Merge branch '2.4' of https://github.com/Itseez/opencv into 2.4_oclgfft

This commit is contained in:
peng xiao 2013-05-29 17:57:14 +08:00
commit 006e4242b2
17 changed files with 358 additions and 432 deletions

View File

@ -116,6 +116,7 @@ If you use ``cvtColor`` with 8-bit images, the conversion will have some informa
The function can do the following transformations:
*
RGB :math:`\leftrightarrow` GRAY ( ``CV_BGR2GRAY, CV_RGB2GRAY, CV_GRAY2BGR, CV_GRAY2RGB`` )
Transformations within RGB space like adding/removing the alpha channel, reversing the channel order, conversion to/from 16-bit RGB color (R5:G6:B5 or R5:G5:B5), as well as conversion to/from grayscale using:
.. math::
@ -765,7 +766,7 @@ Runs the GrabCut algorithm.
* **GC_PR_BGD** defines a possible background pixel.
* **GC_PR_BGD** defines a possible foreground pixel.
* **GC_PR_FGD** defines a possible foreground pixel.
:param rect: ROI containing a segmented object. The pixels outside of the ROI are marked as "obvious background". The parameter is only used when ``mode==GC_INIT_WITH_RECT`` .

View File

@ -80,6 +80,14 @@ public abstract class CameraBridgeViewBase extends SurfaceView implements Surfac
mMaxHeight = MAX_UNSPECIFIED;
styledAttrs.recycle();
}
/**
* Sets the camera index
* @param camera index
*/
public void setCameraIndex(int cameraIndex) {
this.mCameraIndex = cameraIndex;
}
public interface CvCameraViewListener {
/**

View File

@ -49,7 +49,7 @@
#include "opencv2/ocl/ocl.hpp"
#if defined __APPLE__
#include <OpenCL/OpenCL.h>
#include <OpenCL/opencl.h>
#else
#include <CL/opencl.h>
#endif

View File

@ -356,8 +356,7 @@ static void GPUDilate(const oclMat &src, oclMat &dst, oclMat &mat_kernel,
char compile_option[128];
sprintf(compile_option, "-D RADIUSX=%d -D RADIUSY=%d -D LSIZE0=%d -D LSIZE1=%d -D DILATE %s %s",
anchor.x, anchor.y, (int)localThreads[0], (int)localThreads[1],
rectKernel?"-D RECTKERNEL":"",
s);
s, rectKernel?"-D RECTKERNEL":"");
vector< pair<size_t, const void *> > args;
args.push_back(make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(make_pair(sizeof(cl_mem), (void *)&dst.data));

View File

@ -1578,7 +1578,9 @@ static void openCLExecuteKernel_hog(Context *clCxt , const char **source, string
size_t globalThreads[3], size_t localThreads[3],
vector< pair<size_t, const void *> > &args)
{
size_t wave_size = queryDeviceInfo<WAVEFRONT_SIZE, size_t>();
cl_kernel kernel = openCLGetKernelFromSource(clCxt, source, kernelName);
size_t wave_size = queryDeviceInfo<WAVEFRONT_SIZE, size_t>(kernel);
openCLSafeCall(clReleaseKernel(kernel));
if (wave_size <= 16)
{
char build_options[64];

View File

@ -43,9 +43,28 @@
//
//M*/
#define CL_USE_DEPRECATED_OPENCL_1_1_APIS
#include "precomp.hpp"
#ifdef __GNUC__
#if ((__GNUC__ * 100) + __GNUC_MINOR__) >= 402
#define GCC_DIAG_STR(s) #s
#define GCC_DIAG_JOINSTR(x,y) GCC_DIAG_STR(x ## y)
# define GCC_DIAG_DO_PRAGMA(x) _Pragma (#x)
# define GCC_DIAG_PRAGMA(x) GCC_DIAG_DO_PRAGMA(GCC diagnostic x)
# if ((__GNUC__ * 100) + __GNUC_MINOR__) >= 406
# define GCC_DIAG_OFF(x) GCC_DIAG_PRAGMA(push) \
GCC_DIAG_PRAGMA(ignored GCC_DIAG_JOINSTR(-W,x))
# define GCC_DIAG_ON(x) GCC_DIAG_PRAGMA(pop)
# else
# define GCC_DIAG_OFF(x) GCC_DIAG_PRAGMA(ignored GCC_DIAG_JOINSTR(-W,x))
# define GCC_DIAG_ON(x) GCC_DIAG_PRAGMA(warning GCC_DIAG_JOINSTR(-W,x))
# endif
#else
# define GCC_DIAG_OFF(x)
# define GCC_DIAG_ON(x)
#endif
#endif /* __GNUC__ */
using namespace std;
namespace cv
@ -121,6 +140,9 @@ namespace cv
build_options, finish_mode);
}
#ifdef __GNUC__
GCC_DIAG_OFF(deprecated-declarations)
#endif
cl_mem bindTexture(const oclMat &mat)
{
cl_mem texture;
@ -180,10 +202,6 @@ namespace cv
else
#endif
{
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#endif
texture = clCreateImage2D(
(cl_context)mat.clCxt->oclContext(),
CL_MEM_READ_WRITE,
@ -193,9 +211,6 @@ namespace cv
0,
NULL,
&err);
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
}
size_t origin[] = { 0, 0, 0 };
size_t region[] = { mat.cols, mat.rows, 1 };
@ -225,11 +240,14 @@ namespace cv
openCLSafeCall(err);
return texture;
}
#ifdef __GNUC__
GCC_DIAG_ON(deprecated-declarations)
#endif
Ptr<TextureCL> bindTexturePtr(const oclMat &mat)
{
return Ptr<TextureCL>(new TextureCL(bindTexture(mat), mat.rows, mat.cols, mat.type()));
}
void releaseTexture(cl_mem& texture)
{
openCLFree(texture);

