Init qrcode algo (#11829)

This commit is contained in:
Nesterov Alexander 2018-06-27 16:37:10 +03:00 committed by Vadim Pisarevsky
parent 5dc0e51682
commit 0081dc478f
3 changed files with 857 additions and 0 deletions

View File

@ -670,6 +670,14 @@ public:
void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
};
/** @brief Detect QR code in image and return minimum area of quadrangle that describes QR code.
@param in Matrix of the type CV_8UC1 containing an image where QR code are detected.
@param points Output vector of vertices of a quadrangle of minimal area that describes QR code.
@param eps_x Epsilon neighborhood, which allows you to determine the horizontal pattern of the scheme 1:1:3:1:1 according to QR code standard.
@param eps_y Epsilon neighborhood, which allows you to determine the vertical pattern of the scheme 1:1:3:1:1 according to QR code standard.
*/
CV_EXPORTS bool detectQRCode(InputArray in, std::vector<Point> &points, double eps_x = 0.2, double eps_y = 0.1);
//! @} objdetect
}

View File

@ -0,0 +1,775 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "opencv2/objdetect.hpp"
// #include "opencv2/calib3d.hpp"
#include <limits>
#include <cmath>
#include <iostream>
namespace cv
{
class QRDecode
{
public:
void init(Mat src, double eps_vertical_ = 0.19, double eps_horizontal_ = 0.09);
void binarization();
bool localization();
bool transformation();
Mat getBinBarcode() { return bin_barcode; }
Mat getLocalizationBarcode() { return local_barcode; }
Mat getTransformationBarcode() { return transform_barcode; }
std::vector<Point> getTransformationPoints() { return transformation_points; }
Mat getStraightBarcode() { return straight_barcode; }
protected:
std::vector<Vec3d> searchVerticalLines();
std::vector<Vec3d> separateHorizontalLines(std::vector<Vec3d> list_lines);
std::vector<Vec3d> pointClustering(std::vector<Vec3d> list_lines);
void fixationPoints(std::vector<Point> &local_point, std::vector<double> &local_len);
Point getTransformationPoint(Point left, Point center, double cos_angle_rotation,
bool right_rotate = true);
Point intersectionLines(Point a1, Point a2, Point b1, Point b2);
std::vector<Point> getQuadrilateral(std::vector<Point> angle_list);
double getQuadrilateralArea(Point a, Point b, Point c, Point d);
double getCosVectors(Point a, Point b, Point c);
Mat barcode, bin_barcode, local_barcode, transform_barcode, straight_barcode;
std::vector<Point> localization_points, transformation_points;
std::vector<double> localization_length;
double experimental_area;
double eps_vertical, eps_horizontal;
std::vector<Vec3d> result;
std::vector<double> test_lines;
uint8_t next_pixel, future_pixel;
double length, weight;
};
void QRDecode::init(Mat src, double eps_vertical_, double eps_horizontal_)
{
barcode = src;
eps_vertical = eps_vertical_;
eps_horizontal = eps_horizontal_;
}
void QRDecode::binarization()
{
Mat filter_barcode;
GaussianBlur(barcode, filter_barcode, Size(3, 3), 0);
threshold(filter_barcode, bin_barcode, 0, 255, THRESH_BINARY + THRESH_OTSU);
}
bool QRDecode::localization()
{
cvtColor(bin_barcode, local_barcode, COLOR_GRAY2RGB);
Point begin, end;
std::vector<Vec3d> list_lines_x = searchVerticalLines();
std::vector<Vec3d> list_lines_y = separateHorizontalLines(list_lines_x);
std::vector<Vec3d> result_point = pointClustering(list_lines_y);
for (int i = 0; i < 3; i++)
{
localization_points.push_back(
