opencv/modules/core/src/matmul.dispatch.cpp

3522 lines
120 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
2015-01-12 15:59:30 +08:00
// Copyright (C) 2014-2015, Itseez Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
Merge pull request #8104 from insoow:master Gemm kernels for Intel GPU (#8104) * Fix an issue with Kernel object reset release when consecutive Kernel::run calls Kernel::run launch OCL gpu kernels and set a event callback function to decreate the ref count of UMat or remove UMat when the lauched workloads are completed. However, for some OCL kernels requires multiple call of Kernel::run function with some kernel parameter changes (e.g., input and output buffer offset) to get the final computation result. In the case, the current implementation requires unnecessary synchronization and cleanupMat. This fix requires the user to specify whether there will be more work or not. If there is no remaining computation, the Kernel::run will reset the kernel object Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * GEMM kernel optimization for Intel GEN The optimized kernels uses cl_intel_subgroups extension for better performance. Note: This optimized kernels will be part of ISAAC in a code generation way under MIT license. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Fix API compatibility error This patch fixes a OCV API compatibility error. The error was reported due to the interface changes of Kernel::run. To resolve the issue, An overloaded function of Kernel::run is added. It take a flag indicating whether there are more work to be done with the kernel object without releasing resources related to it. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Revert "Fix API compatibility error" This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7. Conflicts: modules/core/src/intel_gpu_gemm.inl.hpp * Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls" This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede. * Fix the case of uninitialization D When C is null and beta is non-zero, D is used without initialization. This resloves the issue Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * fix potential output error due to 0 * nan Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * whitespace fix, eliminate non-ASCII symbols * fix build warning
2017-04-19 17:57:54 +08:00
#include <sstream>
#include "precomp.hpp"
2014-08-01 22:11:20 +08:00
#include "opencl_kernels_core.hpp"
2013-12-15 03:16:53 +08:00
#include "opencv2/core/opencl/runtime/opencl_clamdblas.hpp"
Merge pull request #8104 from insoow:master Gemm kernels for Intel GPU (#8104) * Fix an issue with Kernel object reset release when consecutive Kernel::run calls Kernel::run launch OCL gpu kernels and set a event callback function to decreate the ref count of UMat or remove UMat when the lauched workloads are completed. However, for some OCL kernels requires multiple call of Kernel::run function with some kernel parameter changes (e.g., input and output buffer offset) to get the final computation result. In the case, the current implementation requires unnecessary synchronization and cleanupMat. This fix requires the user to specify whether there will be more work or not. If there is no remaining computation, the Kernel::run will reset the kernel object Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * GEMM kernel optimization for Intel GEN The optimized kernels uses cl_intel_subgroups extension for better performance. Note: This optimized kernels will be part of ISAAC in a code generation way under MIT license. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Fix API compatibility error This patch fixes a OCV API compatibility error. The error was reported due to the interface changes of Kernel::run. To resolve the issue, An overloaded function of Kernel::run is added. It take a flag indicating whether there are more work to be done with the kernel object without releasing resources related to it. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Revert "Fix API compatibility error" This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7. Conflicts: modules/core/src/intel_gpu_gemm.inl.hpp * Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls" This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede. * Fix the case of uninitialization D When C is null and beta is non-zero, D is used without initialization. This resloves the issue Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * fix potential output error due to 0 * nan Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * whitespace fix, eliminate non-ASCII symbols * fix build warning
2017-04-19 17:57:54 +08:00
#include "opencv2/core/opencl/runtime/opencl_core.hpp"
#include "intel_gpu_gemm.inl.hpp"
namespace cv
{
/****************************************************************************************\
* GEMM *
\****************************************************************************************/
static void
GEMM_CopyBlock( const uchar* src, size_t src_step,
uchar* dst, size_t dst_step,
Size size, size_t pix_size )
{
int j;
size.width *= (int)(pix_size / sizeof(int));
for( ; size.height--; src += src_step, dst += dst_step )
{
2012-06-09 23:00:04 +08:00
j=0;
2012-02-10 14:05:04 +08:00
#if CV_ENABLE_UNROLLED
for( ; j <= size.width - 4; j += 4 )
{
int t0 = ((const int*)src)[j];
int t1 = ((const int*)src)[j+1];
((int*)dst)[j] = t0;
((int*)dst)[j+1] = t1;
t0 = ((const int*)src)[j+2];
t1 = ((const int*)src)[j+3];
((int*)dst)[j+2] = t0;
((int*)dst)[j+3] = t1;
}
2012-02-10 14:05:04 +08:00
#endif
for( ; j < size.width; j++ )
((int*)dst)[j] = ((const int*)src)[j];
}
}
static void
GEMM_TransposeBlock( const uchar* src, size_t src_step,
uchar* dst, size_t dst_step,
Size size, size_t pix_size )
{
int i, j;
for( i = 0; i < size.width; i++, dst += dst_step, src += pix_size )
{
const uchar* _src = src;
switch( pix_size )
{
case sizeof(int):
for( j = 0; j < size.height; j++, _src += src_step )
((int*)dst)[j] = ((int*)_src)[0];
break;
case sizeof(int)*2:
for( j = 0; j < size.height*2; j += 2, _src += src_step )
{
int t0 = ((int*)_src)[0];
int t1 = ((int*)_src)[1];
((int*)dst)[j] = t0;
((int*)dst)[j+1] = t1;
}
break;
case sizeof(int)*4:
for( j = 0; j < size.height*4; j += 4, _src += src_step )
{
int t0 = ((int*)_src)[0];
int t1 = ((int*)_src)[1];
((int*)dst)[j] = t0;
((int*)dst)[j+1] = t1;
t0 = ((int*)_src)[2];
t1 = ((int*)_src)[3];
((int*)dst)[j+2] = t0;
((int*)dst)[j+3] = t1;
}
break;
default:
assert(0);
return;
}
}
}
template<typename T, typename WT> static void
GEMMSingleMul( const T* a_data, size_t a_step,
const T* b_data, size_t b_step,
const T* c_data, size_t c_step,
T* d_data, size_t d_step,
Size a_size, Size d_size,
double alpha, double beta, int flags )
{
int i, j, k, n = a_size.width, m = d_size.width, drows = d_size.height;
const T *_a_data = a_data, *_b_data = b_data, *_c_data = c_data;
cv::AutoBuffer<T> _a_buf;
T* a_buf = 0;
size_t a_step0, a_step1, c_step0, c_step1, t_step;
a_step /= sizeof(a_data[0]);
b_step /= sizeof(b_data[0]);
c_step /= sizeof(c_data[0]);
d_step /= sizeof(d_data[0]);
a_step0 = a_step;
a_step1 = 1;
if( !c_data )
c_step0 = c_step1 = 0;
else if( !(flags & GEMM_3_T) )
c_step0 = c_step, c_step1 = 1;
else
c_step0 = 1, c_step1 = c_step;
if( flags & GEMM_1_T )
{
CV_SWAP( a_step0, a_step1, t_step );
n = a_size.height;
if( a_step > 1 && n > 1 )
{
_a_buf.allocate(n);
2018-06-11 06:42:00 +08:00
a_buf = _a_buf.data();
}
}
if( n == 1 ) /* external product */
{
cv::AutoBuffer<T> _b_buf;
T* b_buf = 0;
if( a_step > 1 && a_size.height > 1 )
{
_a_buf.allocate(drows);
2018-06-11 06:42:00 +08:00
a_buf = _a_buf.data();
for( k = 0; k < drows; k++ )
a_buf[k] = a_data[a_step*k];
a_data = a_buf;
}
if( b_step > 1 )
{
_b_buf.allocate(d_size.width);
2018-06-11 06:42:00 +08:00
b_buf = _b_buf.data();
for( j = 0; j < d_size.width; j++ )
b_buf[j] = b_data[j*b_step];
b_data = b_buf;
}
for( i = 0; i < drows; i++, _c_data += c_step0, d_data += d_step )
{
WT al = WT(a_data[i])*alpha;
c_data = _c_data;
for( j = 0; j <= d_size.width - 2; j += 2, c_data += 2*c_step1 )
{
WT s0 = al*WT(b_data[j]);
WT s1 = al*WT(b_data[j+1]);
if( !c_data )
{
d_data[j] = T(s0);
d_data[j+1] = T(s1);
}
else
{
d_data[j] = T(s0 + WT(c_data[0])*beta);
d_data[j+1] = T(s1 + WT(c_data[c_step1])*beta);
}
}
for( ; j < d_size.width; j++, c_data += c_step1 )
{
WT s0 = al*WT(b_data[j]);
if( !c_data )
d_data[j] = T(s0);
else
d_data[j] = T(s0 + WT(c_data[0])*beta);
}
}
}
else if( flags & GEMM_2_T ) /* A * Bt */
{
for( i = 0; i < drows; i++, _a_data += a_step0, _c_data += c_step0, d_data += d_step )
{
a_data = _a_data;
b_data = _b_data;
c_data = _c_data;
if( a_buf )
{
for( k = 0; k < n; k++ )
a_buf[k] = a_data[a_step1*k];
a_data = a_buf;
}
for( j = 0; j < d_size.width; j++, b_data += b_step,
c_data += c_step1 )
{
WT s0(0), s1(0), s2(0), s3(0);
2012-02-10 14:05:04 +08:00
k = 0;
#if CV_ENABLE_UNROLLED
for( ; k <= n - 4; k += 4 )
{
s0 += WT(a_data[k])*WT(b_data[k]);
s1 += WT(a_data[k+1])*WT(b_data[k+1]);
s2 += WT(a_data[k+2])*WT(b_data[k+2]);
s3 += WT(a_data[k+3])*WT(b_data[k+3]);
}
2012-02-10 14:05:04 +08:00
#endif
for( ; k < n; k++ )
s0 += WT(a_data[k])*WT(b_data[k]);
s0 = (s0+s1+s2+s3)*alpha;
if( !c_data )
d_data[j] = T(s0);
else
d_data[j] = T(s0 + WT(c_data[0])*beta);
}
}
}
else if( d_size.width*sizeof(d_data[0]) <= 1600 )
{
for( i = 0; i < drows; i++, _a_data += a_step0,
_c_data += c_step0,
d_data += d_step )
{
a_data = _a_data, c_data = _c_data;
if( a_buf )
{
for( k = 0; k < n; k++ )
a_buf[k] = a_data[a_step1*k];
a_data = a_buf;
}
for( j = 0; j <= m - 4; j += 4, c_data += 4*c_step1 )
{
const T* b = _b_data + j;
WT s0(0), s1(0), s2(0), s3(0);
for( k = 0; k < n; k++, b += b_step )
{
WT a(a_data[k]);
s0 += a * WT(b[0]); s1 += a * WT(b[1]);
s2 += a * WT(b[2]); s3 += a * WT(b[3]);
}
if( !c_data )
{
d_data[j] = T(s0*alpha);
d_data[j+1] = T(s1*alpha);
d_data[j+2] = T(s2*alpha);
d_data[j+3] = T(s3*alpha);
}
else
{
s0 = s0*alpha; s1 = s1*alpha;
s2 = s2*alpha; s3 = s3*alpha;
d_data[j] = T(s0 + WT(c_data[0])*beta);
d_data[j+1] = T(s1 + WT(c_data[c_step1])*beta);
d_data[j+2] = T(s2 + WT(c_data[c_step1*2])*beta);
d_data[j+3] = T(s3 + WT(c_data[c_step1*3])*beta);
}
}
for( ; j < m; j++, c_data += c_step1 )
{
const T* b = _b_data + j;
WT s0(0);
for( k = 0; k < n; k++, b += b_step )
s0 += WT(a_data[k]) * WT(b[0]);
s0 = s0*alpha;
if( !c_data )
d_data[j] = T(s0);
else
d_data[j] = T(s0 + WT(c_data[0])*beta);
}
}
}
else
{
cv::AutoBuffer<WT> _d_buf(m);
2018-06-11 06:42:00 +08:00
WT* d_buf = _d_buf.data();
for( i = 0; i < drows; i++, _a_data += a_step0, _c_data += c_step0, d_data += d_step )
{
a_data = _a_data;
b_data = _b_data;
c_data = _c_data;
if( a_buf )
{
for( k = 0; k < n; k++ )
a_buf[k] = _a_data[a_step1*k];
a_data = a_buf;
}
for( j = 0; j < m; j++ )
d_buf[j] = WT(0);
for( k = 0; k < n; k++, b_data += b_step )
{
WT al(a_data[k]);
2012-06-09 23:00:04 +08:00
j=0;
2012-02-10 14:05:04 +08:00
#if CV_ENABLE_UNROLLED
for(; j <= m - 4; j += 4 )
{
WT t0 = d_buf[j] + WT(b_data[j])*al;
WT t1 = d_buf[j+1] + WT(b_data[j+1])*al;
d_buf[j] = t0;
d_buf[j+1] = t1;
t0 = d_buf[j+2] + WT(b_data[j+2])*al;
t1 = d_buf[j+3] + WT(b_data[j+3])*al;
d_buf[j+2] = t0;
d_buf[j+3] = t1;
}
2012-02-10 14:05:04 +08:00
#endif
for( ; j < m; j++ )
d_buf[j] += WT(b_data[j])*al;
}
if( !c_data )
for( j = 0; j < m; j++ )
d_data[j] = T(d_buf[j]*alpha);
else
for( j = 0; j < m; j++, c_data += c_step1 )
{
WT t = d_buf[j]*alpha;
d_data[j] = T(t + WT(c_data[0])*beta);
}
}
}
}
template<typename T, typename WT> static void
GEMMBlockMul( const T* a_data, size_t a_step,
const T* b_data, size_t b_step,
WT* d_data, size_t d_step,
Size a_size, Size d_size, int flags )
{
int i, j, k, n = a_size.width, m = d_size.width;
const T *_a_data = a_data, *_b_data = b_data;
cv::AutoBuffer<T> _a_buf;
T* a_buf = 0;
size_t a_step0, a_step1, t_step;
int do_acc = flags & 16;
a_step /= sizeof(a_data[0]);
b_step /= sizeof(b_data[0]);
d_step /= sizeof(d_data[0]);
a_step0 = a_step;
a_step1 = 1;
if( flags & GEMM_1_T )
{
CV_SWAP( a_step0, a_step1, t_step );
n = a_size.height;
_a_buf.allocate(n);
2018-06-11 06:42:00 +08:00
a_buf = _a_buf.data();
}
if( flags & GEMM_2_T )
{
/* second operand is transposed */
for( i = 0; i < d_size.height; i++, _a_data += a_step0, d_data += d_step )
{
a_data = _a_data; b_data = _b_data;
if( a_buf )
{
for( k = 0; k < n; k++ )
a_buf[k] = a_data[a_step1*k];
a_data = a_buf;
}
for( j = 0; j < d_size.width; j++, b_data += b_step )
{
WT s0 = do_acc ? d_data[j]:WT(0), s1(0);
for( k = 0; k <= n - 2; k += 2 )
{
s0 += WT(a_data[k])*WT(b_data[k]);
s1 += WT(a_data[k+1])*WT(b_data[k+1]);
}
for( ; k < n; k++ )
s0 += WT(a_data[k])*WT(b_data[k]);
d_data[j] = s0 + s1;
}
}
}
else
{
for( i = 0; i < d_size.height; i++, _a_data += a_step0, d_data += d_step )
{
a_data = _a_data, b_data = _b_data;
if( a_buf )
{
for( k = 0; k < n; k++ )
a_buf[k] = a_data[a_step1*k];
a_data = a_buf;
}
for( j = 0; j <= m - 4; j += 4 )
{
WT s0, s1, s2, s3;
const T* b = b_data + j;
if( do_acc )
{
s0 = d_data[j]; s1 = d_data[j+1];
s2 = d_data[j+2]; s3 = d_data[j+3];
}
else
s0 = s1 = s2 = s3 = WT(0);
for( k = 0; k < n; k++, b += b_step )
{
WT a(a_data[k]);
s0 += a * WT(b[0]); s1 += a * WT(b[1]);
s2 += a * WT(b[2]); s3 += a * WT(b[3]);
}
d_data[j] = s0; d_data[j+1] = s1;
d_data[j+2] = s2; d_data[j+3] = s3;
}
for( ; j < m; j++ )
{
const T* b = b_data + j;
WT s0 = do_acc ? d_data[j] : WT(0);
for( k = 0; k < n; k++, b += b_step )
s0 += WT(a_data[k]) * WT(b[0]);
d_data[j] = s0;
}
}
}
}
template<typename T, typename WT> static void
GEMMStore( const T* c_data, size_t c_step,
const WT* d_buf, size_t d_buf_step,
T* d_data, size_t d_step, Size d_size,
double alpha, double beta, int flags )
{
const T* _c_data = c_data;
int j;
size_t c_step0, c_step1;
c_step /= sizeof(c_data[0]);
d_buf_step /= sizeof(d_buf[0]);
d_step /= sizeof(d_data[0]);
if( !c_data )
c_step0 = c_step1 = 0;
else if( !(flags & GEMM_3_T) )
c_step0 = c_step, c_step1 = 1;
else
c_step0 = 1, c_step1 = c_step;
for( ; d_size.height--; _c_data += c_step0, d_buf += d_buf_step, d_data += d_step )
{
if( _c_data )
{
c_data = _c_data;
2012-06-09 23:00:04 +08:00
j=0;
#if CV_ENABLE_UNROLLED
2012-02-10 14:05:04 +08:00
for(; j <= d_size.width - 4; j += 4, c_data += 4*c_step1 )
{
WT t0 = alpha*d_buf[j];
WT t1 = alpha*d_buf[j+1];
t0 += beta*WT(c_data[0]);
t1 += beta*WT(c_data[c_step1]);
d_data[j] = T(t0);
d_data[j+1] = T(t1);
t0 = alpha*d_buf[j+2];
t1 = alpha*d_buf[j+3];
t0 += beta*WT(c_data[c_step1*2]);
t1 += beta*WT(c_data[c_step1*3]);
d_data[j+2] = T(t0);
d_data[j+3] = T(t1);
}
2012-02-10 14:05:04 +08:00
#endif
for( ; j < d_size.width; j++, c_data += c_step1 )
{
WT t0 = alpha*d_buf[j];
d_data[j] = T(t0 + WT(c_data[0])*beta);
}
}
else
{
2012-06-09 23:00:04 +08:00
j = 0;
#if CV_ENABLE_UNROLLED
2012-02-10 14:05:04 +08:00
for( ; j <= d_size.width - 4; j += 4 )
{
WT t0 = alpha*d_buf[j];
WT t1 = alpha*d_buf[j+1];
d_data[j] = T(t0);
d_data[j+1] = T(t1);
t0 = alpha*d_buf[j+2];
t1 = alpha*d_buf[j+3];
d_data[j+2] = T(t0);
d_data[j+3] = T(t1);
}
2012-06-09 23:00:04 +08:00
#endif
for( ; j < d_size.width; j++ )
d_data[j] = T(alpha*d_buf[j]);
}
}
}
typedef void (*GEMMSingleMulFunc)( const void* src1, size_t step1,
const void* src2, size_t step2, const void* src3, size_t step3,
void* dst, size_t dststep, Size srcsize, Size dstsize,
double alpha, double beta, int flags );
typedef void (*GEMMBlockMulFunc)( const void* src1, size_t step1,
const void* src2, size_t step2, void* dst, size_t dststep,
Size srcsize, Size dstsize, int flags );
typedef void (*GEMMStoreFunc)( const void* src1, size_t step1,
const void* src2, size_t step2, void* dst, size_t dststep,
Size dstsize, double alpha, double beta, int flags );
static void GEMMSingleMul_32f( const float* a_data, size_t a_step,
const float* b_data, size_t b_step,
const float* c_data, size_t c_step,
float* d_data, size_t d_step,
Size a_size, Size d_size,
double alpha, double beta, int flags )
{
GEMMSingleMul<float,double>(a_data, a_step, b_data, b_step, c_data,
c_step, d_data, d_step, a_size, d_size,
alpha, beta, flags);
}
static void GEMMSingleMul_64f( const double* a_data, size_t a_step,