View File

@ -127,7 +127,7 @@ __kernel void arithm_add_D2 (__global ushort *src1, int src1_step, int src1_offs
#ifdef dst_align
#undef dst_align
#endif
#define dst_align ((dst_offset >> 1) & 3)
#define dst_align ((dst_offset / 2) & 3)
int src1_index = mad24(y, src1_step, (x << 1) + src1_offset - (dst_align << 1));
int src2_index = mad24(y, src2_step, (x << 1) + src2_offset - (dst_align << 1));
@ -165,7 +165,7 @@ __kernel void arithm_add_D3 (__global short *src1, int src1_step, int src1_offse
#ifdef dst_align
#undef dst_align
#endif
#define dst_align ((dst_offset >> 1) & 3)
#define dst_align ((dst_offset / 2) & 3)
int src1_index = mad24(y, src1_step, (x << 1) + src1_offset - (dst_align << 1));
int src2_index = mad24(y, src2_step, (x << 1) + src2_offset - (dst_align << 1));
@ -335,7 +335,7 @@ __kernel void arithm_add_with_mask_C1_D2 (__global ushort *src1, int src1_step,
#ifdef dst_align
#undef dst_align
#endif
#define dst_align ((dst_offset >> 1) & 1)
#define dst_align ((dst_offset / 2) & 1)
int src1_index = mad24(y, src1_step, (x << 1) + src1_offset - (dst_align << 1));
int src2_index = mad24(y, src2_step, (x << 1) + src2_offset - (dst_align << 1));
int mask_index = mad24(y, mask_step, x + mask_offset - dst_align);
@ -375,7 +375,7 @@ __kernel void arithm_add_with_mask_C1_D3 (__global short *src1, int src1_step, i
#ifdef dst_align
#undef dst_align
#endif
#define dst_align ((dst_offset >> 1) & 1)
#define dst_align ((dst_offset / 2) & 1)
int src1_index = mad24(y, src1_step, (x << 1) + src1_offset - (dst_align << 1));
int src2_index = mad24(y, src2_step, (x << 1) + src2_offset - (dst_align << 1));
int mask_index = mad24(y, mask_step, x + mask_offset - dst_align);
@ -507,7 +507,7 @@ __kernel void arithm_add_with_mask_C2_D0 (__global uchar *src1, int src1_step, i
#ifdef dst_align
#undef dst_align
#endif
#define dst_align ((dst_offset >> 1) & 1)
#define dst_align ((dst_offset / 2) & 1)
int src1_index = mad24(y, src1_step, (x << 1) + src1_offset - (dst_align << 1));
int src2_index = mad24(y, src2_step, (x << 1) + src2_offset - (dst_align << 1));
int mask_index = mad24(y, mask_step, x + mask_offset - dst_align);

View File

@ -126,7 +126,7 @@ __kernel void arithm_s_add_with_mask_C1_D2 (__global ushort *src1, int src1_st
#ifdef dst_align
#undef dst_align
#endif
#define dst_align ((dst_offset >> 1) & 1)
#define dst_align ((dst_offset / 2) & 1)
int src1_index = mad24(y, src1_step, (x << 1) + src1_offset - (dst_align << 1));
int mask_index = mad24(y, mask_step, x + mask_offset - dst_align);
@ -164,7 +164,7 @@ __kernel void arithm_s_add_with_mask_C1_D3 (__global short *src1, int src1_ste
#ifdef dst_align
#undef dst_align
#endif
#define dst_align ((dst_offset >> 1) & 1)
#define dst_align ((dst_offset / 2) & 1)
int src1_index = mad24(y, src1_step, (x << 1) + src1_offset - (dst_align << 1));
int mask_index = mad24(y, mask_step, x + mask_offset - dst_align);
@ -288,7 +288,7 @@ __kernel void arithm_s_add_with_mask_C2_D0 (__global uchar *src1, int src1_ste
#ifdef dst_align
#undef dst_align
#endif
#define dst_align ((dst_offset >> 1) & 1)
#define dst_align ((dst_offset / 2) & 1)
int src1_index = mad24(y, src1_step, (x << 1) + src1_offset - (dst_align << 1));
int mask_index = mad24(y, mask_step, x + mask_offset - dst_align);