Point(static_cast<int>(result_point[i][0]),
static_cast<int>(result_point[i][1] + result_point[i][2])));
localization_length.push_back(result_point[i][2]);
}
fixationPoints(localization_points, localization_length);
if (localization_points.size() != 3) { return false; }
return true;
}
std::vector<Vec3d> QRDecode::searchVerticalLines()
{
result.clear();
int temp_length = 0;
for (int x = 0; x < bin_barcode.rows; x++)
{
for (int y = 0; y < bin_barcode.cols; y++)
{
if (bin_barcode.at<uint8_t>(x, y) > 0) { continue; }
// --------------- Search vertical lines --------------- //
test_lines.clear();
future_pixel = 255;
for (int i = x; i < bin_barcode.rows - 1; i++)
{
next_pixel = bin_barcode.at<uint8_t>(i + 1, y);
temp_length++;
if (next_pixel == future_pixel)
{
future_pixel = 255 - future_pixel;
test_lines.push_back(temp_length);
temp_length = 0;
if (test_lines.size() == 5) { break; }
}
}
// --------------- Compute vertical lines --------------- //
if (test_lines.size() == 5)
{
length = 0.0; weight = 0.0;
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; }
for (size_t i = 0; i < test_lines.size(); i++)
{
if (i == 2) { weight += abs((test_lines[i] / length) - 3.0/7.0); }
else { weight += abs((test_lines[i] / length) - 1.0/7.0); }
}
if (weight < eps_vertical)
{
Vec3d line;
line[0] = x; line[1] = y, line[2] = length;
result.push_back(line);
}
}
}
}
return result;
}
std::vector<Vec3d> QRDecode::separateHorizontalLines(std::vector<Vec3d> list_lines)
{
result.clear();
int temp_length = 0;
int x, y;
for (size_t pnt = 0; pnt < list_lines.size(); pnt++)
{
x = static_cast<int>(list_lines[pnt][0] + list_lines[pnt][2] / 2);
y = static_cast<int>(list_lines[pnt][1]);
// --------------- Search horizontal up-lines --------------- //
test_lines.clear();
future_pixel = 255;
for (int j = y; j < bin_barcode.cols - 1; j++)
{
next_pixel = bin_barcode.at<uint8_t>(x, j + 1);
temp_length++;
if (next_pixel == future_pixel)
{
future_pixel = 255 - future_pixel;
test_lines.push_back(temp_length);
temp_length = 0;
if (test_lines.size() == 3) { break; }
}
}
// --------------- Search horizontal down-lines --------------- //
future_pixel = 255;
for (int j = y; j >= 1; j--)
{
next_pixel = bin_barcode.at<uint8_t>(x, j - 1);
temp_length++;
if (next_pixel == future_pixel)
{
future_pixel = 255 - future_pixel;
test_lines.push_back(temp_length);
temp_length = 0;
if (test_lines.size() == 6) { break; }
}
}
// --------------- Compute horizontal lines --------------- //
if (test_lines.size() == 6)
{
length = 0.0; weight = 0.0;
for (size_t i = 0; i < test_lines.size(); i++) { length += test_lines[i]; }
for (size_t i = 0; i < test_lines.size(); i++)
{
if (i % 3 == 0) { weight += abs((test_lines[i] / length) - 3.0/14.0); }
else { weight += abs((test_lines[i] / length) - 1.0/ 7.0); }
}
}
if(weight < eps_horizontal)
{
result.push_back(list_lines[pnt]);
}
}
return result;
}
std::vector<Vec3d> QRDecode::pointClustering(std::vector<Vec3d> list_lines)
{
std::vector<Vec3d> centers;
std::vector<Point> clusters[3];
double weight_clusters[3] = {0.0, 0.0, 0.0};
Point basis[3], temp_pnt;
double temp_norm = 0.0, temp_compute_norm, distance[3];
basis[0] = Point(static_cast<int>(list_lines[0][1]), static_cast<int>(list_lines[0][0]));
for (size_t i = 1; i < list_lines.size(); i++)
{
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0]));
temp_compute_norm = norm(basis[0] - temp_pnt);
if (temp_norm < temp_compute_norm)
{
