opencv/modules/ocl/perf/perf_opticalflow.cpp

274 lines
9.5 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Fangfang Bai, fangfang@multicorewareinc.com
2013-05-17 13:18:46 +08:00
// Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
///////////// PyrLKOpticalFlow ////////////////////////
using namespace perf;
using std::tr1::get;
using std::tr1::tuple;
using std::tr1::make_tuple;
template <typename T>
static vector<T> & MatToVector(const ocl::oclMat & oclSrc, vector<T> & instance)
{
Mat src;
oclSrc.download(src);
for (int i = 0; i < src.cols; ++i)
instance.push_back(src.at<T>(0, i));
return instance;
}
CV_ENUM(LoadMode, IMREAD_GRAYSCALE, IMREAD_COLOR)
typedef tuple<int, tuple<string, string, LoadMode> > PyrLKOpticalFlowParamType;
typedef TestBaseWithParam<PyrLKOpticalFlowParamType> PyrLKOpticalFlowFixture;
PERF_TEST_P(PyrLKOpticalFlowFixture,
DISABLED_PyrLKOpticalFlow,
::testing::Combine(
::testing::Values(1000, 2000, 4000),
::testing::Values(
make_tuple<string, string, LoadMode>
(
string("gpu/opticalflow/rubberwhale1.png"),
string("gpu/opticalflow/rubberwhale2.png"),
LoadMode(IMREAD_COLOR)
)
, make_tuple<string, string, LoadMode>
(
string("gpu/stereobm/aloe-L.png"),
string("gpu/stereobm/aloe-R.png"),
LoadMode(IMREAD_GRAYSCALE)
)
)
)
) // TODO to big difference between implementations
{
PyrLKOpticalFlowParamType params = GetParam();
tuple<string, string, LoadMode> fileParam = get<1>(params);
const int pointsCount = get<0>(params);
const int openMode = static_cast<int>(get<2>(fileParam));
const string fileName0 = get<0>(fileParam), fileName1 = get<1>(fileParam);
Mat frame0 = imread(getDataPath(fileName0), openMode);
Mat frame1 = imread(getDataPath(fileName1), openMode);
ASSERT_FALSE(frame0.empty()) << "can't load " << fileName0;
ASSERT_FALSE(frame1.empty()) << "can't load " << fileName1;
Mat grayFrame;
if (openMode == IMREAD_COLOR)
cvtColor(frame0, grayFrame, COLOR_BGR2GRAY);
else
grayFrame = frame0;
vector<Point2f> pts, nextPts;
vector<unsigned char> status;
vector<float> err;
goodFeaturesToTrack(grayFrame, pts, pointsCount, 0.01, 0.0);
if (RUN_PLAIN_IMPL)
{
TEST_CYCLE()
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts, status, err);
SANITY_CHECK(nextPts);
SANITY_CHECK(status);
SANITY_CHECK(err);
}
else if (RUN_OCL_IMPL)
{
ocl::PyrLKOpticalFlow oclPyrLK;
ocl::oclMat oclFrame0(frame0), oclFrame1(frame1);
ocl::oclMat oclPts(1, static_cast<int>(pts.size()), CV_32FC2, (void *)&pts[0]);
ocl::oclMat oclNextPts, oclStatus, oclErr;
TEST_CYCLE()
oclPyrLK.sparse(oclFrame0, oclFrame1, oclPts, oclNextPts, oclStatus, &oclErr);
MatToVector(oclNextPts, nextPts);
MatToVector(oclStatus, status);
MatToVector(oclErr, err);
SANITY_CHECK(nextPts);
SANITY_CHECK(status);
SANITY_CHECK(err);
}
else
OCL_PERF_ELSE
}
2013-05-29 15:48:56 +08:00
PERF_TEST(tvl1flowFixture, tvl1flow)
2013-05-29 15:48:56 +08:00
{
Mat frame0 = imread(getDataPath("gpu/opticalflow/rubberwhale1.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty()) << "can't load rubberwhale1.png";
2013-05-29 15:48:56 +08:00
Mat frame1 = imread(getDataPath("gpu/opticalflow/rubberwhale2.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty()) << "can't load rubberwhale2.png";
2013-05-29 15:48:56 +08:00
const Size srcSize = frame0.size();
const double eps = 1.2;
Mat flow(srcSize, CV_32FC2), flow1(srcSize, CV_32FC1), flow2(srcSize, CV_32FC1);