const double* b_data, size_t b_step,
const double* c_data, size_t c_step,
double* d_data, size_t d_step,
Size a_size, Size d_size,
double alpha, double beta, int flags )
{
GEMMSingleMul<double,double>(a_data, a_step, b_data, b_step, c_data,
c_step, d_data, d_step, a_size, d_size,
alpha, beta, flags);
}
2012-06-09 23:00:04 +08:00
static void GEMMSingleMul_32fc( const Complexf* a_data, size_t a_step,
const Complexf* b_data, size_t b_step,
const Complexf* c_data, size_t c_step,
Complexf* d_data, size_t d_step,
Size a_size, Size d_size,
double alpha, double beta, int flags )
{
GEMMSingleMul<Complexf,Complexd>(a_data, a_step, b_data, b_step, c_data,
c_step, d_data, d_step, a_size, d_size,
alpha, beta, flags);
}
static void GEMMSingleMul_64fc( const Complexd* a_data, size_t a_step,
const Complexd* b_data, size_t b_step,
const Complexd* c_data, size_t c_step,
Complexd* d_data, size_t d_step,
Size a_size, Size d_size,
double alpha, double beta, int flags )
{
GEMMSingleMul<Complexd,Complexd>(a_data, a_step, b_data, b_step, c_data,
c_step, d_data, d_step, a_size, d_size,
alpha, beta, flags);
2012-06-09 23:00:04 +08:00
}
static void GEMMBlockMul_32f( const float* a_data, size_t a_step,
const float* b_data, size_t b_step,
double* d_data, size_t d_step,
Size a_size, Size d_size, int flags )
{
GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags);
}
static void GEMMBlockMul_64f( const double* a_data, size_t a_step,
const double* b_data, size_t b_step,
double* d_data, size_t d_step,
Size a_size, Size d_size, int flags )
{
GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags);
}
static void GEMMBlockMul_32fc( const Complexf* a_data, size_t a_step,
const Complexf* b_data, size_t b_step,
Complexd* d_data, size_t d_step,
Size a_size, Size d_size, int flags )
{
GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags);
}
static void GEMMBlockMul_64fc( const Complexd* a_data, size_t a_step,
const Complexd* b_data, size_t b_step,
Complexd* d_data, size_t d_step,
Size a_size, Size d_size, int flags )
{
GEMMBlockMul(a_data, a_step, b_data, b_step, d_data, d_step, a_size, d_size, flags);
}
static void GEMMStore_32f( const float* c_data, size_t c_step,
const double* d_buf, size_t d_buf_step,
float* d_data, size_t d_step, Size d_size,
double alpha, double beta, int flags )
{
GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags);
}
static void GEMMStore_64f( const double* c_data, size_t c_step,
const double* d_buf, size_t d_buf_step,
double* d_data, size_t d_step, Size d_size,
double alpha, double beta, int flags )
{
GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags);
}
static void GEMMStore_32fc( const Complexf* c_data, size_t c_step,
const Complexd* d_buf, size_t d_buf_step,
Complexf* d_data, size_t d_step, Size d_size,
double alpha, double beta, int flags )
{
GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags);
}
static void GEMMStore_64fc( const Complexd* c_data, size_t c_step,
const Complexd* d_buf, size_t d_buf_step,
Complexd* d_data, size_t d_step, Size d_size,
double alpha, double beta, int flags )
{
GEMMStore(c_data, c_step, d_buf, d_buf_step, d_data, d_step, d_size, alpha, beta, flags);
}
2013-12-15 03:16:53 +08:00
#ifdef HAVE_CLAMDBLAS
2014-08-22 19:05:29 +08:00
static bool ocl_gemm_amdblas( InputArray matA, InputArray matB, double alpha,
2013-12-15 03:16:53 +08:00
InputArray matC, double beta, OutputArray matD, int flags )
{
int type = matA.type(), esz = CV_ELEM_SIZE(type);
bool haveC = matC.kind() != cv::_InputArray::NONE;
Size sizeA = matA.size(), sizeB = matB.size(), sizeC = haveC ? matC.size() : Size(0, 0);
bool atrans = (flags & GEMM_1_T) != 0, btrans = (flags & GEMM_2_T) != 0, ctrans = (flags & GEMM_3_T) != 0;
if (atrans)
sizeA = Size(sizeA.height, sizeA.width);
if (btrans)
sizeB = Size(sizeB.height, sizeB.width);
if (haveC && ctrans)
sizeC = Size(sizeC.height, sizeC.width);
Size sizeD(sizeB.width, sizeA.height);
CV_Assert( matB.type() == type && (!haveC || matC.type() == type) );
CV_Assert( sizeA.width == sizeB.height && (!haveC || sizeC == sizeD) );
matD.create(sizeD, type);
if ( matA.offset() % esz != 0 || matA.step() % esz != 0 ||
matB.offset() % esz != 0 || matB.step() % esz != 0 ||
(haveC && (matC.offset() % esz != 0 || matC.step() % esz != 0)) )
return false;
UMat A = matA.getUMat(), B = matB.getUMat(), D = matD.getUMat();
2015-01-02 08:33:40 +08:00
if (!ocl::internal::isCLBuffer(A) || !ocl::internal::isCLBuffer(B) || !ocl::internal::isCLBuffer(D))
{
return false;
}
if (haveC)
{
UMat C = matC.getUMat();
if (!ocl::internal::isCLBuffer(C))
return false;
}
2013-12-15 03:16:53 +08:00
if (haveC)
2013-12-26 21:13:26 +08:00
ctrans ? transpose(matC, D) : matC.copyTo(D);
2013-12-15 03:16:53 +08:00
else
D.setTo(Scalar::all(0));
int M = sizeD.height, N = sizeD.width, K = sizeA.width;
int lda = (int)A.step / esz, ldb = (int)B.step / esz, ldc = (int)D.step / esz;
int offa = (int)A.offset / esz, offb = (int)B.offset / esz, offc = (int)D.offset / esz;
cl_command_queue clq = (cl_command_queue)ocl::Queue::getDefault().ptr();
clAmdBlasTranspose transA = atrans ? clAmdBlasTrans : clAmdBlasNoTrans;
clAmdBlasTranspose transB = btrans ? clAmdBlasTrans : clAmdBlasNoTrans;
clAmdBlasOrder order = clAmdBlasRowMajor;
clAmdBlasStatus status = clAmdBlasSuccess;
if (type == CV_32FC1)
status = clAmdBlasSgemmEx(order, transA, transB, M, N, K,
(cl_float)alpha, (const cl_mem)A.handle(ACCESS_READ), offa, lda,
(const cl_mem)B.handle(ACCESS_READ), offb, ldb,
(cl_float)beta, (cl_mem)D.handle(ACCESS_RW), offc, ldc,
1, &clq, 0, NULL, NULL);
else if (type == CV_64FC1)
status = clAmdBlasDgemmEx(order, transA, transB, M, N, K,
alpha, (const cl_mem)A.handle(ACCESS_READ), offa, lda,
(const cl_mem)B.handle(ACCESS_READ), offb, ldb,
beta, (cl_mem)D.handle(ACCESS_RW), offc, ldc,
1, &clq, 0, NULL, NULL);
else if (type == CV_32FC2)
{
cl_float2 alpha_2 = { { (cl_float)alpha, 0 } };
cl_float2 beta_2 = { { (cl_float)beta, 0 } };
status = clAmdBlasCgemmEx(order, transA, transB, M, N, K,
alpha_2, (const cl_mem)A.handle(ACCESS_READ), offa, lda,
(const cl_mem)B.handle(ACCESS_READ), offb, ldb,
beta_2, (cl_mem)D.handle(ACCESS_RW), offc, ldc,
1, &clq, 0, NULL, NULL);
}
else if (type == CV_64FC2)
{
cl_double2 alpha_2 = { { alpha, 0 } };
cl_double2 beta_2 = { { beta, 0 } };
status = clAmdBlasZgemmEx(order, transA, transB, M, N, K,
alpha_2, (const cl_mem)A.handle(ACCESS_READ), offa, lda,
(const cl_mem)B.handle(ACCESS_READ), offb, ldb,
beta_2, (cl_mem)D.handle(ACCESS_RW), offc, ldc,
1, &clq, 0, NULL, NULL);
}
else
CV_Error(Error::StsUnsupportedFormat, "");
return status == clAmdBlasSuccess;
}
#endif
2014-08-22 19:05:29 +08:00
#ifdef HAVE_OPENCL
static bool ocl_gemm( InputArray matA, InputArray matB, double alpha,
InputArray matC, double beta, OutputArray matD, int flags )
{
int depth = matA.depth(), cn = matA.channels();
int type = CV_MAKETYPE(depth, cn);
CV_Assert_N( type == matB.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) );
2014-08-22 19:05:29 +08:00
const ocl::Device & dev = ocl::Device::getDefault();
bool doubleSupport = dev.doubleFPConfig() > 0;
2014-10-16 15:24:44 +08:00
if (!doubleSupport && depth == CV_64F)
2014-08-22 19:05:29 +08:00
return false;
bool haveC = matC.kind() != cv::_InputArray::NONE;
Size sizeA = matA.size(), sizeB = matB.size(), sizeC = haveC ? matC.size() : Size(0, 0);
bool atrans = (flags & GEMM_1_T) != 0, btrans = (flags & GEMM_2_T) != 0, ctrans = (flags & GEMM_3_T) != 0;
2014-10-16 15:24:44 +08:00
CV_Assert( !haveC || matC.type() == type );
2014-08-22 19:05:29 +08:00
Merge pull request #8104 from insoow:master Gemm kernels for Intel GPU (#8104) * Fix an issue with Kernel object reset release when consecutive Kernel::run calls Kernel::run launch OCL gpu kernels and set a event callback function to decreate the ref count of UMat or remove UMat when the lauched workloads are completed. However, for some OCL kernels requires multiple call of Kernel::run function with some kernel parameter changes (e.g., input and output buffer offset) to get the final computation result. In the case, the current implementation requires unnecessary synchronization and cleanupMat. This fix requires the user to specify whether there will be more work or not. If there is no remaining computation, the Kernel::run will reset the kernel object Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * GEMM kernel optimization for Intel GEN The optimized kernels uses cl_intel_subgroups extension for better performance. Note: This optimized kernels will be part of ISAAC in a code generation way under MIT license. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Fix API compatibility error This patch fixes a OCV API compatibility error. The error was reported due to the interface changes of Kernel::run. To resolve the issue, An overloaded function of Kernel::run is added. It take a flag indicating whether there are more work to be done with the kernel object without releasing resources related to it. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Revert "Fix API compatibility error" This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7. Conflicts: modules/core/src/intel_gpu_gemm.inl.hpp * Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls" This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede. * Fix the case of uninitialization D When C is null and beta is non-zero, D is used without initialization. This resloves the issue Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * fix potential output error due to 0 * nan Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * whitespace fix, eliminate non-ASCII symbols * fix build warning
2017-04-19 17:57:54 +08:00
Size sizeD(((btrans)? sizeB.height : sizeB.width),
((atrans)? sizeA.width : sizeA.height));
2014-08-22 19:05:29 +08:00
matD.create(sizeD, type);
UMat A = matA.getUMat(), B = matB.getUMat(), D = matD.getUMat();
Merge pull request #8104 from insoow:master Gemm kernels for Intel GPU (#8104) * Fix an issue with Kernel object reset release when consecutive Kernel::run calls Kernel::run launch OCL gpu kernels and set a event callback function to decreate the ref count of UMat or remove UMat when the lauched workloads are completed. However, for some OCL kernels requires multiple call of Kernel::run function with some kernel parameter changes (e.g., input and output buffer offset) to get the final computation result. In the case, the current implementation requires unnecessary synchronization and cleanupMat. This fix requires the user to specify whether there will be more work or not. If there is no remaining computation, the Kernel::run will reset the kernel object Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * GEMM kernel optimization for Intel GEN The optimized kernels uses cl_intel_subgroups extension for better performance. Note: This optimized kernels will be part of ISAAC in a code generation way under MIT license. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Fix API compatibility error This patch fixes a OCV API compatibility error. The error was reported due to the interface changes of Kernel::run. To resolve the issue, An overloaded function of Kernel::run is added. It take a flag indicating whether there are more work to be done with the kernel object without releasing resources related to it. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Revert "Fix API compatibility error" This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7. Conflicts: modules/core/src/intel_gpu_gemm.inl.hpp * Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls" This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede. * Fix the case of uninitialization D When C is null and beta is non-zero, D is used without initialization. This resloves the issue Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * fix potential output error due to 0 * nan Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * whitespace fix, eliminate non-ASCII symbols * fix build warning
2017-04-19 17:57:54 +08:00
if (!dev.intelSubgroupsSupport() || (depth == CV_64F) || cn != 1)
{
String opts;
2014-08-22 19:05:29 +08:00
Merge pull request #8104 from insoow:master Gemm kernels for Intel GPU (#8104) * Fix an issue with Kernel object reset release when consecutive Kernel::run calls Kernel::run launch OCL gpu kernels and set a event callback function to decreate the ref count of UMat or remove UMat when the lauched workloads are completed. However, for some OCL kernels requires multiple call of Kernel::run function with some kernel parameter changes (e.g., input and output buffer offset) to get the final computation result. In the case, the current implementation requires unnecessary synchronization and cleanupMat. This fix requires the user to specify whether there will be more work or not. If there is no remaining computation, the Kernel::run will reset the kernel object Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * GEMM kernel optimization for Intel GEN The optimized kernels uses cl_intel_subgroups extension for better performance. Note: This optimized kernels will be part of ISAAC in a code generation way under MIT license. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Fix API compatibility error This patch fixes a OCV API compatibility error. The error was reported due to the interface changes of Kernel::run. To resolve the issue, An overloaded function of Kernel::run is added. It take a flag indicating whether there are more work to be done with the kernel object without releasing resources related to it. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Revert "Fix API compatibility error" This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7. Conflicts: modules/core/src/intel_gpu_gemm.inl.hpp * Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls" This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede. * Fix the case of uninitialization D When C is null and beta is non-zero, D is used without initialization. This resloves the issue Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * fix potential output error due to 0 * nan Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * whitespace fix, eliminate non-ASCII symbols * fix build warning
2017-04-19 17:57:54 +08:00
if (atrans)
sizeA = Size(sizeA.height, sizeA.width);
if (btrans)
sizeB = Size(sizeB.height, sizeB.width);
if (haveC && ctrans)
sizeC = Size(sizeC.height, sizeC.width);
CV_Assert( sizeA.width == sizeB.height && (!haveC || sizeC == sizeD) );
2014-08-22 19:05:29 +08:00
Merge pull request #8104 from insoow:master Gemm kernels for Intel GPU (#8104) * Fix an issue with Kernel object reset release when consecutive Kernel::run calls Kernel::run launch OCL gpu kernels and set a event callback function to decreate the ref count of UMat or remove UMat when the lauched workloads are completed. However, for some OCL kernels requires multiple call of Kernel::run function with some kernel parameter changes (e.g., input and output buffer offset) to get the final computation result. In the case, the current implementation requires unnecessary synchronization and cleanupMat. This fix requires the user to specify whether there will be more work or not. If there is no remaining computation, the Kernel::run will reset the kernel object Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * GEMM kernel optimization for Intel GEN The optimized kernels uses cl_intel_subgroups extension for better performance. Note: This optimized kernels will be part of ISAAC in a code generation way under MIT license. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Fix API compatibility error This patch fixes a OCV API compatibility error. The error was reported due to the interface changes of Kernel::run. To resolve the issue, An overloaded function of Kernel::run is added. It take a flag indicating whether there are more work to be done with the kernel object without releasing resources related to it. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Revert "Fix API compatibility error" This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7. Conflicts: modules/core/src/intel_gpu_gemm.inl.hpp * Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls" This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede. * Fix the case of uninitialization D When C is null and beta is non-zero, D is used without initialization. This resloves the issue Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * fix potential output error due to 0 * nan Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * whitespace fix, eliminate non-ASCII symbols * fix build warning