View File

@ -277,9 +277,15 @@ __kernel void arithm_mul_D6 (__global double *src1, int src1_step, int src1_offs
}
#endif
#ifdef DOUBLE_SUPPORT
#define SCALAR_TYPE double
#else
#define SCALAR_TYPE float
#endif
__kernel void arithm_muls_D5 (__global float *src1, int src1_step, int src1_offset,
__global float *dst, int dst_step, int dst_offset,
int rows, int cols, int dst_step1, float scalar)
int rows, int cols, int dst_step1, SCALAR_TYPE scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);

View File

@ -120,7 +120,7 @@ __kernel void morph_C1_D0(__global const uchar * restrict src,
int gidy = get_global_id(1);
int out_addr = mad24(gidy,dst_step_in_pixel,gidx+dst_offset_in_pixel);
if(gidx+3<cols && gidy<rows && (dst_offset_in_pixel&3)==0)
if(gidx+3<cols && gidy<rows && ((dst_offset_in_pixel&3)==0))
{
*(__global uchar4*)&dst[out_addr] = res;
}

View File

@ -143,7 +143,7 @@ __kernel void threshold_C1_D5(__global const float * restrict src, __global floa
int4 dpos = (int4)(dstart, dstart+1, dstart+2, dstart+3);
float4 dVal = *(__global float4*)(dst+dst_offset+gy*dst_step+dstart);
int4 con = dpos >= 0 && dpos < dst_cols;
ddata = convert_float4(con) != 0 ? ddata : dVal;
ddata = convert_float4(con) != (float4)(0) ? ddata : dVal;
if(dstart < dst_cols)
{
*(__global float4*)(dst+dst_offset+gy*dst_step+dstart) = ddata;