declare.in(frame0, frame1).out(flow1, flow2).time(159);
2013-05-29 15:48:56 +08:00
if (RUN_PLAIN_IMPL)
{
Ptr<DenseOpticalFlow> alg = createOptFlow_DualTVL1();
2013-05-29 15:48:56 +08:00
TEST_CYCLE() alg->calc(frame0, frame1, flow);
2013-05-29 15:48:56 +08:00
alg->collectGarbage();
Mat flows[2] = { flow1, flow2 };
split(flow, flows);
2013-05-29 15:48:56 +08:00
SANITY_CHECK(flow1, eps);
SANITY_CHECK(flow2, eps);
}
else if (RUN_OCL_IMPL)
{
ocl::OpticalFlowDual_TVL1_OCL oclAlg;
ocl::oclMat oclFrame0(frame0), oclFrame1(frame1), oclFlow1(srcSize, CV_32FC1),
oclFlow2(srcSize, CV_32FC1);
2013-05-29 15:48:56 +08:00
TEST_CYCLE() oclAlg(oclFrame0, oclFrame1, oclFlow1, oclFlow2);
2013-05-29 15:48:56 +08:00
oclAlg.collectGarbage();
2013-05-29 15:48:56 +08:00
oclFlow1.download(flow1);
oclFlow2.download(flow2);
2013-05-29 15:48:56 +08:00
SANITY_CHECK(flow1, eps);
SANITY_CHECK(flow2, eps);
}
else
OCL_PERF_ELSE
}
2013-05-29 15:48:56 +08:00
///////////// FarnebackOpticalFlow ////////////////////////
2013-05-29 15:48:56 +08:00
CV_ENUM(farneFlagType, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
2013-05-29 15:48:56 +08:00
typedef tuple<tuple<int, double>, farneFlagType, bool> FarnebackOpticalFlowParams;
typedef TestBaseWithParam<FarnebackOpticalFlowParams> FarnebackOpticalFlowFixture;
2013-06-27 09:57:42 +08:00
PERF_TEST_P(FarnebackOpticalFlowFixture, FarnebackOpticalFlow,
::testing::Combine(
::testing::Values(make_tuple<int, double>(5, 1.1),
make_tuple<int, double>(7, 1.5)),
farneFlagType::all(),
::testing::Bool()))
{
Mat frame0 = imread(getDataPath("gpu/opticalflow/rubberwhale1.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame0.empty()) << "can't load rubberwhale1.png";
2013-05-29 15:48:56 +08:00
Mat frame1 = imread(getDataPath("gpu/opticalflow/rubberwhale2.png"), cv::IMREAD_GRAYSCALE);
ASSERT_FALSE(frame1.empty()) << "can't load rubberwhale2.png";
2013-05-29 15:48:56 +08:00
const Size srcSize = frame0.size();
2013-05-29 15:48:56 +08:00
const FarnebackOpticalFlowParams params = GetParam();
const tuple<int, double> polyParams = get<0>(params);
const int polyN = get<0>(polyParams), flags = get<1>(params);
const double polySigma = get<1>(polyParams), pyrScale = 0.5;
const bool useInitFlow = get<2>(params);
const double eps = 1.5;
Mat flowx(srcSize, CV_32FC1), flowy(srcSize, CV_32FC1), flow(srcSize, CV_32FC2);
declare.in(frame0, frame1).out(flowx, flowy);
ocl::FarnebackOpticalFlow farn;
farn.pyrScale = pyrScale;
farn.polyN = polyN;
farn.polySigma = polySigma;
farn.flags = flags;
if (RUN_PLAIN_IMPL)
{
if (useInitFlow)
{
calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
farn.flags |= OPTFLOW_USE_INITIAL_FLOW;
}
TEST_CYCLE()
calcOpticalFlowFarneback(
frame0, frame1, flow, farn.pyrScale, farn.numLevels, farn.winSize,
farn.numIters, farn.polyN, farn.polySigma, farn.flags);
Mat flowxy[2] = { flowx, flowy };
split(flow, flowxy);
SANITY_CHECK(flowx, eps);
SANITY_CHECK(flowy, eps);
}
else if (RUN_OCL_IMPL)
{
ocl::oclMat oclFrame0(frame0), oclFrame1(frame1),
oclFlowx(srcSize, CV_32FC1), oclFlowy(srcSize, CV_32FC1);
if (useInitFlow)
{
farn(oclFrame0, oclFrame1, oclFlowx, oclFlowy);
farn.flags |= OPTFLOW_USE_INITIAL_FLOW;
}
TEST_CYCLE()
farn(oclFrame0, oclFrame1, oclFlowx, oclFlowy);
oclFlowx.download(flowx);
oclFlowy.download(flowy);
SANITY_CHECK(flowx, eps);
SANITY_CHECK(flowy, eps);
}
else
OCL_PERF_ELSE
}