basis[1] = temp_pnt;
temp_norm = temp_compute_norm;
}
}
for (size_t i = 1; i < list_lines.size(); i++)
{
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0]));
temp_compute_norm = norm(basis[0] - temp_pnt) + norm(basis[1] - temp_pnt);
if (temp_norm < temp_compute_norm)
{
basis[2] = temp_pnt;
temp_norm = temp_compute_norm;
}
}
for (size_t i = 0; i < list_lines.size(); i++)
{
temp_pnt = Point(static_cast<int>(list_lines[i][1]), static_cast<int>(list_lines[i][0]));
distance[0] = norm(basis[0] - temp_pnt);
distance[1] = norm(basis[1] - temp_pnt);
distance[2] = norm(basis[2] - temp_pnt);
if (distance[0] < distance[1] && distance[0] < distance[2])
{
clusters[0].push_back(temp_pnt);
weight_clusters[0] += list_lines[i][2];
}
else if (distance[1] < distance[0] && distance[1] < distance[2])
{
clusters[1].push_back(temp_pnt);
weight_clusters[1] += list_lines[i][2];
}
else
{
clusters[2].push_back(temp_pnt);
weight_clusters[2] += list_lines[i][2];
}
}
for (int i = 0; i < 3; i++)
{
basis[i] = Point(0, 0);
for (size_t j = 0; j < clusters[i].size(); j++) { basis[i] += clusters[i][j]; }
basis[i] = basis[i] / static_cast<int>(clusters[i].size());
weight = weight_clusters[i] / (2 * clusters[i].size());
centers.push_back(Vec3d(basis[i].x, basis[i].y, weight));
}
return centers;
}
void QRDecode::fixationPoints(std::vector<Point> &local_point, std::vector<double> &local_len)
{
double cos_angles[3], norm_triangl[3];
norm_triangl[0] = norm(local_point[1] - local_point[2]);
norm_triangl[1] = norm(local_point[0] - local_point[2]);
norm_triangl[2] = norm(local_point[1] - local_point[0]);
cos_angles[0] = (pow(norm_triangl[1], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[0], 2))
/ (2 * norm_triangl[1] * norm_triangl[2]);
cos_angles[1] = (pow(norm_triangl[0], 2) + pow(norm_triangl[2], 2) - pow(norm_triangl[1], 2))
/ (2 * norm_triangl[0] * norm_triangl[2]);
cos_angles[2] = (pow(norm_triangl[0], 2) + pow(norm_triangl[1], 2) - pow(norm_triangl[2], 2))
/ (2 * norm_triangl[0] * norm_triangl[1]);
int i_min_cos =
(cos_angles[0] < cos_angles[1] && cos_angles[0] < cos_angles[2]) ? 0 :
(cos_angles[1] < cos_angles[0] && cos_angles[1] < cos_angles[2]) ? 1 : 2;
Point temp_pnt;
double tmp_len;
temp_pnt = local_point[0];
tmp_len = local_len[0];
local_point[0] = local_point[i_min_cos];
local_len[0] = local_len[i_min_cos];
local_point[i_min_cos] = temp_pnt;
local_len[i_min_cos] = tmp_len;
Mat vector_mult(Size(3, 3), CV_32FC1);
vector_mult.at<float>(0, 0) = 1;
vector_mult.at<float>(1, 0) = 1;
vector_mult.at<float>(2, 0) = 1;
vector_mult.at<float>(0, 1) = static_cast<float>((local_point[1] - local_point[0]).x);
vector_mult.at<float>(1, 1) = static_cast<float>((local_point[1] - local_point[0]).y);
vector_mult.at<float>(0, 2) = static_cast<float>((local_point[2] - local_point[0]).x);
vector_mult.at<float>(1, 2) = static_cast<float>((local_point[2] - local_point[0]).y);
double res_vect_mult = determinant(vector_mult);
if (res_vect_mult < 0)
{
temp_pnt = local_point[1];
tmp_len = local_len[1];
local_point[1] = local_point[2];
local_len[1] = local_len[2];
local_point[2] = temp_pnt;
local_len[2] = tmp_len;
}
}
bool QRDecode::transformation()
{
cvtColor(bin_barcode, transform_barcode, COLOR_GRAY2RGB);
if (localization_points.size() != 3) { return false; }
Point red = localization_points[0];
Point green = localization_points[1];
Point blue = localization_points[2];
Point adj_b_r_pnt, adj_r_b_pnt, adj_g_r_pnt, adj_r_g_pnt;