View File

@ -46,145 +46,10 @@
//#pragma OPENCL EXTENSION cl_amd_printf : enable
__kernel void calcSharrDeriv_vertical_C1_D0(__global const uchar* src, int srcStep, int rows, int cols, int cn, __global short* dx_buf, int dx_bufStep, __global short* dy_buf, int dy_bufStep)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if (y < rows && x < cols * cn)
{
const uchar src_val0 = (src + (y > 0 ? y-1 : rows > 1 ? 1 : 0) * srcStep)[x];
const uchar src_val1 = (src + y * srcStep)[x];
const uchar src_val2 = (src + (y < rows-1 ? y+1 : rows > 1 ? rows-2 : 0) * srcStep)[x];
((__global short*)((__global char*)dx_buf + y * dx_bufStep / 2))[x] = (src_val0 + src_val2) * 3 + src_val1 * 10;
((__global short*)((__global char*)dy_buf + y * dy_bufStep / 2))[x] = src_val2 - src_val0;
}
}
__kernel void calcSharrDeriv_vertical_C4_D0(__global const uchar* src, int srcStep, int rows, int cols, int cn, __global short* dx_buf, int dx_bufStep, __global short* dy_buf, int dy_bufStep)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if (y < rows && x < cols * cn)
{
const uchar src_val0 = (src + (y > 0 ? y - 1 : 1) * srcStep)[x];
const uchar src_val1 = (src + y * srcStep)[x];
const uchar src_val2 = (src + (y < rows - 1 ? y + 1 : rows - 2) * srcStep)[x];
((__global short*)((__global char*)dx_buf + y * dx_bufStep / 2))[x] = (src_val0 + src_val2) * 3 + src_val1 * 10;
((__global short*)((__global char*)dy_buf + y * dy_bufStep / 2))[x] = src_val2 - src_val0;
}
}
__kernel void calcSharrDeriv_horizontal_C1_D0(int rows, int cols, int cn, __global const short* dx_buf, int dx_bufStep, __global const short* dy_buf, int dy_bufStep, __global short* dIdx, int dIdxStep, __global short* dIdy, int dIdyStep)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
const int colsn = cols * cn;
if (y < rows && x < colsn)
{
__global const short* dx_buf_row = dx_buf + y * dx_bufStep;
__global const short* dy_buf_row = dy_buf + y * dy_bufStep;
const int xr = x + cn < colsn ? x + cn : (cols - 2) * cn + x + cn - colsn;
const int xl = x - cn >= 0 ? x - cn : cn + x;
((__global short*)((__global char*)dIdx + y * dIdxStep / 2))[x] = dx_buf_row[xr] - dx_buf_row[xl];
((__global short*)((__global char*)dIdy + y * dIdyStep / 2))[x] = (dy_buf_row[xr] + dy_buf_row[xl]) * 3 + dy_buf_row[x] * 10;
}
}
__kernel void calcSharrDeriv_horizontal_C4_D0(int rows, int cols, int cn, __global const short* dx_buf, int dx_bufStep, __global const short* dy_buf, int dy_bufStep, __global short* dIdx, int dIdxStep, __global short* dIdy, int dIdyStep)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
const int colsn = cols * cn;
if (y < rows && x < colsn)
{
__global const short* dx_buf_row = dx_buf + y * dx_bufStep;
__global const short* dy_buf_row = dy_buf + y * dy_bufStep;
const int xr = x + cn < colsn ? x + cn : (cols - 2) * cn + x + cn - colsn;
const int xl = x - cn >= 0 ? x - cn : cn + x;
((__global short*)((__global char*)dIdx + y * dIdxStep / 2))[x] = dx_buf_row[xr] - dx_buf_row[xl];
((__global short*)((__global char*)dIdy + y * dIdyStep / 2))[x] = (dy_buf_row[xr] + dy_buf_row[xl]) * 3 + dy_buf_row[x] * 10;
}
}
#define W_BITS 14
#define W_BITS1 14
#define CV_DESCALE(x, n) (((x) + (1 << ((n)-1))) >> (n))
int linearFilter_uchar(__global const uchar* src, int srcStep, int cn, float2 pt, int x, int y)
{
int2 ipt;
ipt.x = convert_int_sat_rtn(pt.x);
ipt.y = convert_int_sat_rtn(pt.y);
float a = pt.x - ipt.x;
float b = pt.y - ipt.y;
int iw00 = convert_int_sat_rte((1.0f - a) * (1.0f - b) * (1 << W_BITS));
int iw01 = convert_int_sat_rte(a * (1.0f - b) * (1 << W_BITS));
int iw10 = convert_int_sat_rte((1.0f - a) * b * (1 << W_BITS));
int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
__global const uchar* src_row = src + (ipt.y + y) * srcStep + ipt.x * cn;
__global const uchar* src_row1 = src + (ipt.y + y + 1) * srcStep + ipt.x * cn;
return CV_DESCALE(src_row[x] * iw00 + src_row[x + cn] * iw01 + src_row1[x] * iw10 + src_row1[x + cn] * iw11, W_BITS1 - 5);
}
int linearFilter_short(__global const short* src, int srcStep, int cn, float2 pt, int x, int y)
{
int2 ipt;
ipt.x = convert_int_sat_rtn(pt.x);
ipt.y = convert_int_sat_rtn(pt.y);
float a = pt.x - ipt.x;
float b = pt.y - ipt.y;
int iw00 = convert_int_sat_rte((1.0f - a) * (1.0f - b) * (1 << W_BITS));
int iw01 = convert_int_sat_rte(a * (1.0f - b) * (1 << W_BITS));
int iw10 = convert_int_sat_rte((1.0f - a) * b * (1 << W_BITS));
int iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
__global const short* src_row = src + (ipt.y + y) * srcStep + ipt.x * cn;
__global const short* src_row1 = src + (ipt.y + y + 1) * srcStep + ipt.x * cn;
return CV_DESCALE(src_row[x] * iw00 + src_row[x + cn] * iw01 + src_row1[x] * iw10 + src_row1[x + cn] * iw11, W_BITS1);
}
float linearFilter_float(__global const float* src, int srcStep, int cn, float2 pt, float x, float y)
{
int2 ipt;
ipt.x = convert_int_sat_rtn(pt.x);
ipt.y = convert_int_sat_rtn(pt.y);
float a = pt.x - ipt.x;
float b = pt.y - ipt.y;
float iw00 = ((1.0f - a) * (1.0f - b) * (1 << W_BITS));