2017-04-19 17:57:54 +08:00
int max_wg_size = (int)dev.maxWorkGroupSize();
int block_size = (max_wg_size / (32*cn) < 32) ? (max_wg_size / (16*cn) < 16) ? (max_wg_size / (8*cn) < 8) ? 1 : 8 : 16 : 32;
2014-09-04 16:36:23 +08:00
Merge pull request #8104 from insoow:master Gemm kernels for Intel GPU (#8104) * Fix an issue with Kernel object reset release when consecutive Kernel::run calls Kernel::run launch OCL gpu kernels and set a event callback function to decreate the ref count of UMat or remove UMat when the lauched workloads are completed. However, for some OCL kernels requires multiple call of Kernel::run function with some kernel parameter changes (e.g., input and output buffer offset) to get the final computation result. In the case, the current implementation requires unnecessary synchronization and cleanupMat. This fix requires the user to specify whether there will be more work or not. If there is no remaining computation, the Kernel::run will reset the kernel object Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * GEMM kernel optimization for Intel GEN The optimized kernels uses cl_intel_subgroups extension for better performance. Note: This optimized kernels will be part of ISAAC in a code generation way under MIT license. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Fix API compatibility error This patch fixes a OCV API compatibility error. The error was reported due to the interface changes of Kernel::run. To resolve the issue, An overloaded function of Kernel::run is added. It take a flag indicating whether there are more work to be done with the kernel object without releasing resources related to it. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Revert "Fix API compatibility error" This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7. Conflicts: modules/core/src/intel_gpu_gemm.inl.hpp * Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls" This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede. * Fix the case of uninitialization D When C is null and beta is non-zero, D is used without initialization. This resloves the issue Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * fix potential output error due to 0 * nan Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * whitespace fix, eliminate non-ASCII symbols * fix build warning
2017-04-19 17:57:54 +08:00
if (atrans)
A = A.t();
if (btrans)
B = B.t();
if (haveC)
ctrans ? transpose(matC, D) : matC.copyTo(D);
int vectorWidths[] = { 4, 4, 2, 2, 1, 4, cn, -1 };
int kercn = ocl::checkOptimalVectorWidth(vectorWidths, B, D);
opts += format(" -D T=%s -D T1=%s -D WT=%s -D cn=%d -D kercn=%d -D LOCAL_SIZE=%d%s%s%s",
2014-09-04 16:36:23 +08:00
ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(CV_MAKETYPE(depth, kercn)),
cn, kercn, block_size,
(sizeA.width % block_size !=0) ? " -D NO_MULT" : "",
haveC ? " -D HAVE_C" : "",
2014-09-04 16:36:23 +08:00
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
Merge pull request #8104 from insoow:master Gemm kernels for Intel GPU (#8104) * Fix an issue with Kernel object reset release when consecutive Kernel::run calls Kernel::run launch OCL gpu kernels and set a event callback function to decreate the ref count of UMat or remove UMat when the lauched workloads are completed. However, for some OCL kernels requires multiple call of Kernel::run function with some kernel parameter changes (e.g., input and output buffer offset) to get the final computation result. In the case, the current implementation requires unnecessary synchronization and cleanupMat. This fix requires the user to specify whether there will be more work or not. If there is no remaining computation, the Kernel::run will reset the kernel object Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * GEMM kernel optimization for Intel GEN The optimized kernels uses cl_intel_subgroups extension for better performance. Note: This optimized kernels will be part of ISAAC in a code generation way under MIT license. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Fix API compatibility error This patch fixes a OCV API compatibility error. The error was reported due to the interface changes of Kernel::run. To resolve the issue, An overloaded function of Kernel::run is added. It take a flag indicating whether there are more work to be done with the kernel object without releasing resources related to it. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Revert "Fix API compatibility error" This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7. Conflicts: modules/core/src/intel_gpu_gemm.inl.hpp * Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls" This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede. * Fix the case of uninitialization D When C is null and beta is non-zero, D is used without initialization. This resloves the issue Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * fix potential output error due to 0 * nan Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * whitespace fix, eliminate non-ASCII symbols * fix build warning
2017-04-19 17:57:54 +08:00
ocl::Kernel k("gemm", cv::ocl::core::gemm_oclsrc, opts);
if (k.empty())
return false;
if (depth == CV_64F)
k.args(ocl::KernelArg::ReadOnlyNoSize(A),
ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn),
ocl::KernelArg::ReadWrite(D, cn, kercn),
sizeA.width, alpha, beta);
else
k.args(ocl::KernelArg::ReadOnlyNoSize(A),
ocl::KernelArg::ReadOnlyNoSize(B, cn, kercn),
ocl::KernelArg::ReadWrite(D, cn, kercn),
sizeA.width, (float)alpha, (float)beta);
size_t globalsize[2] = { (size_t)sizeD.width * cn / kercn, (size_t)sizeD.height};
size_t localsize[2] = { (size_t)block_size, (size_t)block_size};
2014-09-04 16:36:23 +08:00
Merge pull request #8104 from insoow:master Gemm kernels for Intel GPU (#8104) * Fix an issue with Kernel object reset release when consecutive Kernel::run calls Kernel::run launch OCL gpu kernels and set a event callback function to decreate the ref count of UMat or remove UMat when the lauched workloads are completed. However, for some OCL kernels requires multiple call of Kernel::run function with some kernel parameter changes (e.g., input and output buffer offset) to get the final computation result. In the case, the current implementation requires unnecessary synchronization and cleanupMat. This fix requires the user to specify whether there will be more work or not. If there is no remaining computation, the Kernel::run will reset the kernel object Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * GEMM kernel optimization for Intel GEN The optimized kernels uses cl_intel_subgroups extension for better performance. Note: This optimized kernels will be part of ISAAC in a code generation way under MIT license. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Fix API compatibility error This patch fixes a OCV API compatibility error. The error was reported due to the interface changes of Kernel::run. To resolve the issue, An overloaded function of Kernel::run is added. It take a flag indicating whether there are more work to be done with the kernel object without releasing resources related to it. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Revert "Fix API compatibility error" This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7. Conflicts: modules/core/src/intel_gpu_gemm.inl.hpp * Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls" This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede. * Fix the case of uninitialization D When C is null and beta is non-zero, D is used without initialization. This resloves the issue Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * fix potential output error due to 0 * nan Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * whitespace fix, eliminate non-ASCII symbols * fix build warning
2017-04-19 17:57:54 +08:00
return k.run(2, globalsize, block_size!=1 ? localsize : NULL, false);
}
2014-08-22 19:05:29 +08:00
else
Merge pull request #8104 from insoow:master Gemm kernels for Intel GPU (#8104) * Fix an issue with Kernel object reset release when consecutive Kernel::run calls Kernel::run launch OCL gpu kernels and set a event callback function to decreate the ref count of UMat or remove UMat when the lauched workloads are completed. However, for some OCL kernels requires multiple call of Kernel::run function with some kernel parameter changes (e.g., input and output buffer offset) to get the final computation result. In the case, the current implementation requires unnecessary synchronization and cleanupMat. This fix requires the user to specify whether there will be more work or not. If there is no remaining computation, the Kernel::run will reset the kernel object Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * GEMM kernel optimization for Intel GEN The optimized kernels uses cl_intel_subgroups extension for better performance. Note: This optimized kernels will be part of ISAAC in a code generation way under MIT license. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Fix API compatibility error This patch fixes a OCV API compatibility error. The error was reported due to the interface changes of Kernel::run. To resolve the issue, An overloaded function of Kernel::run is added. It take a flag indicating whether there are more work to be done with the kernel object without releasing resources related to it. Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Renaming intel_gpu_gemm.cpp to intel_gpu_gemm.inl.hpp Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * Revert "Fix API compatibility error" This reverts commit 2ef427db91b6c4aec170f691c5d2e6c47d6520d7. Conflicts: modules/core/src/intel_gpu_gemm.inl.hpp * Revert "Fix an issue with Kernel object reset release when consecutive Kernel::run calls" This reverts commit cc7f9f54695dc293598addce9b9d7e345225bede. * Fix the case of uninitialization D When C is null and beta is non-zero, D is used without initialization. This resloves the issue Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * fix potential output error due to 0 * nan Signed-off-by: Woo, Insoo <insoo.woo@intel.com> * whitespace fix, eliminate non-ASCII symbols * fix build warning
2017-04-19 17:57:54 +08:00
{
if (haveC && beta != 0.0)
{
ctrans ? transpose(matC, D) : matC.copyTo(D);
}
else
{
beta = 0.0;
}
return intel_gpu_gemm(A, sizeA,
B, sizeB,
D, sizeD,
alpha,
beta,
atrans, btrans);
}
2014-08-22 19:05:29 +08:00
}
#endif
static void gemmImpl( Mat A, Mat B, double alpha,
Mat C, double beta, Mat D, int flags )
{
CV_INSTRUMENT_REGION();
const int block_lin_size = 128;
const int block_size = block_lin_size * block_lin_size;
static double zero[] = {0,0,0,0};
static float zerof[] = {0,0,0,0};
Size a_size = A.size(), d_size;
int i, len = 0, type = A.type();
switch( flags & (GEMM_1_T|GEMM_2_T) )
{
case 0:
d_size = Size( B.cols, a_size.height );
len = B.rows;
break;
case 1:
d_size = Size( B.cols, a_size.width );
len = B.rows;
break;
case 2:
d_size = Size( B.rows, a_size.height );
len = B.cols;
break;
case 3:
d_size = Size( B.rows, a_size.width );
len = B.cols;
break;
}
if( flags == 0 && 2 <= len && len <= 4 && (len == d_size.width || len == d_size.height) )
{
if( type == CV_32F )
{
float* d = D.ptr<float>();
const float *a = A.ptr<float>(),
*b = B.ptr<float>(),
*c = (const float*)C.data;
size_t d_step = D.step/sizeof(d[0]),
a_step = A.step/sizeof(a[0]),
b_step = B.step/sizeof(b[0]),
c_step = C.data ? C.step/sizeof(c[0]) : 0;
if( !c )
c = zerof;
switch( len )
{
case 2:
if( len == d_size.width && b != d )
{
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step )
{
float t0 = a[0]*b[0] + a[1]*b[b_step];
float t1 = a[0]*b[1] + a[1]*b[b_step+1];
d[0] = (float)(t0*alpha + c[0]*beta);
d[1] = (float)(t1*alpha + c[1]*beta);
}
}
else if( a != d )
{
int c_step0 = 1;
if( c == zerof )
{
c_step0 = 0;
c_step = 1;
}
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 )
{
float t0 = a[0]*b[0] + a[1]*b[b_step];
float t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step];
d[0] = (float)(t0*alpha + c[0]*beta);
d[d_step] = (float)(t1*alpha + c[c_step]*beta);
}
}
else
break;
return;
case 3:
if( len == d_size.width && b != d )
{
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step )
{
float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2];
float t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1];
float t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2];
d[0] = (float)(t0*alpha + c[0]*beta);
d[1] = (float)(t1*alpha + c[1]*beta);
d[2] = (float)(t2*alpha + c[2]*beta);
}
}
else if( a != d )
{
int c_step0 = 1;
if( c == zerof )
{
c_step0 = 0;
c_step = 1;
}
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 )
{
float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2];
float t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] + a[a_step+2]*b[b_step*2];
float t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] + a[a_step*2+2]*b[b_step*2];
d[0] = (float)(t0*alpha + c[0]*beta);
d[d_step] = (float)(t1*alpha + c[c_step]*beta);
d[d_step*2] = (float)(t2*alpha + c[c_step*2]*beta);
}
}
else
break;
return;
case 4:
if( len == d_size.width && b != d )
{
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step )
{
float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3];
float t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1] + a[3]*b[b_step*3+1];
float t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2] + a[3]*b[b_step*3+2];
float t3 = a[0]*b[3] + a[1]*b[b_step+3] + a[2]*b[b_step*2+3] + a[3]*b[b_step*3+3];
d[0] = (float)(t0*alpha + c[0]*beta);
d[1] = (float)(t1*alpha + c[1]*beta);
d[2] = (float)(t2*alpha + c[2]*beta);
d[3] = (float)(t3*alpha + c[3]*beta);
}
}
else if( len <= 16 && a != d )
{
int c_step0 = 1;
if( c == zerof )
{
c_step0 = 0;
c_step = 1;
}
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 )
{
float t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3];
float t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] +
a[a_step+2]*b[b_step*2] + a[a_step+3]*b[b_step*3];
float t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] +
a[a_step*2+2]*b[b_step*2] + a[a_step*2+3]*b[b_step*3];
float t3 = a[a_step*3]*b[0] + a[a_step*3+1]*b[b_step] +
a[a_step*3+2]*b[b_step*2] + a[a_step*3+3]*b[b_step*3];
d[0] = (float)(t0*alpha + c[0]*beta);
d[d_step] = (float)(t1*alpha + c[c_step]*beta);
d[d_step*2] = (float)(t2*alpha + c[c_step*2]*beta);
d[d_step*3] = (float)(t3*alpha + c[c_step*3]*beta);
}
}
else
break;
return;
}
}
if( type == CV_64F )
{
double* d = D.ptr<double>();
const double *a = A.ptr<double>(),
*b = B.ptr<double>(),
*c = (const double*)C.data;
size_t d_step = D.step/sizeof(d[0]),
a_step = A.step/sizeof(a[0]),
b_step = B.step/sizeof(b[0]),
c_step = C.data ? C.step/sizeof(c[0]) : 0;
if( !c )
c = zero;
switch( len )
{
case 2:
if( len == d_size.width && b != d )
{
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step )
{
double t0 = a[0]*b[0] + a[1]*b[b_step];
double t1 = a[0]*b[1] + a[1]*b[b_step+1];
d[0] = t0*alpha + c[0]*beta;
d[1] = t1*alpha + c[1]*beta;
}
}
else if( a != d )
{
int c_step0 = 1;
if( c == zero )
{
c_step0 = 0;
c_step = 1;
}
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 )
{
double t0 = a[0]*b[0] + a[1]*b[b_step];
double t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step];
d[0] = t0*alpha + c[0]*beta;
d[d_step] = t1*alpha + c[c_step]*beta;
}
}
else
break;
return;
case 3:
if( len == d_size.width && b != d )
{
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step )
{
double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2];
double t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1];
double t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2];