Point line_r_b_pnt, line_r_g_pnt, norm_r_b_pnt, norm_r_g_pnt;
adj_b_r_pnt = getTransformationPoint(blue, red, -1);
adj_r_b_pnt = getTransformationPoint(red, blue, -1);
adj_g_r_pnt = getTransformationPoint(green, red, -1);
adj_r_g_pnt = getTransformationPoint(red, green, -1);
line_r_b_pnt = getTransformationPoint(red, blue, -0.91);
line_r_g_pnt = getTransformationPoint(red, green, -0.91);
norm_r_b_pnt = getTransformationPoint(red, blue, 0.0, true);
norm_r_g_pnt = getTransformationPoint(red, green, 0.0, false);
transformation_points.push_back(intersectionLines(
adj_r_g_pnt, line_r_g_pnt, adj_r_b_pnt, line_r_b_pnt));
transformation_points.push_back(intersectionLines(
adj_b_r_pnt, norm_r_g_pnt, adj_r_g_pnt, line_r_g_pnt));
transformation_points.push_back(intersectionLines(
norm_r_b_pnt, adj_g_r_pnt, adj_b_r_pnt, norm_r_g_pnt));
transformation_points.push_back(intersectionLines(
norm_r_b_pnt, adj_g_r_pnt, adj_r_b_pnt, line_r_b_pnt));
experimental_area = getQuadrilateralArea(transformation_points[0],
transformation_points[1],
transformation_points[2],
transformation_points[3]);
std::vector<Point> quadrilateral = getQuadrilateral(transformation_points);
transformation_points = quadrilateral;
int max_length_norm = -1;
size_t transform_size = transformation_points.size();
for (size_t i = 0; i < transform_size; i++)
{
int len_norm = static_cast<int>(norm(transformation_points[i % transform_size] -
transformation_points[(i + 1) % transform_size]));
if (max_length_norm < len_norm) { max_length_norm = len_norm; }
}
std::vector<Point> perspective_points;
perspective_points.push_back(Point(0, 0));
perspective_points.push_back(Point(0, max_length_norm));
perspective_points.push_back(Point(max_length_norm, max_length_norm));
perspective_points.push_back(Point(max_length_norm, 0));
// warpPerspective(bin_barcode, straight_barcode,
// findHomography(transformation_points, perspective_points),
// Size(max_length_norm, max_length_norm));
return true;
}
Point QRDecode::getTransformationPoint(Point left, Point center, double cos_angle_rotation,
bool right_rotate)
{
Point temp_pnt, prev_pnt(0, 0), next_pnt, start_pnt(center);
double temp_delta, min_delta;
int steps = 0;
future_pixel = 255;
while(true)
{
min_delta = std::numeric_limits<double>::max();
for (int i = -1; i < 2; i++)
{
for (int j = -1; j < 2; j++)
{
if (i == 0 && j == 0) { continue; }
temp_pnt = Point(start_pnt.x + i, start_pnt.y + j);
temp_delta = abs(getCosVectors(left, center, temp_pnt) - cos_angle_rotation);
if (temp_delta < min_delta && prev_pnt != temp_pnt)
{
next_pnt = temp_pnt;
min_delta = temp_delta;
}
}
}
prev_pnt = start_pnt;
start_pnt = next_pnt;
next_pixel = bin_barcode.at<uint8_t>(start_pnt.y, start_pnt.x);
if (next_pixel == future_pixel)
{
future_pixel = 255 - future_pixel;
steps++;
if (steps == 3) { break; }
}
}
if (cos_angle_rotation == 0.0)
{
Mat vector_mult(Size(3, 3), CV_32FC1);
vector_mult.at<float>(0, 0) = 1;
vector_mult.at<float>(1, 0) = 1;
vector_mult.at<float>(2, 0) = 1;
vector_mult.at<float>(0, 1) = static_cast<float>((left - center).x);
vector_mult.at<float>(1, 1) = static_cast<float>((left - center).y);
vector_mult.at<float>(0, 2) = static_cast<float>((left - start_pnt).x);
vector_mult.at<float>(1, 2) = static_cast<float>((left - start_pnt).y);
double res_vect_mult = determinant(vector_mult);
if (( right_rotate && res_vect_mult < 0) ||
(!right_rotate && res_vect_mult > 0))