float iw01 = (a * (1.0f - b) * (1 << W_BITS));
float iw10 = ((1.0f - a) * b * (1 << W_BITS));
float iw11 = (1 << W_BITS) - iw00 - iw01 - iw10;
__global const float* src_row = src + (int)(ipt.y + y) * srcStep / 4 + ipt.x * cn;
__global const float* src_row1 = src + (int)(ipt.y + y + 1) * srcStep / 4 + ipt.x * cn;
return src_row[(int)x] * iw00 + src_row[(int)x + cn] * iw01 + src_row1[(int)x] * iw10 + src_row1[(int)x + cn] * iw11, W_BITS1 - 5;
}
#define BUFFER 64
#ifndef WAVE_SIZE
#define WAVE_SIZE 1
#endif
#ifdef CPU
void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid)
{
@ -193,71 +58,51 @@ void reduce3(float val1, float val2, float val3, __local float* smem1, __local
smem3[tid] = val3;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
smem3[tid] = val3 += smem3[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
smem3[tid] = val3 += smem3[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = val1 += smem1[tid + 32];
smem2[tid] = val2 += smem2[tid + 32];
smem3[tid] = val3 += smem3[tid + 32];
smem1[tid] += smem1[tid + 32];
smem2[tid] += smem2[tid + 32];
smem3[tid] += smem3[tid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
smem1[tid] = val1 += smem1[tid + 16];
smem2[tid] = val2 += smem2[tid + 16];
smem3[tid] = val3 += smem3[tid + 16];
smem1[tid] += smem1[tid + 16];
smem2[tid] += smem2[tid + 16];
smem3[tid] += smem3[tid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
smem1[tid] = val1 += smem1[tid + 8];
smem2[tid] = val2 += smem2[tid + 8];
smem3[tid] = val3 += smem3[tid + 8];
smem1[tid] += smem1[tid + 8];
smem2[tid] += smem2[tid + 8];
smem3[tid] += smem3[tid + 8];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 4)
{
smem1[tid] = val1 += smem1[tid + 4];
smem2[tid] = val2 += smem2[tid + 4];
smem3[tid] = val3 += smem3[tid + 4];
smem1[tid] += smem1[tid + 4];
smem2[tid] += smem2[tid + 4];
smem3[tid] += smem3[tid + 4];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 2)
{
smem1[tid] = val1 += smem1[tid + 2];
smem2[tid] = val2 += smem2[tid + 2];
smem3[tid] = val3 += smem3[tid + 2];
smem1[tid] += smem1[tid + 2];
smem2[tid] += smem2[tid + 2];
smem3[tid] += smem3[tid + 2];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 1)
{
smem1[BUFFER] = val1 += smem1[tid + 1];
smem2[BUFFER] = val2 += smem2[tid + 1];
smem3[BUFFER] = val3 += smem3[tid + 1];
smem1[BUFFER] = smem1[tid] + smem1[tid + 1];
smem2[BUFFER] = smem2[tid] + smem2[tid + 1];
smem3[BUFFER] = smem3[tid] + smem3[tid + 1];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
@ -268,63 +113,45 @@ void reduce2(float val1, float val2, volatile __local float* smem1, volatile __l
smem2[tid] = val2;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = (val1 += smem1[tid + 128]);
smem2[tid] = (val2 += smem2[tid + 128]);
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = (val1 += smem1[tid + 64]);
smem2[tid] = (val2 += smem2[tid + 64]);
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = (val1 += smem1[tid + 32]);
smem2[tid] = (val2 += smem2[tid + 32]);
smem1[tid] += smem1[tid + 32];
smem2[tid] += smem2[tid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
smem1[tid] = (val1 += smem1[tid + 16]);
smem2[tid] = (val2 += smem2[tid + 16]);
smem1[tid] += smem1[tid + 16];
smem2[tid] += smem2[tid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
smem1[tid] = (val1 += smem1[tid + 8]);
smem2[tid] = (val2 += smem2[tid + 8]);
smem1[tid] += smem1[tid + 8];
smem2[tid] += smem2[tid + 8];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 4)
{
smem1[tid] = (val1 += smem1[tid + 4]);
smem2[tid] = (val2 += smem2[tid + 4]);
smem1[tid] += smem1[tid + 4];
smem2[tid] += smem2[tid + 4];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 2)
{
smem1[tid] = (val1 += smem1[tid + 2]);
smem2[tid] = (val2 += smem2[tid + 2]);
smem1[tid] += smem1[tid + 2];
smem2[tid] += smem2[tid + 2];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 1)
{
smem1[BUFFER] = (val1 += smem1[tid + 1]);
smem2[BUFFER] = (val2 += smem2[tid + 1]);
smem1[BUFFER] = smem1[tid] + smem1[tid + 1];
smem2[BUFFER] = smem2[tid] + smem2[tid + 1];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
@ -334,205 +161,146 @@ void reduce1(float val1, volatile __local float* smem1, int tid)
smem1[tid] = val1;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = (val1 += smem1[tid + 128]);
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = (val1 += smem1[tid + 64]);
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
smem1[tid] = (val1 += smem1[tid + 32]);
smem1[tid] += smem1[tid + 32];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
smem1[tid] = (val1 += smem1[tid + 16]);
smem1[tid] += smem1[tid + 16];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
smem1[tid] = (val1 += smem1[tid + 8]);
smem1[tid] += smem1[tid + 8];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 4)
{
smem1[tid] = (val1 += smem1[tid + 4]);
smem1[tid] += smem1[tid + 4];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 2)
{
smem1[tid] = (val1 += smem1[tid + 2]);
smem1[tid] += smem1[tid + 2];
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 1)