d[0] = t0*alpha + c[0]*beta;
d[1] = t1*alpha + c[1]*beta;
d[2] = t2*alpha + c[2]*beta;
}
}
else if( a != d )
{
int c_step0 = 1;
if( c == zero )
{
c_step0 = 0;
c_step = 1;
}
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 )
{
double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2];
double t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] + a[a_step+2]*b[b_step*2];
double t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] + a[a_step*2+2]*b[b_step*2];
d[0] = t0*alpha + c[0]*beta;
d[d_step] = t1*alpha + c[c_step]*beta;
d[d_step*2] = t2*alpha + c[c_step*2]*beta;
}
}
else
break;
return;
case 4:
if( len == d_size.width && b != d )
{
for( i = 0; i < d_size.height; i++, d += d_step, a += a_step, c += c_step )
{
double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3];
double t1 = a[0]*b[1] + a[1]*b[b_step+1] + a[2]*b[b_step*2+1] + a[3]*b[b_step*3+1];
double t2 = a[0]*b[2] + a[1]*b[b_step+2] + a[2]*b[b_step*2+2] + a[3]*b[b_step*3+2];
double t3 = a[0]*b[3] + a[1]*b[b_step+3] + a[2]*b[b_step*2+3] + a[3]*b[b_step*3+3];
d[0] = t0*alpha + c[0]*beta;
d[1] = t1*alpha + c[1]*beta;
d[2] = t2*alpha + c[2]*beta;
d[3] = t3*alpha + c[3]*beta;
}
}
else if( d_size.width <= 16 && a != d )
{
int c_step0 = 1;
if( c == zero )
{
c_step0 = 0;
c_step = 1;
}
for( i = 0; i < d_size.width; i++, d++, b++, c += c_step0 )
{
double t0 = a[0]*b[0] + a[1]*b[b_step] + a[2]*b[b_step*2] + a[3]*b[b_step*3];
double t1 = a[a_step]*b[0] + a[a_step+1]*b[b_step] +
a[a_step+2]*b[b_step*2] + a[a_step+3]*b[b_step*3];
double t2 = a[a_step*2]*b[0] + a[a_step*2+1]*b[b_step] +
a[a_step*2+2]*b[b_step*2] + a[a_step*2+3]*b[b_step*3];
double t3 = a[a_step*3]*b[0] + a[a_step*3+1]*b[b_step] +
a[a_step*3+2]*b[b_step*2] + a[a_step*3+3]*b[b_step*3];
d[0] = t0*alpha + c[0]*beta;
d[d_step] = t1*alpha + c[c_step]*beta;
d[d_step*2] = t2*alpha + c[c_step*2]*beta;
d[d_step*3] = t3*alpha + c[c_step*3]*beta;
}
}
else
break;
return;
}
}
}
{
size_t b_step = B.step;
GEMMSingleMulFunc singleMulFunc;
GEMMBlockMulFunc blockMulFunc;
GEMMStoreFunc storeFunc;
Mat *matD = &D;
const uchar* Cdata = C.data;
size_t Cstep = C.data ? (size_t)C.step : 0;
AutoBuffer<uchar> buf;
if( type == CV_32FC1 )
{
singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_32f;
blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_32f;
storeFunc = (GEMMStoreFunc)GEMMStore_32f;
}
else if( type == CV_64FC1 )
{
singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_64f;
blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_64f;
storeFunc = (GEMMStoreFunc)GEMMStore_64f;
}
else if( type == CV_32FC2 )
{
singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_32fc;
blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_32fc;
storeFunc = (GEMMStoreFunc)GEMMStore_32fc;
}
else
{
CV_Assert( type == CV_64FC2 );
singleMulFunc = (GEMMSingleMulFunc)GEMMSingleMul_64fc;
blockMulFunc = (GEMMBlockMulFunc)GEMMBlockMul_64fc;
storeFunc = (GEMMStoreFunc)GEMMStore_64fc;
}
if( (d_size.width == 1 || len == 1) && !(flags & GEMM_2_T) && B.isContinuous() )
{
b_step = d_size.width == 1 ? 0 : CV_ELEM_SIZE(type);
flags |= GEMM_2_T;
}
/*if( (d_size.width | d_size.height | len) >= 16 && icvBLAS_GEMM_32f_p != 0 )
{
blas_func = type == CV_32FC1 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_32f_p :
type == CV_64FC1 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_64f_p :
type == CV_32FC2 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_32fc_p :
type == CV_64FC2 ? (icvBLAS_GEMM_32f_t)icvBLAS_GEMM_64fc_p : 0;
}
if( blas_func )
{
const char* transa = flags & GEMM_1_T ? "t" : "n";
const char* transb = flags & GEMM_2_T ? "t" : "n";
int lda, ldb, ldd;
if( C->data.ptr )
{
if( C->data.ptr != D->data.ptr )
{
if( !(flags & GEMM_3_T) )
cvCopy( C, D );
else
cvTranspose( C, D );
}
}
if( CV_MAT_DEPTH(type) == CV_32F )
{
Complex32f _alpha, _beta;
lda = A->step/sizeof(float);
ldb = b_step/sizeof(float);
ldd = D->step/sizeof(float);
_alpha.re = (float)alpha;
_alpha.im = 0;
_beta.re = C->data.ptr ? (float)beta : 0;
_beta.im = 0;
if( CV_MAT_CN(type) == 2 )
lda /= 2, ldb /= 2, ldd /= 2;
blas_func( transb, transa, &d_size.width, &d_size.height, &len,
&_alpha, B->data.ptr, &ldb, A->data.ptr, &lda,
&_beta, D->data.ptr, &ldd );
}
else
{
CvComplex64f _alpha, _beta;
lda = A->step/sizeof(double);
ldb = b_step/sizeof(double);
ldd = D->step/sizeof(double);
_alpha.re = alpha;
_alpha.im = 0;
_beta.re = C->data.ptr ? beta : 0;
_beta.im = 0;
if( CV_MAT_CN(type) == 2 )
lda /= 2, ldb /= 2, ldd /= 2;
blas_func( transb, transa, &d_size.width, &d_size.height, &len,
&_alpha, B->data.ptr, &ldb, A->data.ptr, &lda,
&_beta, D->data.ptr, &ldd );
}
}
else*/ if( ((d_size.height <= block_lin_size/2 || d_size.width <= block_lin_size/2) &&
len <= 10000) || len <= 10 ||
(d_size.width <= block_lin_size &&
d_size.height <= block_lin_size && len <= block_lin_size) )
{
singleMulFunc( A.ptr(), A.step, B.ptr(), b_step, Cdata, Cstep,
matD->ptr(), matD->step, a_size, d_size, alpha, beta, flags );
}
else
{
int is_a_t = flags & GEMM_1_T;
int is_b_t = flags & GEMM_2_T;
int elem_size = CV_ELEM_SIZE(type);
int dk0_1, dk0_2;
size_t a_buf_size = 0, b_buf_size, d_buf_size;
uchar* a_buf = 0;
uchar* b_buf = 0;
uchar* d_buf = 0;
int j, k, di = 0, dj = 0, dk = 0;
int dm0, dn0, dk0;
size_t a_step0, a_step1, b_step0, b_step1, c_step0, c_step1;
int work_elem_size = elem_size << (CV_MAT_DEPTH(type) == CV_32F ? 1 : 0);
if( !is_a_t )
a_step0 = A.step, a_step1 = elem_size;
else
a_step0 = elem_size, a_step1 = A.step;
if( !is_b_t )
b_step0 = b_step, b_step1 = elem_size;
else
b_step0 = elem_size, b_step1 = b_step;
if( C.empty() )
{
c_step0 = c_step1 = 0;
flags &= ~GEMM_3_T;
}
else if( !(flags & GEMM_3_T) )
c_step0 = C.step, c_step1 = elem_size;
else
c_step0 = elem_size, c_step1 = C.step;
dm0 = std::min( block_lin_size, d_size.height );
dn0 = std::min( block_lin_size, d_size.width );
dk0_1 = block_size / dm0;
dk0_2 = block_size / dn0;
dk0 = std::min( dk0_1, dk0_2 );
dk0 = std::min( dk0, len );
if( dk0*dm0 > block_size )
dm0 = block_size / dk0;
if( dk0*dn0 > block_size )
dn0 = block_size / dk0;
dk0_1 = (dn0+dn0/8+2) & -2;
b_buf_size = (size_t)(dk0+dk0/8+1)*dk0_1*elem_size;
d_buf_size = (size_t)(dk0+dk0/8+1)*dk0_1*work_elem_size;
if( is_a_t )
{
a_buf_size = (size_t)(dm0+dm0/8+1)*((dk0+dk0/8+2)&-2)*elem_size;
flags &= ~GEMM_1_T;
}
buf.allocate(d_buf_size + b_buf_size + a_buf_size);
2018-06-11 06:42:00 +08:00
d_buf = buf.data();
b_buf = d_buf + d_buf_size;
if( is_a_t )
a_buf = b_buf + b_buf_size;
for( i = 0; i < d_size.height; i += di )
{
di = dm0;
if( i + di >= d_size.height || 8*(i + di) + di > 8*d_size.height )
di = d_size.height - i;
for( j = 0; j < d_size.width; j += dj )
{
uchar* _d = matD->ptr() + i*matD->step + j*elem_size;
const uchar* _c = Cdata + i*c_step0 + j*c_step1;
size_t _d_step = matD->step;
dj = dn0;
if( j + dj >= d_size.width || 8*(j + dj) + dj > 8*d_size.width )
dj = d_size.width - j;
flags &= 15;
if( dk0 < len )
{
_d = d_buf;
_d_step = dj*work_elem_size;
}
for( k = 0; k < len; k += dk )
{
const uchar* _a = A.ptr() + i*a_step0 + k*a_step1;
size_t _a_step = A.step;
const uchar* _b = B.ptr() + k*b_step0 + j*b_step1;
size_t _b_step = b_step;
Size a_bl_size;
dk = dk0;
if( k + dk >= len || 8*(k + dk) + dk > 8*len )
dk = len - k;
if( !is_a_t )
a_bl_size.width = dk, a_bl_size.height = di;
else
a_bl_size.width = di, a_bl_size.height = dk;
if( a_buf && is_a_t )
{
_a_step = dk*elem_size;
GEMM_TransposeBlock( _a, A.step, a_buf, _a_step, a_bl_size, elem_size );
std::swap( a_bl_size.width, a_bl_size.height );
_a = a_buf;
}
if( dj < d_size.width )
{
Size b_size;
if( !is_b_t )
b_size.width = dj, b_size.height = dk;
else
b_size.width = dk, b_size.height = dj;
_b_step = b_size.width*elem_size;
GEMM_CopyBlock( _b, b_step, b_buf, _b_step, b_size, elem_size );
_b = b_buf;
}
if( dk0 < len )
blockMulFunc( _a, _a_step, _b, _b_step, _d, _d_step,
a_bl_size, Size(dj,di), flags );
else
singleMulFunc( _a, _a_step, _b, _b_step, _c, Cstep,
_d, _d_step, a_bl_size, Size(dj,di), alpha, beta, flags );
flags |= 16;
}
if( dk0 < len )
storeFunc( _c, Cstep, _d, _d_step,
matD->ptr(i) + j*elem_size,
matD->step, Size(dj,di), alpha, beta, flags );
}
}
}
}
}
template <typename fptype>inline static void
callGemmImpl(const fptype *src1, size_t src1_step, const fptype *src2, size_t src2_step, fptype alpha,
const fptype *src3, size_t src3_step, fptype beta, fptype *dst, size_t dst_step, int m_a, int n_a, int n_d, int flags, int type)
{
CV_StaticAssert(GEMM_1_T == CV_HAL_GEMM_1_T, "Incompatible GEMM_1_T flag in HAL");
CV_StaticAssert(GEMM_2_T == CV_HAL_GEMM_2_T, "Incompatible GEMM_2_T flag in HAL");
CV_StaticAssert(GEMM_3_T == CV_HAL_GEMM_3_T, "Incompatible GEMM_3_T flag in HAL");
int b_m, b_n, c_m, c_n, m_d;
if(flags & GEMM_2_T)
{
b_m = n_d;
if(flags & GEMM_1_T )
{
b_n = m_a;
m_d = n_a;
}
else
{
b_n = n_a;
m_d = m_a;
}
}
else
{
b_n = n_d;
if(flags & GEMM_1_T )
{
b_m = m_a;
m_d = n_a;
}
else
{
m_d = m_a;
b_m = n_a;
}
}
if(flags & GEMM_3_T)
{
c_m = n_d;
c_n = m_d;
}
else
{
c_m = m_d;
c_n = n_d;
}
Mat A, B, C;
if(src1 != NULL)
A = Mat(m_a, n_a, type, (void*)src1, src1_step);
if(src2 != NULL)
B = Mat(b_m, b_n, type, (void*)src2, src2_step);
if(src3 != NULL && beta != 0.0)
C = Mat(c_m, c_n, type, (void*)src3, src3_step);
Mat D(m_d, n_d, type, (void*)dst, dst_step);
gemmImpl(A, B, alpha, C, beta, D, flags);
}
}
void cv::hal::gemm32f(const float* src1, size_t src1_step, const float* src2, size_t src2_step,
float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step,
int m_a, int n_a, int n_d, int flags)
{
CALL_HAL(gemm32f, cv_hal_gemm32f, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)
callGemmImpl(src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags, CV_32F);
}
void cv::hal::gemm64f(const double* src1, size_t src1_step, const double* src2, size_t src2_step,
double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step,
int m_a, int n_a, int n_d, int flags)
{
CALL_HAL(gemm64f, cv_hal_gemm64f, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)
callGemmImpl(src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags, CV_64F);
}
CV_EXPORTS void cv::hal::gemm32fc(const float* src1, size_t src1_step, const float* src2, size_t src2_step,
float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step,
int m_a, int n_a, int n_d, int flags)
{
CALL_HAL(gemm32fc, cv_hal_gemm32fc, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)
callGemmImpl(src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags, CV_32FC2);
}
CV_EXPORTS void cv::hal::gemm64fc(const double* src1, size_t src1_step, const double* src2, size_t src2_step,
double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step,
int m_a, int n_a, int n_d, int flags)
{
CALL_HAL(gemm64fc, cv_hal_gemm64fc, src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags)
callGemmImpl(src1, src1_step, src2, src2_step, alpha, src3, src3_step, beta, dst, dst_step, m_a, n_a, n_d, flags, CV_64FC2);
}
void cv::gemm( InputArray matA, InputArray matB, double alpha,
InputArray matC, double beta, OutputArray _matD, int flags )
{
#ifdef HAVE_CLAMDBLAS
CV_OCL_RUN(ocl::haveAmdBlas() && matA.dims() <= 2 && matB.dims() <= 2 && matC.dims() <= 2 && _matD.isUMat() &&
matA.cols() > 20 && matA.rows() > 20 && matB.cols() > 20, // since it works incorrect for small sizes
ocl_gemm_amdblas(matA, matB, alpha, matC, beta, _matD, flags))
#endif
#ifdef HAVE_OPENCL
CV_OCL_RUN(_matD.isUMat() && matA.dims() <= 2 && matB.dims() <= 2 && matC.dims() <= 2,
ocl_gemm(matA, matB, alpha, matC, beta, _matD, flags))
#endif
Mat A = matA.getMat(), B = matB.getMat(), C = beta != 0.0 ? matC.getMat() : Mat();
Size a_size = A.size(), d_size;
int len = 0, type = A.type();
CV_Assert_N( type == B.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) );
switch( flags & (GEMM_1_T|GEMM_2_T) )
{
case 0:
d_size = Size( B.cols, a_size.height );
len = B.rows;
CV_Assert( a_size.width == len );
break;
case 1:
d_size = Size( B.cols, a_size.width );
len = B.rows;
CV_Assert( a_size.height == len );
break;
case 2:
d_size = Size( B.rows, a_size.height );
len = B.cols;
CV_Assert( a_size.width == len );
break;
case 3:
d_size = Size( B.rows, a_size.width );
len = B.cols;
CV_Assert( a_size.height == len );
break;
}
if( !C.empty() )
{
CV_Assert_N( C.type() == type,
(((flags&GEMM_3_T) == 0 && C.rows == d_size.height && C.cols == d_size.width) ||
((flags&GEMM_3_T) != 0 && C.rows == d_size.width && C.cols == d_size.height)));
}
_matD.create( d_size.height, d_size.width, type );
Mat D = _matD.getMat();
if( (flags & GEMM_3_T) != 0 && C.data == D.data )
{
transpose( C, C );
flags &= ~GEMM_3_T;
}
Mat *DProxyPtr = &D, DProxy;
if( D.data == A.data || D.data == B.data )
{
DProxy = Mat(d_size.height, d_size.width, D.type());
DProxyPtr = &DProxy;
}
if( type == CV_32FC1 )
hal::gemm32f(A.ptr<float>(), A.step, B.ptr<float>(), B.step, static_cast<float>(alpha),
C.ptr<float>(), C.step, static_cast<float>(beta),
DProxyPtr->ptr<float>(), DProxyPtr->step,
a_size.height, a_size.width, DProxyPtr->cols, flags);
else if( type == CV_64FC1 )
hal::gemm64f(A.ptr<double>(), A.step, B.ptr<double>(), B.step, alpha,
C.ptr<double>(), C.step, beta,
DProxyPtr->ptr<double>(), DProxyPtr->step,
a_size.height, a_size.width, DProxyPtr->cols, flags);
else if( type == CV_32FC2 )
hal::gemm32fc(A.ptr<float>(), A.step, B.ptr<float>(), B.step, static_cast<float>(alpha),
C.ptr<float>(), C.step, static_cast<float>(beta),
DProxyPtr->ptr<float>(), DProxyPtr->step,
a_size.height, a_size.width, DProxyPtr->cols, flags);
else
{
CV_Assert( type == CV_64FC2 );
hal::gemm64fc(A.ptr<double>(), A.step, B.ptr<double>(), B.step, alpha,
C.ptr<double>(), C.step, beta,
D.ptr<double>(), D.step,
a_size.height, a_size.width, DProxyPtr->cols, flags);
}
if(DProxyPtr != &D)
DProxyPtr->copyTo(D);
}
/****************************************************************************************\
* Transform *
\****************************************************************************************/
namespace cv
{
template<typename T, typename WT> static void
transform_( const T* src, T* dst, const WT* m, int len, int scn, int dcn )
{
int x;
if( scn == 2 && dcn == 2 )
{
for( x = 0; x < len*2; x += 2 )
{
WT v0 = src[x], v1 = src[x+1];
T t0 = saturate_cast<T>(m[0]*v0 + m[1]*v1 + m[2]);
T t1 = saturate_cast<T>(m[3]*v0 + m[4]*v1 + m[5]);
dst[x] = t0; dst[x+1] = t1;
}
}
else if( scn == 3 && dcn == 3 )
{
for( x = 0; x < len*3; x += 3 )
{
WT v0 = src[x], v1 = src[x+1], v2 = src[x+2];
T t0 = saturate_cast<T>(m[0]*v0 + m[1]*v1 + m[2]*v2 + m[3]);
T t1 = saturate_cast<T>(m[4]*v0 + m[5]*v1 + m[6]*v2 + m[7]);
T t2 = saturate_cast<T>(m[8]*v0 + m[9]*v1 + m[10]*v2 + m[11]);
dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2;
}
}
else if( scn == 3 && dcn == 1 )
{
for( x = 0; x < len; x++, src += 3 )
dst[x] = saturate_cast<T>(m[0]*src[0] + m[1]*src[1] + m[2]*src[2] + m[3]);
}
else if( scn == 4 && dcn == 4 )
{
for( x = 0; x < len*4; x += 4 )
{
WT v0 = src[x], v1 = src[x+1], v2 = src[x+2], v3 = src[x+3];
T t0 = saturate_cast<T>(m[0]*v0 + m[1]*v1 + m[2]*v2 + m[3]*v3 + m[4]);
T t1 = saturate_cast<T>(m[5]*v0 + m[6]*v1 + m[7]*v2 + m[8]*v3 + m[9]);
dst[x] = t0; dst[x+1] = t1;
t0 = saturate_cast<T>(m[10]*v0 + m[11]*v1 + m[12]*v2 + m[13]*v3 + m[14]);
t1 = saturate_cast<T>(m[15]*v0 + m[16]*v1 + m[17]*v2 + m[18]*v3 + m[19]);
dst[x+2] = t0; dst[x+3] = t1;
}
}
else
{
for( x = 0; x < len; x++, src += scn, dst += dcn )
{
const WT* _m = m;
int j, k;
for( j = 0; j < dcn; j++, _m += scn + 1 )
{
WT s = _m[scn];
for( k = 0; k < scn; k++ )
s += _m[k]*src[k];
dst[j] = saturate_cast<T>(s);
}
}
}
}
2018-11-15 04:25:23 +08:00
#if CV_SIMD128 && !defined(__aarch64__)
static inline void
load3x3Matrix(const float* m, v_float32x4& m0, v_float32x4& m1, v_float32x4& m2, v_float32x4& m3)
{
m0 = v_float32x4(m[0], m[4], m[8], 0);
m1 = v_float32x4(m[1], m[5], m[9], 0);
m2 = v_float32x4(m[2], m[6], m[10], 0);
m3 = v_float32x4(m[3], m[7], m[11], 0);
}
2018-11-15 04:25:23 +08:00
#endif
2018-11-15 04:25:23 +08:00
#if CV_SIMD128
static inline v_int16x8
v_matmulvec(const v_int16x8 &v0, const v_int16x8 &m0, const v_int16x8 &m1, const v_int16x8 &m2, const v_int32x4 &m3, const int BITS)
{
// v0 : 0 b0 g0 r0 b1 g1 r1 ?
