added Mat::push_back, pop_back and related operations; enabled reading/writing/creating/copying matrices with zero dimensions.

This commit is contained in:
Vadim Pisarevsky 2010-10-18 08:51:46 +00:00
parent bddaa00e03
commit 02885b8b49
8 changed files with 392 additions and 147 deletions

View File

@ -94,6 +94,7 @@ class CV_EXPORTS VectorArg;
class CV_EXPORTS MatArg; class CV_EXPORTS MatArg;
class CV_EXPORTS MatConstIterator; class CV_EXPORTS MatConstIterator;
template<typename _Tp> class CV_EXPORTS Mat_;
template<typename _Tp> class CV_EXPORTS MatIterator_; template<typename _Tp> class CV_EXPORTS MatIterator_;
template<typename _Tp> class CV_EXPORTS MatConstIterator_; template<typename _Tp> class CV_EXPORTS MatConstIterator_;
template<typename _Tp> class CV_EXPORTS MatCommaInitializer_; template<typename _Tp> class CV_EXPORTS MatCommaInitializer_;
@ -1600,7 +1601,22 @@ public:
void deallocate(); void deallocate();
//! internal use function; properly re-allocates _size, _step arrays //! internal use function; properly re-allocates _size, _step arrays
void copySize(const Mat& m); void copySize(const Mat& m);
//! reserves enough space to fit sz hyper-planes
void reserve(size_t sz);
//! resizes matrix to the specified number of hyper-planes
void resize(size_t sz);
//! resizes matrix to the specified number of hyper-planes; initializes the newly added elements
void resize(size_t sz, const Scalar& s);
//! internal function
void push_back_(const void* elem);
//! adds element to the end of 1d matrix (or possibly multiple elements when _Tp=Mat)
template<typename _Tp> void push_back(const _Tp& elem);
template<typename _Tp> void push_back(const Mat_<_Tp>& elem);
void push_back(const Mat& m);
//! removes several hyper-planes from bottom of the matrix
void pop_back(size_t nelems);
//! locates matrix header within a parent matrix. See below //! locates matrix header within a parent matrix. See below
void locateROI( Size& wholeSize, Point& ofs ) const; void locateROI( Size& wholeSize, Point& ofs ) const;
//! moves/resizes the current matrix ROI inside the parent matrix. //! moves/resizes the current matrix ROI inside the parent matrix.
@ -1626,6 +1642,10 @@ public:
// (i.e. when there are no gaps between successive rows). // (i.e. when there are no gaps between successive rows).
// similar to CV_IS_MAT_CONT(cvmat->type) // similar to CV_IS_MAT_CONT(cvmat->type)
bool isContinuous() const; bool isContinuous() const;
//! returns true if the matrix is a submatrix of another matrix
bool isSubmatrix() const;
//! returns element size in bytes, //! returns element size in bytes,
// similar to CV_ELEM_SIZE(cvmat->type) // similar to CV_ELEM_SIZE(cvmat->type)
size_t elemSize() const; size_t elemSize() const;
@ -1707,7 +1727,7 @@ public:
template<typename _Tp> MatConstIterator_<_Tp> begin() const; template<typename _Tp> MatConstIterator_<_Tp> begin() const;
template<typename _Tp> MatConstIterator_<_Tp> end() const; template<typename _Tp> MatConstIterator_<_Tp> end() const;
enum { MAGIC_VAL=0x42FF0000, AUTO_STEP=0, CONTINUOUS_FLAG=CV_MAT_CONT_FLAG }; enum { MAGIC_VAL=0x42FF0000, AUTO_STEP=0, CONTINUOUS_FLAG=CV_MAT_CONT_FLAG, SUBMATRIX_FLAG=CV_SUBMAT_FLAG };
/*! includes several bit-fields: /*! includes several bit-fields:
- the magic signature - the magic signature
@ -1730,6 +1750,8 @@ public:
//! helper fields used in locateROI and adjustROI //! helper fields used in locateROI and adjustROI
uchar* datastart; uchar* datastart;
uchar* dataend; uchar* dataend;