{
start_pnt = getTransformationPoint(start_pnt, center, -1);
}
}
return start_pnt;
}
Point QRDecode::intersectionLines(Point a1, Point a2, Point b1, Point b2)
{
Point result_square_angle(
static_cast<int>(
static_cast<double>
((a1.x * a2.y - a1.y * a2.x) * (b1.x - b2.x) -
(b1.x * b2.y - b1.y * b2.x) * (a1.x - a2.x)) /
((a1.x - a2.x) * (b1.y - b2.y) -
(a1.y - a2.y) * (b1.x - b2.x))),
static_cast<int>(
static_cast<double>
((a1.x * a2.y - a1.y * a2.x) * (b1.y - b2.y) -
(b1.x * b2.y - b1.y * b2.x) * (a1.y - a2.y)) /
((a1.x - a2.x) * (b1.y - b2.y) -
(a1.y - a2.y) * (b1.x - b2.x)))
);
return result_square_angle;
}
std::vector<Point> QRDecode::getQuadrilateral(std::vector<Point> angle_list)
{
size_t angle_size = angle_list.size();
uint8_t value, mask_value;
Mat mask(bin_barcode.rows + 2, bin_barcode.cols + 2, CV_8UC1);
for (size_t i = 0; i < angle_size; i++)
{
LineIterator line_iter(bin_barcode, angle_list[ i % angle_size],
angle_list[(i + 1) % angle_size]);
for(int j = 0; j < line_iter.count; j++, ++line_iter)
{
value = bin_barcode.at<uint8_t>(line_iter.pos());
mask_value = mask.at<uint8_t>(line_iter.pos() + Point(1, 1));
if (value == 0 && mask_value == 0)
{
floodFill(bin_barcode, mask, line_iter.pos(), 255);
}
}
}
std::vector<Point> locations;
Mat mask_roi = mask(Range(1, bin_barcode.rows - 1),
Range(1, bin_barcode.cols - 1));
cv::findNonZero(mask_roi, locations);
for (size_t i = 0; i < angle_list.size(); i++)
{
locations.push_back(angle_list[i]);
}
std::vector< std::vector<Point> > hull(1), approx_hull(1);
convexHull(Mat(locations), hull[0]);
int hull_size = static_cast<int>(hull[0].size());
Point min_pnt;
std::vector<Point> min_abc;
double min_abs_cos_abc, abs_cos_abc;
for (int count = 0; count < 4; count++)
{
min_abs_cos_abc = std::numeric_limits<double>::max();
for (int i = 0; i < hull_size; i++)
{
Point a = hull[0][ i % hull_size];
Point b = hull[0][(i + 1) % hull_size];
Point c = hull[0][(i + 2) % hull_size];
abs_cos_abc = abs(getCosVectors(a, b, c));
bool flag_detect = true;
for (size_t j = 0; j < min_abc.size(); j++)
{
if (min_abc[j] == b) { flag_detect = false; break; }
}
if (flag_detect && (abs_cos_abc < min_abs_cos_abc))
{
min_pnt = b;
min_abs_cos_abc = abs_cos_abc;
}
}
min_abc.push_back(min_pnt);
}
int min_abc_size = static_cast<int>(min_abc.size());
std::vector<int> index_min_abc(min_abc_size);
for (int i = 0; i < min_abc_size; i++)
{
for (int j = 0; j < hull_size; j++)
{
if (hull[0][j] == min_abc[i]) { index_min_abc[i] = j; break; }
}
}
std::vector<Point> result_hull_point(angle_size);
double min_norm, temp_norm;
for (size_t i = 0; i < angle_size; i++)
{
min_norm = std::numeric_limits<double>::max();
Point closest_pnt;
for (int j = 0; j < min_abc_size; j++)
{
if (min_norm > norm(hull[0][index_min_abc[j]] - angle_list[i]))
{
min_norm = norm(hull[0][index_min_abc[j]] - angle_list[i]);
closest_pnt = hull[0][index_min_abc[j]];
}
}
result_hull_point[i] = closest_pnt;
}
int start_line[2] = {0, 0}, finish_line[2] = {0, 0}, unstable_pnt = 0;
for (int i = 0; i < hull_size; i++)
{
if (result_hull_point[3] == hull[0][i]) { start_line[0] = i; }
if (result_hull_point[2] == hull[0][i]) { finish_line[0] = start_line[1] = i; }
if (result_hull_point[1] == hull[0][i]) { finish_line[1] = i; }
if (result_hull_point[0] == hull[0][i]) { unstable_pnt = i; }
}
int index_hull, extra_index_hull, next_index_hull, extra_next_index_hull, count_points;