v_int32x4 t0 = v_dotprod(v0, m0); // a0 b0 a1 b1
v_int32x4 t1 = v_dotprod(v0, m1); // c0 d0 c1 d1
v_int32x4 t2 = v_dotprod(v0, m2); // e0 f0 e1 f1
v_int32x4 t3 = v_setzero_s32();
v_int32x4 s0, s1, s2, s3;
v_transpose4x4(t0, t1, t2, t3, s0, s1, s2, s3);
s0 = s0 + s1 + m3; // B0 G0 R0 ?
s2 = s2 + s3 + m3; // B1 G1 R1 ?
s0 = s0 >> BITS;
s2 = s2 >> BITS;
v_int16x8 result = v_pack(s0, v_setzero_s32()); // B0 G0 R0 0 0 0 0 0
result = v_reinterpret_as_s16(v_reinterpret_as_s64(result) << 16); // 0 B0 G0 R0 0 0 0 0
result = result | v_pack(v_setzero_s32(), s2); // 0 B0 G0 R0 B1 G1 R1 0
return result;
}
#endif
static void
transform_8u( const uchar* src, uchar* dst, const float* m, int len, int scn, int dcn )
{
#if CV_SIMD128
const int BITS = 10, SCALE = 1 << BITS;
const float MAX_M = (float)(1 << (15 - BITS));
if( hasSIMD128() && scn == 3 && dcn == 3 &&
std::abs(m[0]) < MAX_M && std::abs(m[1]) < MAX_M && std::abs(m[2]) < MAX_M && std::abs(m[3]) < MAX_M*256 &&
std::abs(m[4]) < MAX_M && std::abs(m[5]) < MAX_M && std::abs(m[6]) < MAX_M && std::abs(m[7]) < MAX_M*256 &&
std::abs(m[8]) < MAX_M && std::abs(m[9]) < MAX_M && std::abs(m[10]) < MAX_M && std::abs(m[11]) < MAX_M*256 )
{
const int nChannels = 3;
const int cWidth = v_int16x8::nlanes;
// faster fixed-point transformation
short m00 = saturate_cast<short>(m[0]*SCALE), m01 = saturate_cast<short>(m[1]*SCALE),
m02 = saturate_cast<short>(m[2]*SCALE), m10 = saturate_cast<short>(m[4]*SCALE),
m11 = saturate_cast<short>(m[5]*SCALE), m12 = saturate_cast<short>(m[6]*SCALE),
m20 = saturate_cast<short>(m[8]*SCALE), m21 = saturate_cast<short>(m[9]*SCALE),
m22 = saturate_cast<short>(m[10]*SCALE);
int m03 = saturate_cast<int>((m[3]+0.5f)*SCALE), m13 = saturate_cast<int>((m[7]+0.5f)*SCALE ),
m23 = saturate_cast<int>((m[11]+0.5f)*SCALE);
v_int16x8 m0 = v_int16x8(0, m00, m01, m02, m00, m01, m02, 0);
v_int16x8 m1 = v_int16x8(0, m10, m11, m12, m10, m11, m12, 0);
v_int16x8 m2 = v_int16x8(0, m20, m21, m22, m20, m21, m22, 0);
v_int32x4 m3 = v_int32x4(m03, m13, m23, 0);
int x = 0;
for (; x <= (len - cWidth) * nChannels; x += cWidth * nChannels)
{
// load 8 pixels
v_int16x8 v0 = v_reinterpret_as_s16(v_load_expand(src + x));
v_int16x8 v1 = v_reinterpret_as_s16(v_load_expand(src + x + cWidth));
v_int16x8 v2 = v_reinterpret_as_s16(v_load_expand(src + x + cWidth * 2));
v_int16x8 v3;
// rotate and pack
v3 = v_rotate_right<1>(v2); // 0 b6 g6 r6 b7 g7 r7 0
v2 = v_rotate_left <5>(v2, v1); // 0 b4 g4 r4 b5 g5 r5 0
v1 = v_rotate_left <3>(v1, v0); // 0 b2 g2 r2 b3 g3 r3 0
v0 = v_rotate_left <1>(v0); // 0 b0 g0 r0 b1 g1 r1 0
// multiply with matrix and normalize
v0 = v_matmulvec(v0, m0, m1, m2, m3, BITS); // 0 B0 G0 R0 B1 G1 R1 0
v1 = v_matmulvec(v1, m0, m1, m2, m3, BITS); // 0 B2 G2 R2 B3 G3 R3 0
v2 = v_matmulvec(v2, m0, m1, m2, m3, BITS); // 0 B4 G4 R4 B5 G5 R5 0
v3 = v_matmulvec(v3, m0, m1, m2, m3, BITS); // 0 B6 G6 R6 B7 G7 R7 0
// narrow down as uint8x16
v_uint8x16 z0 = v_pack_u(v0, v_setzero_s16()); // 0 B0 G0 R0 B1 G1 R1 0 0 0 0 0 0 0 0 0
v_uint8x16 z1 = v_pack_u(v1, v_setzero_s16()); // 0 B2 G2 R2 B3 G3 R3 0 0 0 0 0 0 0 0 0
v_uint8x16 z2 = v_pack_u(v2, v_setzero_s16()); // 0 B4 G4 R4 B5 G5 R5 0 0 0 0 0 0 0 0 0
v_uint8x16 z3 = v_pack_u(v3, v_setzero_s16()); // 0 B6 G6 R6 B7 G7 R7 0 0 0 0 0 0 0 0 0
// rotate and pack
z0 = v_reinterpret_as_u8(v_reinterpret_as_u64(z0) >> 8) | v_reinterpret_as_u8(v_reinterpret_as_u64(z1) << 40); // B0 G0 R0 B1 G1 R1 B2 G2 0 0 0 0 0 0 0 0
z1 = v_reinterpret_as_u8(v_reinterpret_as_u64(z1) >> 24) | v_reinterpret_as_u8(v_reinterpret_as_u64(z2) << 24); // R2 B3 G3 R3 B4 G4 R4 B5 0 0 0 0 0 0 0 0
z2 = v_reinterpret_as_u8(v_reinterpret_as_u64(z2) >> 40) | v_reinterpret_as_u8(v_reinterpret_as_u64(z3) << 8); // G5 R6 B6 G6 R6 B7 G7 R7 0 0 0 0 0 0 0 0
// store on memory
v_store_low(dst + x, z0);
v_store_low(dst + x + cWidth, z1);
v_store_low(dst + x + cWidth * 2, z2);
}
for( ; x < len * nChannels; x += nChannels )
{
int v0 = src[x], v1 = src[x+1], v2 = src[x+2];
uchar t0 = saturate_cast<uchar>((m00*v0 + m01*v1 + m02*v2 + m03)>>BITS);
uchar t1 = saturate_cast<uchar>((m10*v0 + m11*v1 + m12*v2 + m13)>>BITS);
uchar t2 = saturate_cast<uchar>((m20*v0 + m21*v1 + m22*v2 + m23)>>BITS);
dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2;
}
return;
}
#endif
transform_(src, dst, m, len, scn, dcn);
}
static void
transform_16u( const ushort* src, ushort* dst, const float* m, int len, int scn, int dcn )
{
#if CV_SIMD128 && !defined(__aarch64__)
if( hasSIMD128() && scn == 3 && dcn == 3 )
{
const int nChannels = 3;
const int cWidth = v_float32x4::nlanes;
v_int16x8 delta = v_int16x8(0, -32768, -32768, -32768, -32768, -32768, -32768, 0);
v_float32x4 m0, m1, m2, m3;
load3x3Matrix(m, m0, m1, m2, m3);
m3 -= v_float32x4(32768.f, 32768.f, 32768.f, 0.f);
int x = 0;
for( ; x <= (len - cWidth) * nChannels; x += cWidth * nChannels )
{
// load 4 pixels
v_uint16x8 v0_16 = v_load(src + x); // b0 g0 r0 b1 g1 r1 b2 g2
v_uint16x8 v2_16 = v_load_low(src + x + cWidth * 2); // r2 b3 g3 r3 ? ? ? ?
// expand to 4 vectors
v_uint32x4 v0_32, v1_32, v2_32, v3_32, dummy_32;
v_expand(v_rotate_right<3>(v0_16), v1_32, dummy_32); // b1 g1 r1
v_expand(v_rotate_right<1>(v2_16), v3_32, dummy_32); // b3 g3 r3
v_expand(v_rotate_right<6>(v0_16, v2_16), v2_32, dummy_32); // b2 g2 r2
v_expand(v0_16, v0_32, dummy_32); // b0 g0 r0
// convert to float32x4
v_float32x4 x0 = v_cvt_f32(v_reinterpret_as_s32(v0_32)); // b0 g0 r0
v_float32x4 x1 = v_cvt_f32(v_reinterpret_as_s32(v1_32)); // b1 g1 r1
v_float32x4 x2 = v_cvt_f32(v_reinterpret_as_s32(v2_32)); // b2 g2 r2
v_float32x4 x3 = v_cvt_f32(v_reinterpret_as_s32(v3_32)); // b3 g3 r3
// multiply and convert back to int32x4
v_int32x4 y0, y1, y2, y3;
y0 = v_round(v_matmuladd(x0, m0, m1, m2, m3)); // B0 G0 R0
y1 = v_round(v_matmuladd(x1, m0, m1, m2, m3)); // B1 G1 R1
y2 = v_round(v_matmuladd(x2, m0, m1, m2, m3)); // B2 G2 R2
y3 = v_round(v_matmuladd(x3, m0, m1, m2, m3)); // B3 G3 R3
// narrow down to int16x8
v_int16x8 v0 = v_add_wrap(v_pack(v_rotate_left<1>(y0), y1), delta); // 0 B0 G0 R0 B1 G1 R1 0
v_int16x8 v2 = v_add_wrap(v_pack(v_rotate_left<1>(y2), y3), delta); // 0 B2 G2 R2 B3 G3 R3 0
// rotate and pack
v0 = v_rotate_right<1>(v0) | v_rotate_left<5>(v2); // B0 G0 R0 B1 G1 R1 B2 G2
v2 = v_rotate_right<3>(v2); // R2 B3 G3 R3 0 0 0 0
// store 4 pixels
v_store(dst + x, v_reinterpret_as_u16(v0));
v_store_low(dst + x + cWidth * 2, v_reinterpret_as_u16(v2));
}
for( ; x < len * nChannels; x += nChannels )
{
float v0 = src[x], v1 = src[x + 1], v2 = src[x + 2];
ushort t0 = saturate_cast<ushort>(m[0] * v0 + m[1] * v1 + m[2] * v2 + m[3]);
ushort t1 = saturate_cast<ushort>(m[4] * v0 + m[5] * v1 + m[6] * v2 + m[7]);
ushort t2 = saturate_cast<ushort>(m[8] * v0 + m[9] * v1 + m[10] * v2 + m[11]);
dst[x] = t0; dst[x + 1] = t1; dst[x + 2] = t2;
}
return;
}
#endif
transform_(src, dst, m, len, scn, dcn);
}
static void
transform_32f( const float* src, float* dst, const float* m, int len, int scn, int dcn )
{
#if CV_SIMD128 && !defined(__aarch64__)
if( hasSIMD128() )
{
int x = 0;
if( scn == 3 && dcn == 3 )
{
const int cWidth = 3;
v_float32x4 m0, m1, m2, m3;
load3x3Matrix(m, m0, m1, m2, m3);
for( ; x < (len - 1)*cWidth; x += cWidth )
{
v_float32x4 x0 = v_load(src + x);
v_float32x4 y0 = v_matmuladd(x0, m0, m1, m2, m3);
v_store_low(dst + x, y0);
dst[x + 2] = v_combine_high(y0, y0).get0();
}
for( ; x < len*cWidth; x += cWidth )
{
float v0 = src[x], v1 = src[x+1], v2 = src[x+2];
float t0 = saturate_cast<float>(m[0]*v0 + m[1]*v1 + m[2]*v2 + m[3]);
float t1 = saturate_cast<float>(m[4]*v0 + m[5]*v1 + m[6]*v2 + m[7]);
float t2 = saturate_cast<float>(m[8]*v0 + m[9]*v1 + m[10]*v2 + m[11]);
dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2;
}
return;
}
if( scn == 4 && dcn == 4 )
{
const int cWidth = 4;
v_float32x4 m0 = v_float32x4(m[0], m[5], m[10], m[15]);
v_float32x4 m1 = v_float32x4(m[1], m[6], m[11], m[16]);
v_float32x4 m2 = v_float32x4(m[2], m[7], m[12], m[17]);
v_float32x4 m3 = v_float32x4(m[3], m[8], m[13], m[18]);
v_float32x4 m4 = v_float32x4(m[4], m[9], m[14], m[19]);
for( ; x < len*cWidth; x += cWidth )
{
v_float32x4 x0 = v_load(src + x);
v_float32x4 y0 = v_matmul(x0, m0, m1, m2, m3) + m4;
v_store(dst + x, y0);
}
return;
}
}
#endif
transform_(src, dst, m, len, scn, dcn);
}
static void
transform_8s(const schar* src, schar* dst, const float* m, int len, int scn, int dcn)
{
transform_(src, dst, m, len, scn, dcn);
}
static void
transform_16s(const short* src, short* dst, const float* m, int len, int scn, int dcn)
{
transform_(src, dst, m, len, scn, dcn);
}
static void
transform_32s(const int* src, int* dst, const double* m, int len, int scn, int dcn)
{
transform_(src, dst, m, len, scn, dcn);
}
static void
transform_64f(const double* src, double* dst, const double* m, int len, int scn, int dcn)
{
transform_(src, dst, m, len, scn, dcn);
}
template<typename T, typename WT> static void
diagtransform_( const T* src, T* dst, const WT* m, int len, int cn, int )
{
int x;
if( cn == 2 )
{
for( x = 0; x < len*2; x += 2 )
{
T t0 = saturate_cast<T>(m[0]*src[x] + m[2]);
T t1 = saturate_cast<T>(m[4]*src[x+1] + m[5]);
dst[x] = t0; dst[x+1] = t1;
}
}
else if( cn == 3 )
{
for( x = 0; x < len*3; x += 3 )
{
T t0 = saturate_cast<T>(m[0]*src[x] + m[3]);
T t1 = saturate_cast<T>(m[5]*src[x+1] + m[7]);
T t2 = saturate_cast<T>(m[10]*src[x+2] + m[11]);
dst[x] = t0; dst[x+1] = t1; dst[x+2] = t2;
}
}
else if( cn == 4 )
{
for( x = 0; x < len*4; x += 4 )
{
T t0 = saturate_cast<T>(m[0]*src[x] + m[4]);
T t1 = saturate_cast<T>(m[6]*src[x+1] + m[9]);
dst[x] = t0; dst[x+1] = t1;
t0 = saturate_cast<T>(m[12]*src[x+2] + m[14]);
t1 = saturate_cast<T>(m[18]*src[x+3] + m[19]);
dst[x+2] = t0; dst[x+3] = t1;
}
}
else
{
for( x = 0; x < len; x++, src += cn, dst += cn )
{
const WT* _m = m;
for( int j = 0; j < cn; j++, _m += cn + 1 )
2011-04-18 23:14:32 +08:00
dst[j] = saturate_cast<T>(src[j]*_m[j] + _m[cn]);
}
}
}
static void
diagtransform_8u(const uchar* src, uchar* dst, const float* m, int len, int scn, int dcn)
{
diagtransform_(src, dst, m, len, scn, dcn);
}
static void
diagtransform_8s(const schar* src, schar* dst, const float* m, int len, int scn, int dcn)
{
diagtransform_(src, dst, m, len, scn, dcn);
}
static void
diagtransform_16u(const ushort* src, ushort* dst, const float* m, int len, int scn, int dcn)
{
diagtransform_(src, dst, m, len, scn, dcn);
}
static void
diagtransform_16s(const short* src, short* dst, const float* m, int len, int scn, int dcn)
{
diagtransform_(src, dst, m, len, scn, dcn);
}
static void
diagtransform_32s(const int* src, int* dst, const double* m, int len, int scn, int dcn)
{
diagtransform_(src, dst, m, len, scn, dcn);
}
static void
diagtransform_32f(const float* src, float* dst, const float* m, int len, int scn, int dcn)
{
diagtransform_(src, dst, m, len, scn, dcn);
}
static void
diagtransform_64f(const double* src, double* dst, const double* m, int len, int scn, int dcn)
{
diagtransform_(src, dst, m, len, scn, dcn);
}
typedef void (*TransformFunc)( const uchar* src, uchar* dst, const uchar* m, int, int, int );
static TransformFunc getTransformFunc(int depth)
{
static TransformFunc transformTab[] =
{
(TransformFunc)transform_8u, (TransformFunc)transform_8s, (TransformFunc)transform_16u,
(TransformFunc)transform_16s, (TransformFunc)transform_32s, (TransformFunc)transform_32f,
(TransformFunc)transform_64f, 0
};
return transformTab[depth];
}
static TransformFunc getDiagTransformFunc(int depth)
{
static TransformFunc diagTransformTab[] =
{
(TransformFunc)diagtransform_8u, (TransformFunc)diagtransform_8s, (TransformFunc)diagtransform_16u,
(TransformFunc)diagtransform_16s, (TransformFunc)diagtransform_32s, (TransformFunc)diagtransform_32f,
(TransformFunc)diagtransform_64f, 0
};
return diagTransformTab[depth];
}
}
void cv::transform( InputArray _src, OutputArray _dst, InputArray _mtx )
{
CV_INSTRUMENT_REGION();
Mat src = _src.getMat(), m = _mtx.getMat();
int depth = src.depth(), scn = src.channels(), dcn = m.rows;
CV_Assert( scn == m.cols || scn + 1 == m.cols );
bool isDiag = false;
_dst.create( src.size(), CV_MAKETYPE(depth, dcn) );
Mat dst = _dst.getMat();
int mtype = depth == CV_32S || depth == CV_64F ? CV_64F : CV_32F;
AutoBuffer<double> _mbuf;
double* mbuf;
if( !m.isContinuous() || m.type() != mtype || m.cols != scn + 1 )
{
_mbuf.allocate(dcn*(scn+1));
2018-06-11 06:42:00 +08:00
mbuf = _mbuf.data();
Mat tmp(dcn, scn+1, mtype, mbuf);
memset(tmp.ptr(), 0, tmp.total()*tmp.elemSize());
if( m.cols == scn+1 )
m.convertTo(tmp, mtype);
else
{
Mat tmppart = tmp.colRange(0, m.cols);
m.convertTo(tmppart, mtype);
}
m = tmp;
}
else
mbuf = m.ptr<double>();
if( scn == dcn )
{
int i, j;
double eps = mtype == CV_32F ? FLT_EPSILON : DBL_EPSILON;
if( scn == 1 )
{
double alpha, beta;