uchar* datalimit;
//! custom allocator //! custom allocator
ArrayAllocator* allocator; ArrayAllocator* allocator;
@ -2252,13 +2274,13 @@ CV_EXPORTS void fillConvexPoly(Mat& img, CV_CARRAY(npts) const Point* pts, int n
int shift=0); int shift=0);
//! fills an area bounded by one or more polygons //! fills an area bounded by one or more polygons
CV_EXPORTS void fillPoly(Mat& img, CV_CARRAY(ncontours) const Point** pts, CV_EXPORTS void fillPoly(Mat& img, CV_CARRAY(ncontours.npts) const Point** pts,
CV_CARRAY(ncontours) const int* npts, int ncontours, CV_CARRAY(ncontours) const int* npts, int ncontours,
const Scalar& color, int lineType=8, int shift=0, const Scalar& color, int lineType=8, int shift=0,
Point offset=Point() ); Point offset=Point() );
//! draws one or more polygonal curves //! draws one or more polygonal curves
CV_EXPORTS void polylines(Mat& img, CV_CARRAY(ncontours) const Point** pts, CV_CARRAY(ncontours) const int* npts, CV_EXPORTS void polylines(Mat& img, CV_CARRAY(ncontours.npts) const Point** pts, CV_CARRAY(ncontours) const int* npts,
int ncontours, bool isClosed, const Scalar& color, int ncontours, bool isClosed, const Scalar& color,
int thickness=1, int lineType=8, int shift=0 ); int thickness=1, int lineType=8, int shift=0 );

View File

@ -57,20 +57,20 @@ namespace cv
inline Mat::Mat() inline Mat::Mat()
: flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows) datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{ {
} }
inline Mat::Mat(int _rows, int _cols, int _type) inline Mat::Mat(int _rows, int _cols, int _type)
: flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows) datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{ {
create(_rows, _cols, _type); create(_rows, _cols, _type);
} }
inline Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s) inline Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s)
: flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows) datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{ {
create(_rows, _cols, _type); create(_rows, _cols, _type);
*this = _s; *this = _s;
@ -78,14 +78,14 @@ inline Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s)
inline Mat::Mat(Size _sz, int _type) inline Mat::Mat(Size _sz, int _type)
: flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows) datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{ {
create( _sz.height, _sz.width, _type ); create( _sz.height, _sz.width, _type );
} }
inline Mat::Mat(Size _sz, int _type, const Scalar& _s) inline Mat::Mat(Size _sz, int _type, const Scalar& _s)
: flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows) datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{ {
create(_sz.height, _sz.width, _type); create(_sz.height, _sz.width, _type);
*this = _s; *this = _s;
@ -93,14 +93,14 @@ inline Mat::Mat(Size _sz, int _type, const Scalar& _s)
inline Mat::Mat(int _dims, const int* _sz, int _type) inline Mat::Mat(int _dims, const int* _sz, int _type)
: flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows) datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{ {
create(_dims, _sz, _type); create(_dims, _sz, _type);
} }
inline Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s) inline Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s)
: flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows) datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{ {
create(_dims, _sz, _type); create(_dims, _sz, _type);
*this = _s; *this = _s;