Point result_side_begin[4], result_side_end[4];
min_norm = std::numeric_limits<double>::max();
index_hull = start_line[0];
count_points = abs(start_line[0] - finish_line[0]);
do
{
if (count_points > hull_size / 2) { next_index_hull = index_hull + 1; }
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
Point angle_closest_pnt = norm(hull[0][index_hull] - angle_list[2]) >
norm(hull[0][index_hull] - angle_list[3]) ? angle_list[3] : angle_list[2];
Point intrsc_line_hull =
intersectionLines(hull[0][index_hull], hull[0][next_index_hull],
angle_list[2], angle_list[3]);
temp_norm = getCosVectors(hull[0][index_hull], intrsc_line_hull, angle_closest_pnt);
if (min_norm > temp_norm &&
norm(hull[0][index_hull] - hull[0][next_index_hull]) >
norm(angle_list[2] - angle_list[3]) / 10)
{
min_norm = temp_norm;
result_side_begin[0] = hull[0][index_hull];
result_side_end[0] = hull[0][next_index_hull];
}
index_hull = next_index_hull;
}
while(index_hull != finish_line[0]);
if (min_norm == std::numeric_limits<double>::max())
{
result_side_begin[0] = angle_list[2];
result_side_end[0] = angle_list[3];
}
min_norm = std::numeric_limits<double>::max();
index_hull = start_line[1];
count_points = abs(start_line[1] - finish_line[1]);
do
{
if (count_points > hull_size / 2) { next_index_hull = index_hull + 1; }
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
Point angle_closest_pnt = norm(hull[0][index_hull] - angle_list[1]) >
norm(hull[0][index_hull] - angle_list[2]) ? angle_list[2] : angle_list[1];
Point intrsc_line_hull =
intersectionLines(hull[0][index_hull], hull[0][next_index_hull],
angle_list[1], angle_list[2]);
temp_norm = getCosVectors(hull[0][index_hull], intrsc_line_hull, angle_closest_pnt);
if (min_norm > temp_norm &&
norm(hull[0][index_hull] - hull[0][next_index_hull]) >
norm(angle_list[1] - angle_list[2]) / 20)
{
min_norm = temp_norm;
result_side_begin[1] = hull[0][index_hull];
result_side_end[1] = hull[0][next_index_hull];
}
index_hull = next_index_hull;
}
while(index_hull != finish_line[1]);
if (min_norm == std::numeric_limits<double>::max())
{
result_side_begin[1] = angle_list[1];
result_side_end[1] = angle_list[2];
}
double test_norm[4] = { 0.0, 0.0, 0.0, 0.0 };
int test_index[4];
for (int i = 0; i < 4; i++)
{
test_index[i] = (i < 2) ? static_cast<int>(start_line[0])
: static_cast<int>(finish_line[1]);
do
{
next_index_hull = ((i + 1) % 2 != 0) ? test_index[i] + 1 : test_index[i] - 1;
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
test_norm[i] += norm(hull[0][next_index_hull] - hull[0][unstable_pnt]);
test_index[i] = next_index_hull;
}
while(test_index[i] != unstable_pnt);
}
std::vector<Point> result_angle_list(4), test_result_angle_list(4);
double min_area = std::numeric_limits<double>::max(), test_area;
index_hull = start_line[0];
do
{
if (test_norm[0] < test_norm[1]) { next_index_hull = index_hull + 1; }
else { next_index_hull = index_hull - 1; }
if (next_index_hull == hull_size) { next_index_hull = 0; }
if (next_index_hull == -1) { next_index_hull = hull_size - 1; }
extra_index_hull = finish_line[1];
do
{
if (test_norm[2] < test_norm[3]) { extra_next_index_hull = extra_index_hull + 1; }
else { extra_next_index_hull = extra_index_hull - 1; }
if (extra_next_index_hull == hull_size) { extra_next_index_hull = 0; }
if (extra_next_index_hull == -1) { extra_next_index_hull = hull_size - 1; }
test_result_angle_list[0]
= intersectionLines(result_side_begin[0], result_side_end[0],