if( mtype == CV_32F )
alpha = m.at<float>(0), beta = m.at<float>(1);
else
alpha = m.at<double>(0), beta = m.at<double>(1);
src.convertTo(dst, dst.type(), alpha, beta);
return;
}
for( i = 0, isDiag = true; isDiag && i < scn; i++ )
{
for( j = 0; isDiag && j < scn; j++ )
{
double v = mtype == CV_32F ? m.at<float>(i, j) : m.at<double>(i, j);
if( i != j && fabs(v) > eps )
isDiag = false;
}
}
}
TransformFunc func = isDiag ? getDiagTransformFunc(depth): getTransformFunc(depth);
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &dst, 0};
uchar* ptrs[2] = {};
NAryMatIterator it(arrays, ptrs);
size_t i, total = it.size;
for( i = 0; i < it.nplanes; i++, ++it )
func( ptrs[0], ptrs[1], (uchar*)mbuf, (int)total, scn, dcn );
}
/****************************************************************************************\
* Perspective Transform *
\****************************************************************************************/
namespace cv
{
template<typename T> static void
perspectiveTransform_( const T* src, T* dst, const double* m, int len, int scn, int dcn )
{
const double eps = FLT_EPSILON;
int i;
if( scn == 2 && dcn == 2 )
{
for( i = 0; i < len*2; i += 2 )
{
T x = src[i], y = src[i + 1];
double w = x*m[6] + y*m[7] + m[8];
if( fabs(w) > eps )
{
w = 1./w;
dst[i] = (T)((x*m[0] + y*m[1] + m[2])*w);
dst[i+1] = (T)((x*m[3] + y*m[4] + m[5])*w);
}
else
dst[i] = dst[i+1] = (T)0;
}
}
else if( scn == 3 && dcn == 3 )
{
for( i = 0; i < len*3; i += 3 )
{
T x = src[i], y = src[i + 1], z = src[i + 2];
double w = x*m[12] + y*m[13] + z*m[14] + m[15];
if( fabs(w) > eps )
{
w = 1./w;
dst[i] = (T)((x*m[0] + y*m[1] + z*m[2] + m[3]) * w);
dst[i+1] = (T)((x*m[4] + y*m[5] + z*m[6] + m[7]) * w);
dst[i+2] = (T)((x*m[8] + y*m[9] + z*m[10] + m[11]) * w);
}
else
dst[i] = dst[i+1] = dst[i+2] = (T)0;
}
}
else if( scn == 3 && dcn == 2 )
{
for( i = 0; i < len; i++, src += 3, dst += 2 )
{
T x = src[0], y = src[1], z = src[2];
double w = x*m[8] + y*m[9] + z*m[10] + m[11];
if( fabs(w) > eps )
{
w = 1./w;
dst[0] = (T)((x*m[0] + y*m[1] + z*m[2] + m[3])*w);
dst[1] = (T)((x*m[4] + y*m[5] + z*m[6] + m[7])*w);
}
else
dst[0] = dst[1] = (T)0;
}
}
else
{
for( i = 0; i < len; i++, src += scn, dst += dcn )
{
const double* _m = m + dcn*(scn + 1);
double w = _m[scn];
int j, k;
for( k = 0; k < scn; k++ )
w += _m[k]*src[k];
if( fabs(w) > eps )
{
_m = m;
for( j = 0; j < dcn; j++, _m += scn + 1 )
{
double s = _m[scn];
for( k = 0; k < scn; k++ )
s += _m[k]*src[k];
dst[j] = (T)(s*w);
}
}
else
for( j = 0; j < dcn; j++ )
dst[j] = 0;
}
}
}
static void
perspectiveTransform_32f(const float* src, float* dst, const double* m, int len, int scn, int dcn)
{
perspectiveTransform_(src, dst, m, len, scn, dcn);
}
static void
perspectiveTransform_64f(const double* src, double* dst, const double* m, int len, int scn, int dcn)
{
perspectiveTransform_(src, dst, m, len, scn, dcn);
}
}
void cv::perspectiveTransform( InputArray _src, OutputArray _dst, InputArray _mtx )
{
CV_INSTRUMENT_REGION();
Mat src = _src.getMat(), m = _mtx.getMat();
int depth = src.depth(), scn = src.channels(), dcn = m.rows-1;
CV_Assert( scn + 1 == m.cols );
CV_Assert( depth == CV_32F || depth == CV_64F );
_dst.create( src.size(), CV_MAKETYPE(depth, dcn) );
Mat dst = _dst.getMat();
const int mtype = CV_64F;
AutoBuffer<double> _mbuf;
2018-06-11 06:42:00 +08:00
double* mbuf = m.ptr<double>();
if( !m.isContinuous() || m.type() != mtype )
{
_mbuf.allocate((dcn+1)*(scn+1));
2018-06-11 06:42:00 +08:00
mbuf = _mbuf.data();
Mat tmp(dcn+1, scn+1, mtype, mbuf);
m.convertTo(tmp, mtype);
m = tmp;
}
TransformFunc func = depth == CV_32F ?
(TransformFunc)perspectiveTransform_32f :
(TransformFunc)perspectiveTransform_64f;
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, &dst, 0};
uchar* ptrs[2] = {};
NAryMatIterator it(arrays, ptrs);
size_t i, total = it.size;
for( i = 0; i < it.nplanes; i++, ++it )
func( ptrs[0], ptrs[1], (uchar*)mbuf, (int)total, scn, dcn );
}
/****************************************************************************************\
* ScaleAdd *
\****************************************************************************************/
namespace cv
{
static void scaleAdd_32f(const float* src1, const float* src2, float* dst,
int len, float* _alpha)
{
float alpha = *_alpha;
int i = 0;
#if CV_SIMD
v_float32 v_alpha = vx_setall_f32(alpha);
const int cWidth = v_float32::nlanes;
for (; i <= len - cWidth; i += cWidth)
v_store(dst + i, v_muladd(vx_load(src1 + i), v_alpha, vx_load(src2 + i)));
vx_cleanup();
#endif
for (; i < len; i++)
dst[i] = src1[i] * alpha + src2[i];
}
static void scaleAdd_64f(const double* src1, const double* src2, double* dst,
int len, double* _alpha)
{
double alpha = *_alpha;
int i = 0;
#if CV_SIMD_64F
v_float64 a2 = vx_setall_f64(alpha);
const int cWidth = v_float64::nlanes;
for (; i <= len - cWidth; i += cWidth)
v_store(dst + i, v_muladd(vx_load(src1 + i), a2, vx_load(src2 + i)));
vx_cleanup();
#endif
for (; i < len; i++)
dst[i] = src1[i] * alpha + src2[i];
}
typedef void (*ScaleAddFunc)(const uchar* src1, const uchar* src2, uchar* dst, int len, const void* alpha);
2014-01-25 01:03:31 +08:00
#ifdef HAVE_OPENCL
2013-12-29 22:46:25 +08:00
static bool ocl_scaleAdd( InputArray _src1, double alpha, InputArray _src2, OutputArray _dst, int type )
{
2014-05-14 19:42:30 +08:00
const ocl::Device & d = ocl::Device::getDefault();
2014-05-14 19:42:30 +08:00
bool doubleSupport = d.doubleFPConfig() > 0;
2013-12-29 22:46:25 +08:00
Size size = _src1.size();
int depth = CV_MAT_DEPTH(type);
2013-12-29 22:46:25 +08:00
if ( (!doubleSupport && depth == CV_64F) || size != _src2.size() )
return false;
_dst.create(size, type);
int cn = CV_MAT_CN(type), wdepth = std::max(depth, CV_32F);
int kercn = ocl::predictOptimalVectorWidthMax(_src1, _src2, _dst),
rowsPerWI = d.isIntel() ? 4 : 1;
2013-12-29 22:46:25 +08:00
char cvt[2][50];
ocl::Kernel k("KF", ocl::core::arithm_oclsrc,
format("-D OP_SCALE_ADD -D BINARY_OP -D dstT=%s -D DEPTH_dst=%d -D workT=%s -D convertToWT1=%s"
2014-05-14 19:42:30 +08:00
" -D srcT1=dstT -D srcT2=dstT -D convertToDT=%s -D workT1=%s"
" -D wdepth=%d%s -D rowsPerWI=%d",
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)), depth,
2014-03-08 05:29:27 +08:00
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)),
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]),
ocl::convertTypeStr(wdepth, depth, kercn, cvt[1]),
ocl::typeToStr(wdepth), wdepth,
2014-05-14 19:42:30 +08:00
doubleSupport ? " -D DOUBLE_SUPPORT" : "", rowsPerWI));
2013-12-29 22:46:25 +08:00
if (k.empty())
return false;
UMat src1 = _src1.getUMat(), src2 = _src2.getUMat(), dst = _dst.getUMat();
2013-12-29 22:46:25 +08:00
ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1),
src2arg = ocl::KernelArg::ReadOnlyNoSize(src2),
2014-03-08 05:29:27 +08:00
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn);
2013-12-29 22:46:25 +08:00
if (wdepth == CV_32F)
k.args(src1arg, src2arg, dstarg, (float)alpha);
else
k.args(src1arg, src2arg, dstarg, alpha);
size_t globalsize[2] = { (size_t)dst.cols * cn / kercn, ((size_t)dst.rows + rowsPerWI - 1) / rowsPerWI };
2013-12-29 22:46:25 +08:00
return k.run(2, globalsize, NULL, false);
}
2014-01-25 01:03:31 +08:00
#endif
}
void cv::scaleAdd( InputArray _src1, double alpha, InputArray _src2, OutputArray _dst )
{
CV_INSTRUMENT_REGION();
2013-12-29 22:46:25 +08:00
int type = _src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_Assert( type == _src2.type() );
2014-01-25 01:03:31 +08:00
CV_OCL_RUN(_src1.dims() <= 2 && _src2.dims() <= 2 && _dst.isUMat(),
2013-12-29 22:46:25 +08:00
ocl_scaleAdd(_src1, alpha, _src2, _dst, type))
if( depth < CV_32F )
{
addWeighted(_src1, alpha, _src2, 1, 0, _dst, depth);
return;
}
2013-12-29 22:46:25 +08:00
Mat src1 = _src1.getMat(), src2 = _src2.getMat();
CV_Assert(src1.size == src2.size);
2014-04-06 20:09:38 +08:00
_dst.create(src1.dims, src1.size, type);
Mat dst = _dst.getMat();
float falpha = (float)alpha;
void* palpha = depth == CV_32F ? (void*)&falpha : (void*)&alpha;
2012-06-09 23:00:04 +08:00
ScaleAddFunc func = depth == CV_32F ? (ScaleAddFunc)scaleAdd_32f : (ScaleAddFunc)scaleAdd_64f;
2014-04-07 19:35:51 +08:00
if (src1.isContinuous() && src2.isContinuous() && dst.isContinuous())
{
size_t len = src1.total()*cn;
func(src1.ptr(), src2.ptr(), dst.ptr(), (int)len, palpha);
return;
}
const Mat* arrays[] = {&src1, &src2, &dst, 0};
uchar* ptrs[3] = {};
NAryMatIterator it(arrays, ptrs);
size_t i, len = it.size*cn;
for( i = 0; i < it.nplanes; i++, ++it )
func( ptrs[0], ptrs[1], ptrs[2], (int)len, palpha );
}
/****************************************************************************************\
* Covariation Matrix *
\****************************************************************************************/
void cv::calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean, int flags, int ctype )
{
CV_INSTRUMENT_REGION();
CV_Assert_N( data, nsamples > 0 );
Size size = data[0].size();
int sz = size.width * size.height, esz = (int)data[0].elemSize();
int type = data[0].type();
Mat mean;
ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), _mean.depth()), CV_32F);
if( (flags & CV_COVAR_USE_AVG) != 0 )
{
CV_Assert( _mean.size() == size );
if( _mean.isContinuous() && _mean.type() == ctype )
mean = _mean.reshape(1, 1);
else
{
_mean.convertTo(mean, ctype);
mean = mean.reshape(1, 1);
}
}
Mat _data(nsamples, sz, type);
for( int i = 0; i < nsamples; i++ )
{
CV_Assert_N( data[i].size() == size, data[i].type() == type );
if( data[i].isContinuous() )
memcpy( _data.ptr(i), data[i].ptr(), sz*esz );
else
{
Mat dataRow(size.height, size.width, type, _data.ptr(i));
data[i].copyTo(dataRow);
}
}
calcCovarMatrix( _data, covar, mean, (flags & ~(CV_COVAR_ROWS|CV_COVAR_COLS)) | CV_COVAR_ROWS, ctype );
if( (flags & CV_COVAR_USE_AVG) == 0 )
_mean = mean.reshape(1, size.height);
}
2012-06-09 23:00:04 +08:00
void cv::calcCovarMatrix( InputArray _src, OutputArray _covar, InputOutputArray _mean, int flags, int ctype )
{
CV_INSTRUMENT_REGION();
if(_src.kind() == _InputArray::STD_VECTOR_MAT || _src.kind() == _InputArray::STD_ARRAY_MAT)
{
std::vector<cv::Mat> src;
2012-06-09 23:00:04 +08:00
_src.getMatVector(src);
CV_Assert( src.size() > 0 );
Size size = src[0].size();
int type = src[0].type();
ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), _mean.depth()), CV_32F);
Mat _data(static_cast<int>(src.size()), size.area(), type);
int i = 0;
for(std::vector<cv::Mat>::iterator each = src.begin(); each != src.end(); ++each, ++i )
{
CV_Assert_N( (*each).size() == size, (*each).type() == type );
Mat dataRow(size.height, size.width, type, _data.ptr(i));
(*each).copyTo(dataRow);
}
Mat mean;
if( (flags & CV_COVAR_USE_AVG) != 0 )
{
CV_Assert( _mean.size() == size );
if( mean.type() != ctype )
{
mean = _mean.getMat();
_mean.create(mean.size(), ctype);
Mat tmp = _mean.getMat();
mean.convertTo(tmp, ctype);
mean = tmp;
}
mean = _mean.getMat().reshape(1, 1);
}
calcCovarMatrix( _data, _covar, mean, (flags & ~(CV_COVAR_ROWS|CV_COVAR_COLS)) | CV_COVAR_ROWS, ctype );
if( (flags & CV_COVAR_USE_AVG) == 0 )
{
mean = mean.reshape(1, size.height);
mean.copyTo(_mean);
}
return;
}
2012-06-09 23:00:04 +08:00
Mat data = _src.getMat(), mean;
CV_Assert( ((flags & CV_COVAR_ROWS) != 0) ^ ((flags & CV_COVAR_COLS) != 0) );
bool takeRows = (flags & CV_COVAR_ROWS) != 0;
int type = data.type();
int nsamples = takeRows ? data.rows : data.cols;
CV_Assert( nsamples > 0 );
Size size = takeRows ? Size(data.cols, 1) : Size(1, data.rows);
if( (flags & CV_COVAR_USE_AVG) != 0 )
{
mean = _mean.getMat();
ctype = std::max(std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), mean.depth()), CV_32F);
CV_Assert( mean.size() == size );
if( mean.type() != ctype )
{
_mean.create(mean.size(), ctype);
Mat tmp = _mean.getMat();
mean.convertTo(tmp, ctype);
mean = tmp;
}
}
else
{
ctype = std::max(CV_MAT_DEPTH(ctype >= 0 ? ctype : type), CV_32F);
2012-06-09 23:00:04 +08:00
reduce( _src, _mean, takeRows ? 0 : 1, CV_REDUCE_AVG, ctype );
mean = _mean.getMat();
}
mulTransposed( data, _covar, ((flags & CV_COVAR_NORMAL) == 0) ^ takeRows,
mean, (flags & CV_COVAR_SCALE) != 0 ? 1./nsamples : 1, ctype );
}
/****************************************************************************************\
* Mahalanobis *
\****************************************************************************************/
double cv::Mahalanobis( InputArray _v1, InputArray _v2, InputArray _icovar )
{
CV_INSTRUMENT_REGION();
2012-06-09 23:00:04 +08:00
Mat v1 = _v1.getMat(), v2 = _v2.getMat(), icovar = _icovar.getMat();
int type = v1.type(), depth = v1.depth();
Size sz = v1.size();
int i, j, len = sz.width*sz.height*v1.channels();
AutoBuffer<double> buf(len);
double result = 0;
CV_Assert_N( type == v2.type(), type == icovar.type(),