@ -109,7 +109,7 @@ inline Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s)
inline Mat::Mat(const Mat& m) inline Mat::Mat(const Mat& m)
: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data), : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data),
refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend),
allocator(m.allocator), size(&rows) datalimit(m.datalimit), allocator(m.allocator), size(&rows)
{ {
if( refcount ) if( refcount )
CV_XADD(refcount, 1); CV_XADD(refcount, 1);
@ -126,10 +126,10 @@ inline Mat::Mat(const Mat& m)
inline Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step) inline Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step)
: flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols), : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols),
data((uchar*)_data), refcount(0), datastart((uchar*)_data), dataend((uchar*)_data), data((uchar*)_data), refcount(0), datastart((uchar*)_data), dataend(0),
allocator(0), size(&rows) datalimit(0), allocator(0), size(&rows)
{ {
size_t minstep = cols*elemSize(); size_t esz = CV_ELEM_SIZE(_type), minstep = cols*esz;
if( _step == AUTO_STEP ) if( _step == AUTO_STEP )
{ {
_step = minstep; _step = minstep;
@ -141,16 +141,17 @@ inline Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step)
CV_DbgAssert( _step >= minstep ); CV_DbgAssert( _step >= minstep );
flags |= _step == minstep ? CONTINUOUS_FLAG : 0; flags |= _step == minstep ? CONTINUOUS_FLAG : 0;
} }
step[0] = _step; step[1] = elemSize(); step[0] = _step; step[1] = esz;
dataend += _step*(rows-1) + minstep; datalimit = datastart + _step*rows;
dataend = datalimit - _step + minstep;
} }
inline Mat::Mat(Size _sz, int _type, void* _data, size_t _step) inline Mat::Mat(Size _sz, int _type, void* _data, size_t _step)
: flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width), : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width),
data((uchar*)_data), refcount(0), datastart((uchar*)_data), dataend((uchar*)_data), data((uchar*)_data), refcount(0), datastart((uchar*)_data), dataend(0),
allocator(0), size(&rows) datalimit(0), allocator(0), size(&rows)
{ {
size_t minstep = cols*elemSize(); size_t esz = CV_ELEM_SIZE(_type), minstep = cols*esz;
if( _step == AUTO_STEP ) if( _step == AUTO_STEP )
{ {
_step = minstep; _step = minstep;
@ -162,23 +163,25 @@ inline Mat::Mat(Size _sz, int _type, void* _data, size_t _step)
CV_DbgAssert( _step >= minstep ); CV_DbgAssert( _step >= minstep );
flags |= _step == minstep ? CONTINUOUS_FLAG : 0; flags |= _step == minstep ? CONTINUOUS_FLAG : 0;
} }
step[0] = _step; step[1] = elemSize(); step[0] = _step; step[1] = esz;
dataend += _step*(rows-1) + minstep; datalimit = datastart + _step*rows;
dataend = datalimit - _step + minstep;
} }
inline Mat::Mat(const CvMat* m, bool copyData) inline Mat::Mat(const CvMat* m, bool copyData)
: flags(MAGIC_VAL + (m->type & (CV_MAT_TYPE_MASK|CV_MAT_CONT_FLAG))), : flags(MAGIC_VAL + (m->type & (CV_MAT_TYPE_MASK|CV_MAT_CONT_FLAG))),
dims(2), rows(m->rows), cols(m->cols), data(m->data.ptr), refcount(0), dims(2), rows(m->rows), cols(m->cols), data(m->data.ptr), refcount(0),
datastart(m->data.ptr), dataend(m->data.ptr), datastart(0), dataend(0),
allocator(0), size(&rows) allocator(0), size(&rows)
{ {
if( !copyData ) if( !copyData )
{ {
size_t esz = elemSize(), minstep = cols*esz, _step = m->step; size_t esz = CV_ELEM_SIZE(m->type), minstep = cols*esz, _step = m->step;
if( _step == 0 ) if( _step == 0 )
_step = minstep; _step = minstep;
