opencv/samples/swig_python/squares.py

154 lines
5.8 KiB
Python
Raw Normal View History

#!/usr/bin/python
#
# The full "Square Detector" program.
# It loads several images subsequentally and tries to find squares in
# each image
#
from opencv.cv import *
from opencv.highgui import *
from math import sqrt
thresh = 50;
img = None;
img0 = None;
storage = None;
wndname = "Square Detection Demo";
def angle( pt1, pt2, pt0 ):
dx1 = pt1.x - pt0.x;
dy1 = pt1.y - pt0.y;
dx2 = pt2.x - pt0.x;
dy2 = pt2.y - pt0.y;
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
def findSquares4( img, storage ):
N = 11;
sz = cvSize( img.width & -2, img.height & -2 );
timg = cvCloneImage( img ); # make a copy of input image
gray = cvCreateImage( sz, 8, 1 );
pyr = cvCreateImage( cvSize(sz.width/2, sz.height/2), 8, 3 );
# create empty sequence that will contain points -
# 4 points per square (the square's vertices)
squares = cvCreateSeq( 0, sizeof_CvSeq, sizeof_CvPoint, storage );
squares = CvSeq_CvPoint.cast( squares )
# select the maximum ROI in the image
# with the width and height divisible by 2
subimage = cvGetSubRect( timg, cvRect( 0, 0, sz.width, sz.height ))
# down-scale and upscale the image to filter out the noise
cvPyrDown( subimage, pyr, 7 );
cvPyrUp( pyr, subimage, 7 );
tgray = cvCreateImage( sz, 8, 1 );
# find squares in every color plane of the image
for c in range(3):
# extract the c-th color plane
channels = [None, None, None]
channels[c] = tgray
cvSplit( subimage, channels[0], channels[1], channels[2], None )
for l in range(N):
# hack: use Canny instead of zero threshold level.
# Canny helps to catch squares with gradient shading
if( l == 0 ):
# apply Canny. Take the upper threshold from slider
# and set the lower to 0 (which forces edges merging)
cvCanny( tgray, gray, 0, thresh, 5 );
# dilate canny output to remove potential
# holes between edge segments
cvDilate( gray, gray, None, 1 );
else:
# apply threshold if l!=0:
# tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
cvThreshold( tgray, gray, (l+1)*255/N, 255, CV_THRESH_BINARY );
# find contours and store them all as a list
count, contours = cvFindContours( gray, storage, sizeof_CvContour,
CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE, cvPoint(0,0) );
if not contours:
continue
# test each contour
for contour in contours.hrange():
# approximate contour with accuracy proportional
# to the contour perimeter
result = cvApproxPoly( contour, sizeof_CvContour, storage,
CV_POLY_APPROX_DP, cvContourPerimeter(contours)*0.02, 0 );
# square contours should have 4 vertices after approximation
# relatively large area (to filter out noisy contours)
# and be convex.
# Note: absolute value of an area is used because
# area may be positive or negative - in accordance with the
# contour orientation
if( result.total == 4 and
abs(cvContourArea(result)) > 1000 and
cvCheckContourConvexity(result) ):
s = 0;
for i in range(5):
# find minimum angle between joint
# edges (maximum of cosine)
if( i >= 2 ):
t = abs(angle( result[i], result[i-2], result[i-1]))
if s<t:
s=t
# if cosines of all angles are small
# (all angles are ~90 degree) then write quandrange
# vertices to resultant sequence
if( s < 0.3 ):
for i in range(4):
squares.append( result[i] )
return squares;
# the function draws all the squares in the image
def drawSquares( img, squares ):
cpy = cvCloneImage( img );
# read 4 sequence elements at a time (all vertices of a square)
i=0
while i<squares.total:
pt = []
# read 4 vertices
pt.append( squares[i] )
pt.append( squares[i+1] )
pt.append( squares[i+2] )
pt.append( squares[i+3] )
# draw the square as a closed polyline
cvPolyLine( cpy, [pt], 1, CV_RGB(0,255,0), 3, CV_AA, 0 );
i+=4
# show the resultant image
cvShowImage( wndname, cpy );
def on_trackbar( a ):
if( img ):
drawSquares( img, findSquares4( img, storage ) );
names = ["../c/pic1.png", "../c/pic2.png", "../c/pic3.png",
"../c/pic4.png", "../c/pic5.png", "../c/pic6.png" ];
if __name__ == "__main__":
# create memory storage that will contain all the dynamic data
storage = cvCreateMemStorage(0);
for name in names:
img0 = cvLoadImage( name, 1 );
if not img0:
print "Couldn't load %s" % name
continue;
img = cvCloneImage( img0 );
# create window and a trackbar (slider) with parent "image" and set callback
# (the slider regulates upper threshold, passed to Canny edge detector)
cvNamedWindow( wndname, 1 );
cvCreateTrackbar( "canny thresh", wndname, thresh, 1000, on_trackbar );
# force the image processing
on_trackbar(0);
# wait for key.
# Also the function cvWaitKey takes care of event processing
c = cvWaitKey(0);
# clear memory storage - reset free space position
cvClearMemStorage( storage );
if( c == '\x1b' ):
break;
cvDestroyWindow( wndname );