2017-08-02 21:22:35 +08:00
sz == v2.size(), len == icovar.rows && len == icovar.cols );
sz.width *= v1.channels();
if( v1.isContinuous() && v2.isContinuous() )
{
sz.width *= sz.height;
sz.height = 1;
}
if( depth == CV_32F )
{
const float* src1 = v1.ptr<float>();
const float* src2 = v2.ptr<float>();
size_t step1 = v1.step/sizeof(src1[0]);
size_t step2 = v2.step/sizeof(src2[0]);
2018-06-11 06:42:00 +08:00
double* diff = buf.data();
const float* mat = icovar.ptr<float>();
size_t matstep = icovar.step/sizeof(mat[0]);
for( ; sz.height--; src1 += step1, src2 += step2, diff += sz.width )
{
for( i = 0; i < sz.width; i++ )
diff[i] = src1[i] - src2[i];
}
2018-06-11 06:42:00 +08:00
diff = buf.data();
for( i = 0; i < len; i++, mat += matstep )
{
double row_sum = 0;
2012-02-10 14:05:04 +08:00
j = 0;
2012-06-09 23:00:04 +08:00
#if CV_ENABLE_UNROLLED
2012-02-10 14:05:04 +08:00
for(; j <= len - 4; j += 4 )
row_sum += diff[j]*mat[j] + diff[j+1]*mat[j+1] +
diff[j+2]*mat[j+2] + diff[j+3]*mat[j+3];
2012-02-10 14:05:04 +08:00
#endif
for( ; j < len; j++ )
row_sum += diff[j]*mat[j];
result += row_sum * diff[i];
}
}
else if( depth == CV_64F )
{
const double* src1 = v1.ptr<double>();
const double* src2 = v2.ptr<double>();
size_t step1 = v1.step/sizeof(src1[0]);
size_t step2 = v2.step/sizeof(src2[0]);
2018-06-11 06:42:00 +08:00
double* diff = buf.data();
const double* mat = icovar.ptr<double>();
size_t matstep = icovar.step/sizeof(mat[0]);
for( ; sz.height--; src1 += step1, src2 += step2, diff += sz.width )
{
for( i = 0; i < sz.width; i++ )
diff[i] = src1[i] - src2[i];
}
2018-06-11 06:42:00 +08:00
diff = buf.data();
for( i = 0; i < len; i++, mat += matstep )
{
double row_sum = 0;
2012-02-10 14:05:04 +08:00
j = 0;
2012-06-09 23:00:04 +08:00
#if CV_ENABLE_UNROLLED
2012-02-10 14:05:04 +08:00
for(; j <= len - 4; j += 4 )
row_sum += diff[j]*mat[j] + diff[j+1]*mat[j+1] +
diff[j+2]*mat[j+2] + diff[j+3]*mat[j+3];
2012-02-10 14:05:04 +08:00
#endif
for( ; j < len; j++ )
row_sum += diff[j]*mat[j];
result += row_sum * diff[i];
}
}
else
CV_Error( CV_StsUnsupportedFormat, "" );
return std::sqrt(result);
}
/****************************************************************************************\
* MulTransposed *
\****************************************************************************************/
namespace cv
{
template<typename sT, typename dT> static void
MulTransposedR( const Mat& srcmat, Mat& dstmat, const Mat& deltamat, double scale )
{
int i, j, k;
const sT* src = srcmat.ptr<sT>();
dT* dst = dstmat.ptr<dT>();
const dT* delta = deltamat.ptr<dT>();
size_t srcstep = srcmat.step/sizeof(src[0]);
size_t dststep = dstmat.step/sizeof(dst[0]);
size_t deltastep = deltamat.rows > 1 ? deltamat.step/sizeof(delta[0]) : 0;
int delta_cols = deltamat.cols;
Size size = srcmat.size();
dT* tdst = dst;
dT* col_buf = 0;
dT* delta_buf = 0;
int buf_size = size.height*sizeof(dT);
AutoBuffer<uchar> buf;
if( delta && delta_cols < size.width )
{
assert( delta_cols == 1 );
buf_size *= 5;
}
buf.allocate(buf_size);
2018-06-11 06:42:00 +08:00
col_buf = (dT*)buf.data();
if( delta && delta_cols < size.width )
{
delta_buf = col_buf + size.height;
for( i = 0; i < size.height; i++ )
delta_buf[i*4] = delta_buf[i*4+1] =
delta_buf[i*4+2] = delta_buf[i*4+3] = delta[i*deltastep];
delta = delta_buf;
deltastep = deltastep ? 4 : 0;
}
if( !delta )
for( i = 0; i < size.width; i++, tdst += dststep )
{
for( k = 0; k < size.height; k++ )
col_buf[k] = src[k*srcstep+i];
for( j = i; j <= size.width - 4; j += 4 )
{
double s0 = 0, s1 = 0, s2 = 0, s3 = 0;
const sT *tsrc = src + j;
for( k = 0; k < size.height; k++, tsrc += srcstep )
{
double a = col_buf[k];
s0 += a * tsrc[0];
s1 += a * tsrc[1];
s2 += a * tsrc[2];
s3 += a * tsrc[3];
}
tdst[j] = (dT)(s0*scale);
tdst[j+1] = (dT)(s1*scale);
tdst[j+2] = (dT)(s2*scale);
tdst[j+3] = (dT)(s3*scale);
}
for( ; j < size.width; j++ )
{
double s0 = 0;
const sT *tsrc = src + j;
for( k = 0; k < size.height; k++, tsrc += srcstep )
s0 += (double)col_buf[k] * tsrc[0];
tdst[j] = (dT)(s0*scale);
}
}
else
for( i = 0; i < size.width; i++, tdst += dststep )
{
if( !delta_buf )
for( k = 0; k < size.height; k++ )
col_buf[k] = src[k*srcstep+i] - delta[k*deltastep+i];
else
for( k = 0; k < size.height; k++ )
col_buf[k] = src[k*srcstep+i] - delta_buf[k*deltastep];
for( j = i; j <= size.width - 4; j += 4 )
{
double s0 = 0, s1 = 0, s2 = 0, s3 = 0;
const sT *tsrc = src + j;
const dT *d = delta_buf ? delta_buf : delta + j;
for( k = 0; k < size.height; k++, tsrc+=srcstep, d+=deltastep )
{
double a = col_buf[k];
s0 += a * (tsrc[0] - d[0]);
s1 += a * (tsrc[1] - d[1]);
s2 += a * (tsrc[2] - d[2]);
s3 += a * (tsrc[3] - d[3]);
}
tdst[j] = (dT)(s0*scale);
tdst[j+1] = (dT)(s1*scale);
tdst[j+2] = (dT)(s2*scale);
tdst[j+3] = (dT)(s3*scale);
}
for( ; j < size.width; j++ )
{
double s0 = 0;
const sT *tsrc = src + j;
const dT *d = delta_buf ? delta_buf : delta + j;
for( k = 0; k < size.height; k++, tsrc+=srcstep, d+=deltastep )
s0 += (double)col_buf[k] * (tsrc[0] - d[0]);
tdst[j] = (dT)(s0*scale);
}
}
}
template<typename sT, typename dT> static void
MulTransposedL( const Mat& srcmat, Mat& dstmat, const Mat& deltamat, double scale )
{
int i, j, k;
const sT* src = srcmat.ptr<sT>();
dT* dst = dstmat.ptr<dT>();
const dT* delta = deltamat.ptr<dT>();
size_t srcstep = srcmat.step/sizeof(src[0]);
size_t dststep = dstmat.step/sizeof(dst[0]);
size_t deltastep = deltamat.rows > 1 ? deltamat.step/sizeof(delta[0]) : 0;
int delta_cols = deltamat.cols;
Size size = srcmat.size();
dT* tdst = dst;
if( !delta )
for( i = 0; i < size.height; i++, tdst += dststep )
for( j = i; j < size.height; j++ )
{
double s = 0;
const sT *tsrc1 = src + i*srcstep;
const sT *tsrc2 = src + j*srcstep;
for( k = 0; k <= size.width - 4; k += 4 )
s += (double)tsrc1[k]*tsrc2[k] + (double)tsrc1[k+1]*tsrc2[k+1] +
(double)tsrc1[k+2]*tsrc2[k+2] + (double)tsrc1[k+3]*tsrc2[k+3];
for( ; k < size.width; k++ )
s += (double)tsrc1[k] * tsrc2[k];
tdst[j] = (dT)(s*scale);
}
else
{
dT delta_buf[4];
int delta_shift = delta_cols == size.width ? 4 : 0;
AutoBuffer<uchar> buf(size.width*sizeof(dT));
2018-06-11 06:42:00 +08:00
dT* row_buf = (dT*)buf.data();
for( i = 0; i < size.height; i++, tdst += dststep )
{
const sT *tsrc1 = src + i*srcstep;
const dT *tdelta1 = delta + i*deltastep;
if( delta_cols < size.width )
for( k = 0; k < size.width; k++ )
row_buf[k] = tsrc1[k] - tdelta1[0];
else
for( k = 0; k < size.width; k++ )
row_buf[k] = tsrc1[k] - tdelta1[k];
for( j = i; j < size.height; j++ )
{
double s = 0;
const sT *tsrc2 = src + j*srcstep;
const dT *tdelta2 = delta + j*deltastep;
if( delta_cols < size.width )
{
delta_buf[0] = delta_buf[1] =
delta_buf[2] = delta_buf[3] = tdelta2[0];
tdelta2 = delta_buf;
}
for( k = 0; k <= size.width-4; k += 4, tdelta2 += delta_shift )
s += (double)row_buf[k]*(tsrc2[k] - tdelta2[0]) +
(double)row_buf[k+1]*(tsrc2[k+1] - tdelta2[1]) +
(double)row_buf[k+2]*(tsrc2[k+2] - tdelta2[2]) +
(double)row_buf[k+3]*(tsrc2[k+3] - tdelta2[3]);
for( ; k < size.width; k++, tdelta2++ )
s += (double)row_buf[k]*(tsrc2[k] - tdelta2[0]);
tdst[j] = (dT)(s*scale);
}
}
}
}
typedef void (*MulTransposedFunc)(const Mat& src, Mat& dst, const Mat& delta, double scale);
}
void cv::mulTransposed( InputArray _src, OutputArray _dst, bool ata,
InputArray _delta, double scale, int dtype )
{
CV_INSTRUMENT_REGION();
Mat src = _src.getMat(), delta = _delta.getMat();
const int gemm_level = 100; // boundary above which GEMM is faster.
int stype = src.type();
dtype = std::max(std::max(CV_MAT_DEPTH(dtype >= 0 ? dtype : stype), delta.depth()), CV_32F);
CV_Assert( src.channels() == 1 );
if( !delta.empty() )
{
CV_Assert_N( delta.channels() == 1,
2017-08-02 21:22:35 +08:00
(delta.rows == src.rows || delta.rows == 1),
(delta.cols == src.cols || delta.cols == 1));
if( delta.type() != dtype )
delta.convertTo(delta, dtype);
}
int dsize = ata ? src.cols : src.rows;
_dst.create( dsize, dsize, dtype );
Mat dst = _dst.getMat();
if( src.data == dst.data || (stype == dtype &&
(dst.cols >= gemm_level && dst.rows >= gemm_level &&
src.cols >= gemm_level && src.rows >= gemm_level)))
{
Mat src2;
const Mat* tsrc = &src;
if( !delta.empty() )
{
if( delta.size() == src.size() )
subtract( src, delta, src2 );
else
{
repeat(delta, src.rows/delta.rows, src.cols/delta.cols, src2);
subtract( src, src2, src2 );
}
tsrc = &src2;
}
gemm( *tsrc, *tsrc, scale, Mat(), 0, dst, ata ? GEMM_1_T : GEMM_2_T );
}
else
{
MulTransposedFunc func = 0;
if(stype == CV_8U && dtype == CV_32F)
{
if(ata)
func = MulTransposedR<uchar,float>;
else
func = MulTransposedL<uchar,float>;
}
else if(stype == CV_8U && dtype == CV_64F)
{
if(ata)
func = MulTransposedR<uchar,double>;
else
func = MulTransposedL<uchar,double>;
}
else if(stype == CV_16U && dtype == CV_32F)
{
if(ata)
func = MulTransposedR<ushort,float>;
else
func = MulTransposedL<ushort,float>;
}
else if(stype == CV_16U && dtype == CV_64F)
{
if(ata)
func = MulTransposedR<ushort,double>;
else
func = MulTransposedL<ushort,double>;
}
else if(stype == CV_16S && dtype == CV_32F)
{
if(ata)
func = MulTransposedR<short,float>;
else
func = MulTransposedL<short,float>;
}
else if(stype == CV_16S && dtype == CV_64F)
{
if(ata)
func = MulTransposedR<short,double>;
else
func = MulTransposedL<short,double>;
}
else if(stype == CV_32F && dtype == CV_32F)
{
if(ata)
func = MulTransposedR<float,float>;
else
func = MulTransposedL<float,float>;
}
else if(stype == CV_32F && dtype == CV_64F)
{
if(ata)
func = MulTransposedR<float,double>;
else
func = MulTransposedL<float,double>;
}
else if(stype == CV_64F && dtype == CV_64F)
{
if(ata)
func = MulTransposedR<double,double>;
else
func = MulTransposedL<double,double>;
}
if( !func )
CV_Error( CV_StsUnsupportedFormat, "" );
func( src, dst, delta, scale );
completeSymm( dst, false );
}
}
/****************************************************************************************\
* Dot Product *
\****************************************************************************************/
namespace cv
{
template<typename T> double
dotProd_(const T* src1, const T* src2, int len)
{
int i = 0;
double result = 0;
2014-09-28 19:35:33 +08:00
#if CV_ENABLE_UNROLLED
for( ; i <= len - 4; i += 4 )
result += (double)src1[i]*src2[i] + (double)src1[i+1]*src2[i+1] +
(double)src1[i+2]*src2[i+2] + (double)src1[i+3]*src2[i+3];
2012-02-10 14:05:04 +08:00
#endif
for( ; i < len; i++ )
result += (double)src1[i]*src2[i];
return result;
}
static double dotProd_8u(const uchar* src1, const uchar* src2, int len)
{
double r = 0;
#if ARITHM_USE_IPP
CV_IPP_RUN(IPP_VERSION_X100 > 201800 || cv::ipp::getIppTopFeatures() != ippCPUID_SSE42, CV_INSTRUMENT_FUN_IPP(ippiDotProd_8u64f_C1R, src1, len*sizeof(uchar), src2, len*sizeof(uchar), ippiSize(len, 1), &r) >= 0, r);
2014-04-07 18:17:22 +08:00
#endif
int i = 0;
#if CV_SIMD
int len0 = len & -v_uint16::nlanes, blockSize0 = (1 << 15), blockSize;
while (i < len0)
{
blockSize = std::min(len0 - i, blockSize0);
v_int32 v_sum = vx_setzero_s32();
const int cWidth = v_uint16::nlanes;
2014-09-28 19:35:33 +08:00
int j = 0;
for (; j <= blockSize - cWidth * 2; j += cWidth * 2)
{
v_uint16 v_src10, v_src20, v_src11, v_src21;
v_expand(vx_load(src1 + j), v_src10, v_src11);
v_expand(vx_load(src2 + j), v_src20, v_src21);
v_sum += v_dotprod(v_reinterpret_as_s16(v_src10), v_reinterpret_as_s16(v_src20));
v_sum += v_dotprod(v_reinterpret_as_s16(v_src11), v_reinterpret_as_s16(v_src21));
}
2014-09-28 19:35:33 +08:00
for (; j <= blockSize - cWidth; j += cWidth)
{
v_int16 v_src10 = v_reinterpret_as_s16(vx_load_expand(src1 + j));
v_int16 v_src20 = v_reinterpret_as_s16(vx_load_expand(src2 + j));
v_sum += v_dotprod(v_src10, v_src20);
}
r += (double)v_reduce_sum(v_sum);
src1 += blockSize;
src2 += blockSize;
i += blockSize;
}
vx_cleanup();
2014-09-28 19:35:33 +08:00
#elif CV_NEON
if( cv::checkHardwareSupport(CV_CPU_NEON) )
2014-09-28 19:35:33 +08:00
{
int len0 = len & -8, blockSize0 = (1 << 15), blockSize;
uint32x4_t v_zero = vdupq_n_u32(0u);
CV_DECL_ALIGNED(16) uint buf[4];
2014-09-28 19:35:33 +08:00
while( i < len0 )
2014-09-28 19:35:33 +08:00
{
blockSize = std::min(len0 - i, blockSize0);
uint32x4_t v_sum = v_zero;
2014-09-28 19:35:33 +08:00
int j = 0;
for( ; j <= blockSize - 16; j += 16 )
{
uint8x16_t v_src1 = vld1q_u8(src1 + j), v_src2 = vld1q_u8(src2 + j);
2014-09-28 19:35:33 +08:00
uint16x8_t v_src10 = vmovl_u8(vget_low_u8(v_src1)), v_src20 = vmovl_u8(vget_low_u8(v_src2));
v_sum = vmlal_u16(v_sum, vget_low_u16(v_src10), vget_low_u16(v_src20));
v_sum = vmlal_u16(v_sum, vget_high_u16(v_src10), vget_high_u16(v_src20));
2014-09-28 19:35:33 +08:00
v_src10 = vmovl_u8(vget_high_u8(v_src1));
v_src20 = vmovl_u8(vget_high_u8(v_src2));
v_sum = vmlal_u16(v_sum, vget_low_u16(v_src10), vget_low_u16(v_src20));