{
smem1[BUFFER] = (val1 += smem1[tid + 1]);
smem1[BUFFER] = smem1[tid] + smem1[tid + 1];
}
barrier(CLK_LOCAL_MEM_FENCE);
}
#else
void reduce3(float val1, float val2, float val3, __local float* smem1, __local float* smem2, __local float* smem3, int tid)
void reduce3(float val1, float val2, float val3,
__local volatile float* smem1, __local volatile float* smem2, __local volatile float* smem3, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
smem3[tid] = val3;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
smem3[tid] = val3 += smem3[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
smem3[tid] = val3 += smem3[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
volatile __local float* vmem1 = smem1;
volatile __local float* vmem2 = smem2;
volatile __local float* vmem3 = smem3;
smem1[tid] += smem1[tid + 32];
smem2[tid] += smem2[tid + 32];
smem3[tid] += smem3[tid + 32];
#if WAVE_SIZE < 32
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) {
#endif
smem1[tid] += smem1[tid + 16];
smem2[tid] += smem2[tid + 16];
smem3[tid] += smem3[tid + 16];
#if WAVE_SIZE <16
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8) {
#endif
smem1[tid] += smem1[tid + 8];
smem2[tid] += smem2[tid + 8];
smem3[tid] += smem3[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 32];
vmem2[tid] = val2 += vmem2[tid + 32];
vmem3[tid] = val3 += vmem3[tid + 32];
smem1[tid] += smem1[tid + 4];
smem2[tid] += smem2[tid + 4];
smem3[tid] += smem3[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 16];
vmem2[tid] = val2 += vmem2[tid + 16];
vmem3[tid] = val3 += vmem3[tid + 16];
smem1[tid] += smem1[tid + 2];
smem2[tid] += smem2[tid + 2];
smem3[tid] += smem3[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 8];
vmem2[tid] = val2 += vmem2[tid + 8];
vmem3[tid] = val3 += vmem3[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem2[tid] = val2 += vmem2[tid + 4];
vmem3[tid] = val3 += vmem3[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem2[tid] = val2 += vmem2[tid + 2];
vmem3[tid] = val3 += vmem3[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
vmem2[tid] = val2 += vmem2[tid + 1];
vmem3[tid] = val3 += vmem3[tid + 1];
smem1[tid] += smem1[tid + 1];
smem2[tid] += smem2[tid + 1];
smem3[tid] += smem3[tid + 1];
}
}
void reduce2(float val1, float val2, __local float* smem1, __local float* smem2, int tid)
void reduce2(float val1, float val2, __local volatile float* smem1, __local volatile float* smem2, int tid)
{
smem1[tid] = val1;
smem2[tid] = val2;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
smem2[tid] = val2 += smem2[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
smem2[tid] = val2 += smem2[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
volatile __local float* vmem1 = smem1;
volatile __local float* vmem2 = smem2;
smem1[tid] += smem1[tid + 32];
smem2[tid] += smem2[tid + 32];
#if WAVE_SIZE < 32
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) {
#endif
smem1[tid] += smem1[tid + 16];
smem2[tid] += smem2[tid + 16];
#if WAVE_SIZE <16
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8) {
#endif
smem1[tid] += smem1[tid + 8];
smem2[tid] += smem2[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 32];
vmem2[tid] = val2 += vmem2[tid + 32];
smem1[tid] += smem1[tid + 4];
smem2[tid] += smem2[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 16];
vmem2[tid] = val2 += vmem2[tid + 16];
smem1[tid] += smem1[tid + 2];
smem2[tid] += smem2[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 8];
vmem2[tid] = val2 += vmem2[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem2[tid] = val2 += vmem2[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem2[tid] = val2 += vmem2[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
vmem2[tid] = val2 += vmem2[tid + 1];
smem1[tid] += smem1[tid + 1];
smem2[tid] += smem2[tid + 1];
}
}
void reduce1(float val1, __local float* smem1, int tid)
void reduce1(float val1, __local volatile float* smem1, int tid)
{
smem1[tid] = val1;
barrier(CLK_LOCAL_MEM_FENCE);
#if BUFFER > 128
if (tid < 128)
{
smem1[tid] = val1 += smem1[tid + 128];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
#if BUFFER > 64
if (tid < 64)
{
smem1[tid] = val1 += smem1[tid + 64];
}
barrier(CLK_LOCAL_MEM_FENCE);
#endif
if (tid < 32)
{
volatile __local float* vmem1 = smem1;
vmem1[tid] = val1 += vmem1[tid + 32];
vmem1[tid] = val1 += vmem1[tid + 16];
vmem1[tid] = val1 += vmem1[tid + 8];
vmem1[tid] = val1 += vmem1[tid + 4];
vmem1[tid] = val1 += vmem1[tid + 2];
vmem1[tid] = val1 += vmem1[tid + 1];
smem1[tid] += smem1[tid + 32];
#if WAVE_SIZE < 32
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16) {
#endif
smem1[tid] += smem1[tid + 16];
#if WAVE_SIZE <16
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8) {
#endif
smem1[tid] += smem1[tid + 8];
smem1[tid] += smem1[tid + 4];
smem1[tid] += smem1[tid + 2];
smem1[tid] += smem1[tid + 1];
}
}
#endif
#define SCALE (1.0f / (1 << 20))
#define THRESHOLD 0.01f
#define DIMENSION 21
// Image read mode
__constant sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_LINEAR;

