbox_priorbox"
|
||
|
prior_box_param {
|
||
|
min_size: 264.0
|
||
|
max_size: 315.0
|
||
|
aspect_ratio: 2
|
||
|
flip: true
|
||
|
clip: false
|
||
|
variance: 0.1
|
||
|
variance: 0.1
|
||
|
variance: 0.2
|
||
|
variance: 0.2
|
||
|
step: 300
|
||
|
offset: 0.5
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "mbox_loc"
|
||
|
type: "Concat"
|
||
|
bottom: "conv4_3_norm_mbox_loc_flat"
|
||
|
bottom: "fc7_mbox_loc_flat"
|
||
|
bottom: "conv6_2_mbox_loc_flat"
|
||
|
bottom: "conv7_2_mbox_loc_flat"
|
||
|
bottom: "conv8_2_mbox_loc_flat"
|
||
|
bottom: "conv9_2_mbox_loc_flat"
|
||
|
top: "mbox_loc"
|
||
|
concat_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "mbox_conf"
|
||
|
type: "Concat"
|
||
|
bottom: "conv4_3_norm_mbox_conf_flat"
|
||
|
bottom: "fc7_mbox_conf_flat"
|
||
|
bottom: "conv6_2_mbox_conf_flat"
|
||
|
bottom: "conv7_2_mbox_conf_flat"
|
||
|
bottom: "conv8_2_mbox_conf_flat"
|
||
|
bottom: "conv9_2_mbox_conf_flat"
|
||
|
top: "mbox_conf"
|
||
|
concat_param {
|
||
|
axis: 1
|
||
|
}
|
||
|
}
|
||
|
layer {
|
||
|
name: "mbox_priorbox"
|
||
|
type: "Concat"
|
||
|
bottom: "conv4_3_norm_mbox_priorbox"
|
||
|
bottom: "fc7_mbox_priorbox"
|
||
|
bottom: "conv6_2_mbox_priorbox"
|
||
|
bottom: "conv7_2_mbox_priorbox"
|
||
|
bottom: "conv8_2_mbox_priorbox"
|
||
|
bottom: "conv9_2_mbox_priorbox"
|
||
|
top: "mbox_priorbox"
|
||
|
concat_param {
|
||
|
axis: 2
|
||
|
}
|
||
|
}
|
||
|
|
||
|
layer {
|
||
|
name: "mbox_loss"
|
||
|
type: "MultiBoxLoss"
|
||
|
bottom: "mbox_loc"
|
||
|
bottom: "mbox_conf"
|
||
|
bottom: "mbox_priorbox"
|
||
|
bottom: "label"
|
||
|
top: "mbox_loss"
|
||
|
include {
|
||
|
phase: TRAIN
|
||
|
}
|
||
|
propagate_down: true
|
||
|
propagate_down: true
|
||
|
propagate_down: false
|
||
|
propagate_down: false
|
||
|
loss_param {
|
||
|
normalization: VALID
|
||
|
}
|
||
|
multibox_loss_param {
|
||
|
loc_loss_type: SMOOTH_L1
|
||
|
conf_loss_type: SOFTMAX
|
||
|
loc_weight: 1.0
|
||
|
num_classes: 2 # 21
|
||
|
share_location: true
|
||
|
match_type: PER_PREDICTION
|
||
|
overlap_threshold: 0.5
|
||
|
use_prior_for_matching: true
|
||
|
background_label_id: 0
|
||
|
use_difficult_gt: true
|
||
|
neg_pos_ratio: 3.0
|
||
|
neg_overlap: 0.5
|
||
|
code_type: CENTER_SIZE
|
||
|
ignore_cross_boundary_bbox: false
|
||
|
mining_type: MAX_NEGATIVE
|
||
|
}
|
||
|
}
|