result_side_begin[1], result_side_end[1]);
test_result_angle_list[1]
= intersectionLines(result_side_begin[1], result_side_end[1],
hull[0][extra_index_hull], hull[0][extra_next_index_hull]);
test_result_angle_list[2]
= intersectionLines(hull[0][extra_index_hull], hull[0][extra_next_index_hull],
hull[0][index_hull], hull[0][next_index_hull]);
test_result_angle_list[3]
= intersectionLines(hull[0][index_hull], hull[0][next_index_hull],
result_side_begin[0], result_side_end[0]);
test_area = getQuadrilateralArea(test_result_angle_list[0],
test_result_angle_list[1],
test_result_angle_list[2],
test_result_angle_list[3]);
if (min_area > test_area)
{
min_area = test_area;
for (size_t i = 0; i < test_result_angle_list.size(); i++)
{
result_angle_list[i] = test_result_angle_list[i];
}
}
extra_index_hull = extra_next_index_hull;
}
while(extra_index_hull != unstable_pnt);
index_hull = next_index_hull;
}
while(index_hull != unstable_pnt);
if (norm(result_angle_list[0] - angle_list[2]) >
norm(angle_list[2] - angle_list[1]) / 3) { result_angle_list[0] = angle_list[2]; }
if (norm(result_angle_list[1] - angle_list[1]) >
norm(angle_list[1] - angle_list[0]) / 3) { result_angle_list[1] = angle_list[1]; }
if (norm(result_angle_list[2] - angle_list[0]) >
norm(angle_list[0] - angle_list[3]) / 3) { result_angle_list[2] = angle_list[0]; }
if (norm(result_angle_list[3] - angle_list[3]) >
norm(angle_list[3] - angle_list[2]) / 3) { result_angle_list[3] = angle_list[3]; }
return result_angle_list;
}
// b __________ c
// / |
// / |
// / S |
// / |
// a --------------- d
double QRDecode::getQuadrilateralArea(Point a, Point b, Point c, Point d)
{
double length_sides[4], perimeter = 0.0, result_area = 1.0;
length_sides[0] = norm(a - b); length_sides[1] = norm(b - c);
length_sides[2] = norm(c - d); length_sides[3] = norm(d - a);
for (int i = 0; i < 4; i++) { perimeter += length_sides[i]; }
perimeter /= 2;
for (int i = 0; i < 4; i++)
{
result_area *= (perimeter - length_sides[i]);
}
result_area = sqrt(result_area);
return result_area;
}
// / | b
// / |
// / |
// a/ | c
double QRDecode::getCosVectors(Point a, Point b, Point c)
{
return ((a - b).x * (c - b).x + (a - b).y * (c - b).y) / (norm(a - b) * norm(c - b));
}
CV_EXPORTS bool detectQRCode(InputArray in, std::vector<Point> &points, double eps_x, double eps_y)
{
CV_Assert(in.isMat());
CV_Assert(in.getMat().type() == CV_8UC1);
QRDecode qrdec;
qrdec.init(in.getMat(), eps_x, eps_y);
qrdec.binarization();
if (!qrdec.localization()) { return false; }
if (!qrdec.transformation()) { return false; }
points = qrdec.getTransformationPoints();
return true;
}
}

View File

@ -0,0 +1,74 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
namespace opencv_test { namespace {
TEST(Objdetect_QRCode, regression)
{
String root = cvtest::TS::ptr()->get_data_path() + "qrcode/";
// String cascades[] =
// {
// root + "haarcascade_frontalface_alt.xml",
// root + "lbpcascade_frontalface.xml",
// String()
// };
// vector<Rect> objects;
// RNG rng((uint64)-1);
// for( int i = 0; !cascades[i].empty(); i++ )
// {
// printf("%d. %s\n", i, cascades[i].c_str());
// CascadeClassifier cascade(cascades[i]);
// for( int j = 0; j < 100; j++ )
// {
// int width = rng.uniform(1, 100);
// int height = rng.uniform(1, 100);
// Mat img(height, width, CV_8U);
// randu(img, 0, 256);
// cascade.detectMultiScale(img, objects);
// }
// }
}
}} // namespace