Add OpenCL SVM paths for bagofwords_classification and points_classifier samples.

This commit is contained in:
Baichuan Su 2013-11-09 08:42:39 +08:00 committed by Ilya Lavrenov
parent d8a4d3a2eb
commit 00300baa53
3 changed files with 54 additions and 1 deletions

View File

@ -20,6 +20,10 @@ if(BUILD_EXAMPLES AND OCV_DEPENDENCIES_FOUND)
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/gpu/include")
endif()
if(HAVE_opencv_ocl)
ocv_include_directories("${OpenCV_SOURCE_DIR}/modules/ocl/include")
endif()
if(CMAKE_COMPILER_IS_GNUCXX AND NOT ENABLE_NOISY_WARNINGS)
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -Wno-unused-function")
endif()
@ -47,6 +51,10 @@ if(BUILD_EXAMPLES AND OCV_DEPENDENCIES_FOUND)
target_link_libraries(${the_target} opencv_gpu)
endif()
if(HAVE_opencv_ocl)
target_link_libraries(${the_target} opencv_ocl)
endif()
set_target_properties(${the_target} PROPERTIES
OUTPUT_NAME "cpp-${sample_kind}-${name}"
PROJECT_LABEL "(${sample_KIND}) ${name}")

View File

@ -1,8 +1,12 @@
#include "opencv2/opencv_modules.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/ml/ml.hpp"
#ifdef HAVE_OPENCV_OCL
#include "opencv2/ocl/ocl.hpp"
#endif
#include <fstream>
#include <iostream>
@ -2373,9 +2377,15 @@ static void setSVMTrainAutoParams( CvParamGrid& c_grid, CvParamGrid& gamma_grid,
degree_grid.step = 0;
}
#ifdef HAVE_OPENCV_OCL
static void trainSVMClassifier( cv::ocl::CvSVM_OCL& svm, const SVMTrainParamsExt& svmParamsExt, const string& objClassName, VocData& vocData,
Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
const string& resPath )
#else
static void trainSVMClassifier( CvSVM& svm, const SVMTrainParamsExt& svmParamsExt, const string& objClassName, VocData& vocData,
Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
const string& resPath )
#endif
{
/* first check if a previously trained svm for the current class has been saved to file */
string svmFilename = resPath + svmsDir + "/" + objClassName + ".xml.gz";
@ -2448,9 +2458,15 @@ static void trainSVMClassifier( CvSVM& svm, const SVMTrainParamsExt& svmParamsEx
}
}
#ifdef HAVE_OPENCV_OCL
static void computeConfidences( cv::ocl::CvSVM_OCL& svm, const string& objClassName, VocData& vocData,
Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
const string& resPath )
#else
static void computeConfidences( CvSVM& svm, const string& objClassName, VocData& vocData,
Ptr<BOWImgDescriptorExtractor>& bowExtractor, const Ptr<FeatureDetector>& fdetector,
const string& resPath )
#endif
{
cout << "*** CALCULATING CONFIDENCES FOR CLASS " << objClassName << " ***" << endl;
cout << "CALCULATING BOW VECTORS FOR TEST SET OF " << objClassName << "..." << endl;
@ -2589,7 +2605,11 @@ int main(int argc, char** argv)
for( size_t classIdx = 0; classIdx < objClasses.size(); ++classIdx )
{
// Train a classifier on train dataset
#ifdef HAVE_OPENCV_OCL
cv::ocl::CvSVM_OCL svm;
#else
CvSVM svm;
#endif
trainSVMClassifier( svm, svmTrainParamsExt, objClasses[classIdx], vocData,
bowExtractor, featureDetector, resPath );

View File

@ -1,6 +1,10 @@
#include "opencv2/opencv_modules.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/ml/ml.hpp"
#include "opencv2/highgui/highgui.hpp"
#ifdef HAVE_OPENCV_OCL
#include "opencv2/ocl/ocl.hpp"
#endif
#include <stdio.h>
@ -133,7 +137,14 @@ static void find_decision_boundary_KNN( int K )
prepare_train_data( trainSamples, trainClasses );
// learn classifier
#ifdef HAVE_OPENCV_OCL
cv::ocl::KNearestNeighbour knnClassifier;
Mat temp, result;
knnClassifier.train(trainSamples, trainClasses, temp, false, K);
cv::ocl::oclMat testSample_ocl, reslut_ocl;
#else
CvKNearest knnClassifier( trainSamples, trainClasses, Mat(), false, K );
#endif
Mat testSample( 1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
@ -142,9 +153,19 @@ static void find_decision_boundary_KNN( int K )
{
testSample.at<float>(0) = (float)x;
testSample.at<float>(1) = (float)y;
#ifdef HAVE_OPENCV_OCL
testSample_ocl.upload(testSample);
knnClassifier.find_nearest(testSample_ocl, K, reslut_ocl);
reslut_ocl.download(result);
int response = saturate_cast<int>(result.at<float>(0));
circle(imgDst, Point(x, y), 1, classColors[response]);
#else
int response = (int)knnClassifier.find_nearest( testSample, K );
circle( imgDst, Point(x,y), 1, classColors[response] );
#endif
}
}
}
@ -159,7 +180,11 @@ static void find_decision_boundary_SVM( CvSVMParams params )
prepare_train_data( trainSamples, trainClasses );
// learn classifier
#ifdef HAVE_OPENCV_OCL
cv::ocl::CvSVM_OCL svmClassifier(trainSamples, trainClasses, Mat(), Mat(), params);
#else
CvSVM svmClassifier( trainSamples, trainClasses, Mat(), Mat(), params );
#endif
Mat testSample( 1, 2, CV_32FC1 );
for( int y = 0; y < img.rows; y += testStep )
@ -178,7 +203,7 @@ static void find_decision_boundary_SVM( CvSVMParams params )
for( int i = 0; i < svmClassifier.get_support_vector_count(); i++ )
{
const float* supportVector = svmClassifier.get_support_vector(i);
circle( imgDst, Point(supportVector[0],supportVector[1]), 5, Scalar(255,255,255), -1 );
circle( imgDst, Point(saturate_cast<int>(supportVector[0]),saturate_cast<int>(supportVector[1])), 5, CV_RGB(255,255,255), -1 );
}
}