View File

@ -78,6 +78,7 @@
#if defined (HAVE_OPENCL)
#define CL_USE_DEPRECATED_OPENCL_1_1_APIS
#include "opencv2/ocl/private/util.hpp"
#include "safe_call.hpp"

View File

@ -15,8 +15,8 @@
// Third party copyrights are property of their respective owners.
//
// @Authors
// Dachuan Zhao, dachuan@multicorewareinc.com
// Yao Wang, bitwangyaoyao@gmail.com
// Dachuan Zhao, dachuan@multicorewareinc.com
// Yao Wang, bitwangyaoyao@gmail.com
// Nathan, liujun@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
@ -56,31 +56,16 @@ namespace cv
{
namespace ocl
{
///////////////////////////OpenCL kernel strings///////////////////////////
extern const char *pyrlk;
extern const char *pyrlk_no_image;
extern const char *arithm_mul;
}
}
struct dim3
{
unsigned int x, y, z;
};
struct float2
{
float x, y;
};
struct int2
{
int x, y;
};
namespace
{
void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDeviceArch11)
static void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDeviceArch11)
{
winSize.width *= cn;
@ -100,45 +85,6 @@ void calcPatchSize(cv::Size winSize, int cn, dim3 &block, dim3 &patch, bool isDe
block.z = patch.z = 1;
}
}
static void multiply_cus(const oclMat &src1, oclMat &dst, float scalar)
{
if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
return;
}
CV_Assert(src1.cols == dst.cols &&
src1.rows == dst.rows);
CV_Assert(src1.type() == dst.type());
CV_Assert(src1.depth() != CV_8S);
Context *clCxt = src1.clCxt;
size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { src1.cols,
src1.rows,
1
};
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
args.push_back( make_pair( sizeof(float), (float *)&scalar ));
openCLExecuteKernel(clCxt, &arithm_mul, "arithm_muls", globalThreads, localThreads, args, -1, src1.depth());
}
static void lkSparse_run(oclMat &I, oclMat &J,
const oclMat &prevPts, oclMat &nextPts, oclMat &status, oclMat& err, bool /*GET_MIN_EIGENVALS*/, int ptcount,
@ -151,15 +97,7 @@ static void lkSparse_run(oclMat &I, oclMat &J,
size_t localThreads[3] = { 8, isImageSupported ? 8 : 32, 1 };
size_t globalThreads[3] = { 8 * ptcount, isImageSupported ? 8 : 32, 1};
int cn = I.oclchannels();
char calcErr;
if (level == 0)
{
calcErr = 1;
}
else
{
calcErr = 0;
}
char calcErr = level==0?1:0;
vector<pair<size_t , const void *> > args;
@ -198,7 +136,17 @@ static void lkSparse_run(oclMat &I, oclMat &J,
{
if(isImageSupported)
{
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads, args, I.oclchannels(), I.depth());
stringstream idxStr;
idxStr << kernelName << "_C" << I.oclchannels() << "_D" << I.depth();
cl_kernel kernel = openCLGetKernelFromSource(clCxt, &pyrlk, idxStr.str());
int wave_size = queryDeviceInfo<WAVEFRONT_SIZE, int>(kernel);
openCLSafeCall(clReleaseKernel(kernel));
static char opt[16] = {0};
sprintf(opt, " -D WAVE_SIZE=%d", wave_size);
openCLExecuteKernel(clCxt, &pyrlk, kernelName, globalThreads, localThreads,
args, I.oclchannels(), I.depth(), opt);
releaseTexture(ITex);
releaseTexture(JTex);
}
@ -241,8 +189,7 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
oclMat temp1 = (useInitialFlow ? nextPts : prevPts).reshape(1);
oclMat temp2 = nextPts.reshape(1);
multiply_cus(temp1, temp2, 1.0f / (1 << maxLevel) / 2.0f);
//::multiply(temp1, 1.0f / (1 << maxLevel) / 2.0f, temp2);
multiply(1.0f/(1<<maxLevel)/2.0f, temp1, temp2);
ensureSizeIsEnough(1, prevPts.cols, CV_8UC1, status);
status.setTo(Scalar::all(1));
@ -257,7 +204,6 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
ensureSizeIsEnough(1, prevPts.cols, CV_32FC1, *err);
// build the image pyramids.
prevPyr_.resize(maxLevel + 1);
nextPyr_.resize(maxLevel + 1);
@ -274,7 +220,6 @@ void cv::ocl::PyrLKOpticalFlow::sparse(const oclMat &prevImg, const oclMat &next
}
// dI/dx ~ Ix, dI/dy ~ Iy
for (int level = maxLevel; level >= 0; level--)
{
lkSparse_run(prevPyr_[level], nextPyr_[level],

View File

@ -47,7 +47,7 @@
#define __OPENCV_OPENCL_SAFE_CALL_HPP__
#if defined __APPLE__
#include <OpenCL/OpenCL.h>
#include <OpenCL/opencl.h>
#else
#include <CL/cl.h>
#endif

View File

@ -472,4 +472,8 @@ void ocl_tvl1flow::warpBackward(const oclMat &I0, const oclMat &I1, oclMat &I1x,
args.push_back( make_pair( sizeof(cl_int), (void*)&u2_offset_y));
openCLExecuteKernel(clCxt, &tvl1flow, kernelName, globalThread, localThread, args, -1, -1);
releaseTexture(I1_tex);
releaseTexture(I1x_tex);
releaseTexture(I1y_tex);
}