v_sum = vmlal_u16(v_sum, vget_high_u16(v_src10), vget_high_u16(v_src20));
}
2014-09-28 19:35:33 +08:00
for( ; j <= blockSize - 8; j += 8 )
{
uint16x8_t v_src1 = vmovl_u8(vld1_u8(src1 + j)), v_src2 = vmovl_u8(vld1_u8(src2 + j));
v_sum = vmlal_u16(v_sum, vget_low_u16(v_src1), vget_low_u16(v_src2));
v_sum = vmlal_u16(v_sum, vget_high_u16(v_src1), vget_high_u16(v_src2));
}
2014-09-28 19:35:33 +08:00
vst1q_u32(buf, v_sum);
r += buf[0] + buf[1] + buf[2] + buf[3];
src1 += blockSize;
src2 += blockSize;
i += blockSize;
}
2014-09-28 19:35:33 +08:00
}
#endif
return r + dotProd_(src1, src2, len - i);
}
static double dotProd_8s(const schar* src1, const schar* src2, int len)
{
2014-09-28 19:35:33 +08:00
double r = 0.0;
int i = 0;
2014-09-28 19:35:33 +08:00
#if CV_SIMD
int len0 = len & -v_int16::nlanes, blockSize0 = (1 << 14), blockSize;
while (i < len0)
2014-12-30 05:34:09 +08:00
{
blockSize = std::min(len0 - i, blockSize0);
v_int32 v_sum = vx_setzero_s32();
const int cWidth = v_int16::nlanes;
2014-12-30 05:34:09 +08:00
int j = 0;
for (; j <= blockSize - cWidth * 2; j += cWidth * 2)
2014-12-30 05:34:09 +08:00
{
v_int16 v_src10, v_src20, v_src11, v_src21;
v_expand(vx_load(src1 + j), v_src10, v_src11);
v_expand(vx_load(src2 + j), v_src20, v_src21);
v_sum += v_dotprod(v_src10, v_src20);
v_sum += v_dotprod(v_src11, v_src21);
}
2014-12-30 05:34:09 +08:00
for (; j <= blockSize - cWidth; j += cWidth)
{
v_int16 v_src10 = vx_load_expand(src1 + j);
v_int16 v_src20 = vx_load_expand(src2 + j);
2014-12-30 05:34:09 +08:00
v_sum += v_dotprod(v_src10, v_src20);
2014-12-30 05:34:09 +08:00
}
r += (double)v_reduce_sum(v_sum);
src1 += blockSize;
src2 += blockSize;
i += blockSize;
2014-12-30 05:34:09 +08:00
}
vx_cleanup();
2014-12-30 05:34:09 +08:00
#elif CV_NEON
if( cv::checkHardwareSupport(CV_CPU_NEON) )
2014-09-28 19:35:33 +08:00
{
int len0 = len & -8, blockSize0 = (1 << 14), blockSize;
int32x4_t v_zero = vdupq_n_s32(0);
CV_DECL_ALIGNED(16) int buf[4];
2014-09-28 19:35:33 +08:00
while( i < len0 )
2014-09-28 19:35:33 +08:00
{
blockSize = std::min(len0 - i, blockSize0);
int32x4_t v_sum = v_zero;
2014-09-28 19:35:33 +08:00
int j = 0;
for( ; j <= blockSize - 16; j += 16 )
{
int8x16_t v_src1 = vld1q_s8(src1 + j), v_src2 = vld1q_s8(src2 + j);
2014-09-28 19:35:33 +08:00
int16x8_t v_src10 = vmovl_s8(vget_low_s8(v_src1)), v_src20 = vmovl_s8(vget_low_s8(v_src2));
v_sum = vmlal_s16(v_sum, vget_low_s16(v_src10), vget_low_s16(v_src20));
v_sum = vmlal_s16(v_sum, vget_high_s16(v_src10), vget_high_s16(v_src20));
2014-09-28 19:35:33 +08:00
v_src10 = vmovl_s8(vget_high_s8(v_src1));
v_src20 = vmovl_s8(vget_high_s8(v_src2));
v_sum = vmlal_s16(v_sum, vget_low_s16(v_src10), vget_low_s16(v_src20));
v_sum = vmlal_s16(v_sum, vget_high_s16(v_src10), vget_high_s16(v_src20));
}
for( ; j <= blockSize - 8; j += 8 )
{
int16x8_t v_src1 = vmovl_s8(vld1_s8(src1 + j)), v_src2 = vmovl_s8(vld1_s8(src2 + j));
v_sum = vmlal_s16(v_sum, vget_low_s16(v_src1), vget_low_s16(v_src2));
v_sum = vmlal_s16(v_sum, vget_high_s16(v_src1), vget_high_s16(v_src2));
}
2014-09-28 19:35:33 +08:00
vst1q_s32(buf, v_sum);
r += buf[0] + buf[1] + buf[2] + buf[3];
2014-09-28 19:35:33 +08:00
src1 += blockSize;
src2 += blockSize;
i += blockSize;
}
2014-09-28 19:35:33 +08:00
}
#endif
return r + dotProd_(src1, src2, len - i);
}
static double dotProd_16u(const ushort* src1, const ushort* src2, int len)
{
#if ARITHM_USE_IPP
double r = 0;
CV_IPP_RUN_FAST(CV_INSTRUMENT_FUN_IPP(ippiDotProd_16u64f_C1R, src1, len*sizeof(ushort), src2, len*sizeof(ushort), ippiSize(len, 1), &r) >= 0, r);
2014-03-21 19:27:56 +08:00
#endif
return dotProd_(src1, src2, len);
}
static double dotProd_16s(const short* src1, const short* src2, int len)
{
#if ARITHM_USE_IPP && (IPP_VERSION_X100 != 900) // bug in IPP 9.0.0
double r = 0;
CV_IPP_RUN_FAST(CV_INSTRUMENT_FUN_IPP(ippiDotProd_16s64f_C1R, src1, len*sizeof(short), src2, len*sizeof(short), ippiSize(len, 1), &r) >= 0, r);
2014-03-21 19:27:56 +08:00
#endif
return dotProd_(src1, src2, len);
}
static double dotProd_32s(const int* src1, const int* src2, int len)
{
#if ARITHM_USE_IPP
double r = 0;
CV_IPP_RUN_FAST(CV_INSTRUMENT_FUN_IPP(ippiDotProd_32s64f_C1R, src1, len*sizeof(int), src2, len*sizeof(int), ippiSize(len, 1), &r) >= 0, r);
2014-03-21 19:27:56 +08:00
#endif
return dotProd_(src1, src2, len);
}
static double dotProd_32f(const float* src1, const float* src2, int len)
{
2014-09-28 19:35:33 +08:00
double r = 0.0;
#if ARITHM_USE_IPP
CV_IPP_RUN_FAST(CV_INSTRUMENT_FUN_IPP(ippiDotProd_32f64f_C1R, src1, len*sizeof(float), src2, len*sizeof(float), ippiSize(len, 1), &r, ippAlgHintFast) >= 0, r);
#endif
2014-09-28 19:35:33 +08:00
int i = 0;
#if CV_SIMD
int len0 = len & -v_float32::nlanes, blockSize0 = (1 << 13), blockSize;
2014-09-28 19:35:33 +08:00
while (i < len0)
{
blockSize = std::min(len0 - i, blockSize0);
v_float32 v_sum = vx_setzero_f32();
int j = 0;
int cWidth = v_float32::nlanes;
for (; j <= blockSize - cWidth; j += cWidth)
v_sum = v_muladd(vx_load(src1 + j), vx_load(src2 + j), v_sum);
2014-09-28 19:35:33 +08:00
r += v_reduce_sum(v_sum);
2014-09-28 19:35:33 +08:00
src1 += blockSize;
src2 += blockSize;
i += blockSize;
2014-09-28 19:35:33 +08:00
}
vx_cleanup();
2014-03-21 19:27:56 +08:00
#endif
2014-09-28 19:35:33 +08:00
return r + dotProd_(src1, src2, len - i);
}
static double dotProd_64f(const double* src1, const double* src2, int len)
{
#if ARITHM_USE_IPP
double r = 0;
CV_IPP_RUN_FAST(CV_INSTRUMENT_FUN_IPP(ippsDotProd_64f, src1, src2, len, &r) >= 0, r);
2014-03-21 19:27:56 +08:00
#endif
2014-03-21 19:27:56 +08:00
return dotProd_(src1, src2, len);
}
typedef double (*DotProdFunc)(const uchar* src1, const uchar* src2, int len);
static DotProdFunc getDotProdFunc(int depth)
{
static DotProdFunc dotProdTab[] =
{
(DotProdFunc)GET_OPTIMIZED(dotProd_8u), (DotProdFunc)GET_OPTIMIZED(dotProd_8s),
(DotProdFunc)dotProd_16u, (DotProdFunc)dotProd_16s,
(DotProdFunc)dotProd_32s, (DotProdFunc)GET_OPTIMIZED(dotProd_32f),
(DotProdFunc)dotProd_64f, 0
};
return dotProdTab[depth];
}
double Mat::dot(InputArray _mat) const
{
CV_INSTRUMENT_REGION();
Mat mat = _mat.getMat();
int cn = channels();
DotProdFunc func = getDotProdFunc(depth());
CV_Assert_N( mat.type() == type(), mat.size == size, func != 0 );
if( isContinuous() && mat.isContinuous() )
{
size_t len = total()*cn;
if( len == (size_t)(int)len )
return func(data, mat.data, (int)len);
}
const Mat* arrays[] = {this, &mat, 0};
uchar* ptrs[2] = {};
NAryMatIterator it(arrays, ptrs);
int len = (int)(it.size*cn);
double r = 0;
for( size_t i = 0; i < it.nplanes; i++, ++it )
r += func( ptrs[0], ptrs[1], len );
return r;
}
}
/****************************************************************************************\
* Earlier API *
\****************************************************************************************/
CV_IMPL void cvGEMM( const CvArr* Aarr, const CvArr* Barr, double alpha,
const CvArr* Carr, double beta, CvArr* Darr, int flags )
{
cv::Mat A = cv::cvarrToMat(Aarr), B = cv::cvarrToMat(Barr);
cv::Mat C, D = cv::cvarrToMat(Darr);
if( Carr )
C = cv::cvarrToMat(Carr);
CV_Assert_N( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)),
2017-08-02 21:22:35 +08:00
(D.cols == ((flags & CV_GEMM_B_T) == 0 ? B.cols : B.rows)),
D.type() == A.type() );
gemm( A, B, alpha, C, beta, D, flags );
}
CV_IMPL void
cvTransform( const CvArr* srcarr, CvArr* dstarr,
const CvMat* transmat, const CvMat* shiftvec )
{
cv::Mat m = cv::cvarrToMat(transmat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
if( shiftvec )
{
cv::Mat v = cv::cvarrToMat(shiftvec).reshape(1,m.rows),
_m(m.rows, m.cols + 1, m.type()), m1 = _m.colRange(0,m.cols), v1 = _m.col(m.cols);
m.convertTo(m1, m1.type());
v.convertTo(v1, v1.type());
m = _m;
}
CV_Assert_N( dst.depth() == src.depth(), dst.channels() == m.rows );
cv::transform( src, dst, m );
}
CV_IMPL void
cvPerspectiveTransform( const CvArr* srcarr, CvArr* dstarr, const CvMat* mat )
{
cv::Mat m = cv::cvarrToMat(mat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
CV_Assert_N( dst.type() == src.type(), dst.channels() == m.rows-1 );
cv::perspectiveTransform( src, dst, m );
}
CV_IMPL void cvScaleAdd( const CvArr* srcarr1, CvScalar scale,
const CvArr* srcarr2, CvArr* dstarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr);
CV_Assert_N( src1.size == dst.size, src1.type() == dst.type() );
cv::scaleAdd( src1, scale.val[0], cv::cvarrToMat(srcarr2), dst );
}
CV_IMPL void
cvCalcCovarMatrix( const CvArr** vecarr, int count,
CvArr* covarr, CvArr* avgarr, int flags )
{
cv::Mat cov0 = cv::cvarrToMat(covarr), cov = cov0, mean0, mean;
CV_Assert_N( vecarr != 0, count >= 1 );
if( avgarr )
mean = mean0 = cv::cvarrToMat(avgarr);
if( (flags & CV_COVAR_COLS) != 0 || (flags & CV_COVAR_ROWS) != 0 )
{
cv::Mat data = cv::cvarrToMat(vecarr[0]);
cv::calcCovarMatrix( data, cov, mean, flags, cov.type() );
}
else
{
std::vector<cv::Mat> data(count);
for( int i = 0; i < count; i++ )
data[i] = cv::cvarrToMat(vecarr[i]);
cv::calcCovarMatrix( &data[0], count, cov, mean, flags, cov.type() );
}
if( mean.data != mean0.data && mean0.data )
mean.convertTo(mean0, mean0.type());
if( cov.data != cov0.data )
cov.convertTo(cov0, cov0.type());
}
CV_IMPL double
cvMahalanobis( const CvArr* srcAarr, const CvArr* srcBarr, const CvArr* matarr )
{
return cv::Mahalanobis(cv::cvarrToMat(srcAarr),
cv::cvarrToMat(srcBarr), cv::cvarrToMat(matarr));
}
CV_IMPL void
cvMulTransposed( const CvArr* srcarr, CvArr* dstarr,
int order, const CvArr* deltaarr, double scale )
{
cv::Mat src = cv::cvarrToMat(srcarr), dst0 = cv::cvarrToMat(dstarr), dst = dst0, delta;
if( deltaarr )
delta = cv::cvarrToMat(deltaarr);
cv::mulTransposed( src, dst, order != 0, delta, scale, dst.type());
if( dst.data != dst0.data )
dst.convertTo(dst0, dst0.type());
}
CV_IMPL double cvDotProduct( const CvArr* srcAarr, const CvArr* srcBarr )
{
return cv::cvarrToMat(srcAarr).dot(cv::cvarrToMat(srcBarr));
}
CV_IMPL void
cvCalcPCA( const CvArr* data_arr, CvArr* avg_arr, CvArr* eigenvals, CvArr* eigenvects, int flags )
{
cv::Mat data = cv::cvarrToMat(data_arr), mean0 = cv::cvarrToMat(avg_arr);
cv::Mat evals0 = cv::cvarrToMat(eigenvals), evects0 = cv::cvarrToMat(eigenvects);
cv::Mat mean = mean0, evals = evals0, evects = evects0;
cv::PCA pca;
pca.mean = mean;
pca.eigenvalues = evals;
pca.eigenvectors = evects;
pca(data, (flags & CV_PCA_USE_AVG) ? mean : cv::Mat(),
flags, !evals.empty() ? evals.rows + evals.cols - 1 : 0);
if( pca.mean.size() == mean.size() )
pca.mean.convertTo( mean, mean.type() );
else
{
cv::Mat temp; pca.mean.convertTo( temp, mean.type() );
transpose( temp, mean );
}
evals = pca.eigenvalues;
evects = pca.eigenvectors;
int ecount0 = evals0.cols + evals0.rows - 1;
int ecount = evals.cols + evals.rows - 1;
CV_Assert_N( (evals0.cols == 1 || evals0.rows == 1),
2017-08-02 21:22:35 +08:00
ecount0 <= ecount,
evects0.cols == evects.cols,
evects0.rows == ecount0 );
cv::Mat temp = evals0;
if( evals.rows == 1 )
evals.colRange(0, ecount0).convertTo(temp, evals0.type());
else
evals.rowRange(0, ecount0).convertTo(temp, evals0.type());
if( temp.data != evals0.data )
transpose(temp, evals0);
evects.rowRange(0, ecount0).convertTo( evects0, evects0.type() );
// otherwise some datatype's or size's were incorrect, so the output arrays have been reallocated
CV_Assert( mean0.data == mean.data );
}
CV_IMPL void
cvProjectPCA( const CvArr* data_arr, const CvArr* avg_arr,
const CvArr* eigenvects, CvArr* result_arr )
{
cv::Mat data = cv::cvarrToMat(data_arr), mean = cv::cvarrToMat(avg_arr);
cv::Mat evects = cv::cvarrToMat(eigenvects), dst0 = cv::cvarrToMat(result_arr), dst = dst0;
cv::PCA pca;
pca.mean = mean;
int n;
if( mean.rows == 1 )
{
CV_Assert_N(dst.cols <= evects.rows, dst.rows == data.rows);
n = dst.cols;
}
else
{
CV_Assert_N(dst.rows <= evects.rows, dst.cols == data.cols);
n = dst.rows;
}
pca.eigenvectors = evects.rowRange(0, n);
cv::Mat result = pca.project(data);
if( result.cols != dst.cols )
result = result.reshape(1, 1);
result.convertTo(dst, dst.type());
CV_Assert(dst0.data == dst.data);
}
CV_IMPL void
cvBackProjectPCA( const CvArr* proj_arr, const CvArr* avg_arr,
const CvArr* eigenvects, CvArr* result_arr )
{
cv::Mat data = cv::cvarrToMat(proj_arr), mean = cv::cvarrToMat(avg_arr);
cv::Mat evects = cv::cvarrToMat(eigenvects), dst0 = cv::cvarrToMat(result_arr), dst = dst0;
cv::PCA pca;
pca.mean = mean;
int n;
if( mean.rows == 1 )
{
CV_Assert_N(data.cols <= evects.rows, dst.rows == data.rows);
n = data.cols;
}
else
{
CV_Assert_N(data.rows <= evects.rows, dst.cols == data.cols);
n = data.rows;
}
pca.eigenvectors = evects.rowRange(0, n);
cv::Mat result = pca.backProject(data);
result.convertTo(dst, dst.type());
CV_Assert(dst0.data == dst.data);
}
/* End of file. */