From 437ef99ba5756a18852ef2aef8a132590a2453f0 Mon Sep 17 00:00:00 2001 From: Nisarg Thakkar Date: Tue, 17 Feb 2015 22:14:57 +0530 Subject: [PATCH] Fixed doc error in optical flow --- .../py_video/py_lucas_kanade/py_lucas_kanade.markdown | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/doc/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.markdown b/doc/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.markdown index 1ea6cd69dc..48c8761c76 100644 --- a/doc/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.markdown +++ b/doc/py_tutorials/py_video/py_lucas_kanade/py_lucas_kanade.markdown @@ -46,7 +46,7 @@ get the following equation: where: -\f[f_x = \frac{\partial f}{\partial x} \; ; \; f_y = \frac{\partial f}{\partial x}\f]\f[u = \frac{dx}{dt} \; ; \; v = \frac{dy}{dt}\f] +\f[f_x = \frac{\partial f}{\partial x} \; ; \; f_y = \frac{\partial f}{\partial y}\f]\f[u = \frac{dx}{dt} \; ; \; v = \frac{dy}{dt}\f] Above equation is called Optical Flow equation. In it, we can find \f$f_x\f$ and \f$f_y\f$, they are image gradients. Similarly \f$f_t\f$ is the gradient along time. But \f$(u,v)\f$ is unknown. We cannot solve this