174
samples/python2/grabcut.py Normal file
View File

@ -0,0 +1,174 @@
#!/usr/bin/env python
'''
===============================================================================
Interactive Image Segmentation using GrabCut algorithm.
This sample shows interactive image segmentation using grabcut algorithm.
USAGE :
python grabcut.py <filename>
README FIRST:
Two windows will show up, one for input and one for output.
At first, in input window, draw a rectangle around the object using
mouse right button. Then press 'n' to segment the object (once or a few times)
For any finer touch-ups, you can press any of the keys below and draw lines on
the areas you want. Then again press 'n' for updating the output.
Key '0' - To select areas of sure background
Key '1' - To select areas of sure foreground
Key '2' - To select areas of probable background
Key '3' - To select areas of probable foreground
Key 'n' - To update the segmentation
Key 'r' - To reset the setup
Key 's' - To save the results
===============================================================================
'''
import numpy as np
import cv2
import sys
BLUE = [255,0,0] # rectangle color
RED = [0,0,255] # PR BG
GREEN = [0,255,0] # PR FG
BLACK = [0,0,0] # sure BG
WHITE = [255,255,255] # sure FG
DRAW_BG = {'color' : BLACK, 'val' : 0}
DRAW_FG = {'color' : WHITE, 'val' : 1}
DRAW_PR_FG = {'color' : GREEN, 'val' : 3}
DRAW_PR_BG = {'color' : RED, 'val' : 2}
# setting up flags
rect = (0,0,1,1)
drawing = False # flag for drawing curves
rectangle = False # flag for drawing rect
rect_over = False # flag to check if rect drawn
rect_or_mask = 100 # flag for selecting rect or mask mode
value = DRAW_FG # drawing initialized to FG
thickness = 3 # brush thickness
def onmouse(event,x,y,flags,param):
global img,img2,drawing,value,mask,rectangle,rect,rect_or_mask,ix,iy,rect_over
# Draw Rectangle
if event == cv2.EVENT_RBUTTONDOWN:
rectangle = True
ix,iy = x,y
elif event == cv2.EVENT_MOUSEMOVE:
if rectangle == True:
img = img2.copy()
cv2.rectangle(img,(ix,iy),(x,y),BLUE,2)
rect = (ix,iy,abs(ix-x),abs(iy-y))
rect_or_mask = 0
elif event == cv2.EVENT_RBUTTONUP:
rectangle = False
rect_over = True
cv2.rectangle(img,(ix,iy),(x,y),BLUE,2)
rect = (ix,iy,abs(ix-x),abs(iy-y))
rect_or_mask = 0
print " Now press the key 'n' a few times until no further change \n"
# draw touchup curves
if event == cv2.EVENT_LBUTTONDOWN:
if rect_over == False:
print "first draw rectangle \n"
else:
drawing = True
cv2.circle(img,(x,y),thickness,value['color'],-1)
cv2.circle(mask,(x,y),thickness,value['val'],-1)
elif event == cv2.EVENT_MOUSEMOVE:
if drawing == True:
cv2.circle(img,(x,y),thickness,value['color'],-1)
cv2.circle(mask,(x,y),thickness,value['val'],-1)
elif event == cv2.EVENT_LBUTTONUP:
if drawing == True:
drawing = False
cv2.circle(img,(x,y),thickness,value['color'],-1)
cv2.circle(mask,(x,y),thickness,value['val'],-1)
# print documentation
print __doc__
# Loading images
if len(sys.argv) == 2:
filename = sys.argv[1] # for drawing purposes
else:
print "No input image given, so loading default image, lena.jpg \n"
print "Correct Usage : python grabcut.py <filename> \n"
filename = '../cpp/lena.jpg'
img = cv2.imread(filename)
img2 = img.copy() # a copy of original image
mask = np.zeros(img.shape[:2],dtype = np.uint8) # mask initialized to PR_BG
output = np.zeros(img.shape,np.uint8) # output image to be shown
# input and output windows
cv2.namedWindow('output')
cv2.namedWindow('input')
cv2.setMouseCallback('input',onmouse)
cv2.moveWindow('input',img.shape[1]+10,90)
print " Instructions : \n"
print " Draw a rectangle around the object using right mouse button \n"
while(1):
cv2.imshow('output',output)
cv2.imshow('input',img)
k = 0xFF & cv2.waitKey(1)
# key bindings
if k == 27: # esc to exit
break
elif k == ord('0'): # BG drawing
print " mark background regions with left mouse button \n"
value = DRAW_BG
elif k == ord('1'): # FG drawing
print " mark foreground regions with left mouse button \n"
value = DRAW_FG
elif k == ord('2'): # PR_BG drawing
value = DRAW_PR_BG
elif k == ord('3'): # PR_FG drawing
value = DRAW_PR_FG
elif k == ord('s'): # save image
bar = np.zeros((img.shape[0],5,3),np.uint8)
res = np.hstack((img2,bar,img,bar,output))
cv2.imwrite('grabcut_output.png',res)
print " Result saved as image \n"
elif k == ord('r'): # reset everything
print "resetting \n"
rect = (0,0,1,1)
drawing = False
rectangle = False
rect_or_mask = 100
rect_over = False
value = DRAW_FG
img = img2.copy()
mask = np.zeros(img.shape[:2],dtype = np.uint8) # mask initialized to PR_BG
output = np.zeros(img.shape,np.uint8) # output image to be shown
elif k == ord('n'): # segment the image
print """ For finer touchups, mark foreground and background after pressing keys 0-3
and again press 'n' \n"""
if (rect_or_mask == 0): # grabcut with rect
bgdmodel = np.zeros((1,65),np.float64)
fgdmodel = np.zeros((1,65),np.float64)
cv2.grabCut(img2,mask,rect,bgdmodel,fgdmodel,1,cv2.GC_INIT_WITH_RECT)
rect_or_mask = 1
elif rect_or_mask == 1: # grabcut with mask
bgdmodel = np.zeros((1,65),np.float64)
fgdmodel = np.zeros((1,65),np.float64)
cv2.grabCut(img2,mask,rect,bgdmodel,fgdmodel,1,cv2.GC_INIT_WITH_MASK)
mask2 = np.where((mask==1) + (mask==3),255,0).astype('uint8')
output = cv2.bitwise_and(img2,img2,mask=mask2)
cv2.destroyAllWindows()