dataend += _step*(rows-1) + minstep; datalimit = datastart + _step*rows;
dataend = datalimit - _step + minstep;
step[0] = _step; step[1] = esz; step[0] = _step; step[1] = esz;
} }
else else
@ -199,7 +202,7 @@ template<typename _Tp> inline Mat::Mat(const vector<_Tp>& vec, bool copyData)
{ {
step[0] = step[1] = sizeof(_Tp); step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)&vec[0]; data = datastart = (uchar*)&vec[0];
dataend = datastart + rows*step[0]; datalimit = dataend = datastart + rows*step[0];
} }
else else
Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this); Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this);
@ -215,7 +218,7 @@ template<typename _Tp, int n> inline Mat::Mat(const Vec<_Tp, n>& vec, bool copyD
{ {
step[0] = step[1] = sizeof(_Tp); step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)vec.val; data = datastart = (uchar*)vec.val;
dataend = datastart + rows*step[0]; datalimit = dataend = datastart + rows*step[0];
} }
else else
Mat(n, 1, DataType<_Tp>::type, (void*)vec.val).copyTo(*this); Mat(n, 1, DataType<_Tp>::type, (void*)vec.val).copyTo(*this);
@ -232,7 +235,7 @@ template<typename _Tp, int m, int n> inline Mat::Mat(const Matx<_Tp,m,n>& M, boo
step[0] = cols*sizeof(_Tp); step[0] = cols*sizeof(_Tp);
step[1] = sizeof(_Tp); step[1] = sizeof(_Tp);
data = datastart = (uchar*)M.val; data = datastart = (uchar*)M.val;
dataend = datastart + rows*step[0]; datalimit = dataend = datastart + rows*step[0];
} }
else else
Mat(m, n, DataType<_Tp>::type, (uchar*)M.val).copyTo(*this); Mat(m, n, DataType<_Tp>::type, (uchar*)M.val).copyTo(*this);
@ -248,7 +251,7 @@ template<typename _Tp> inline Mat::Mat(const Point_<_Tp>& pt, bool copyData)
{ {
step[0] = step[1] = sizeof(_Tp); step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)&pt.x; data = datastart = (uchar*)&pt.x;
dataend = datastart + rows*step[0]; datalimit = dataend = datastart + rows*step[0];
} }
else else
{ {
@ -268,7 +271,7 @@ template<typename _Tp> inline Mat::Mat(const Point3_<_Tp>& pt, bool copyData)
{ {
step[0] = step[1] = sizeof(_Tp); step[0] = step[1] = sizeof(_Tp);
data = datastart = (uchar*)&pt.x; data = datastart = (uchar*)&pt.x;
dataend = datastart + rows*step[0]; datalimit = dataend = datastart + rows*step[0];
} }
else else
{ {
@ -314,7 +317,9 @@ inline Mat& Mat::operator = (const Mat& m)
else else
copySize(m); copySize(m);
data = m.data; data = m.data;
datastart = m.datastart; dataend = m.dataend; datastart = m.datastart;
dataend = m.dataend;
datalimit = m.datalimit;
refcount = m.refcount; refcount = m.refcount;
allocator = m.allocator; allocator = m.allocator;
} }
@ -375,8 +380,8 @@ inline void Mat::release()
{ {
if( refcount && CV_XADD(refcount, -1) == 1 ) if( refcount && CV_XADD(refcount, -1) == 1 )
deallocate(); deallocate();
data = datastart = dataend = 0; data = datastart = dataend = datalimit = 0;
rows = cols = 0; size.p[0] = 0;
refcount = 0; refcount = 0;
} }
@ -403,13 +408,14 @@ inline Mat::operator CvMat() const
} }
inline bool Mat::isContinuous() const { return (flags & CONTINUOUS_FLAG) != 0; } inline bool Mat::isContinuous() const { return (flags & CONTINUOUS_FLAG) != 0; }
inline size_t Mat::elemSize() const { return CV_ELEM_SIZE(flags); } inline bool Mat::isSubmatrix() const { return (flags & SUBMATRIX_FLAG) != 0; }
inline size_t Mat::elemSize() const { return step.p[dims-1]; }
inline size_t Mat::elemSize1() const { return CV_ELEM_SIZE1(flags); } inline size_t Mat::elemSize1() const { return CV_ELEM_SIZE1(flags); }
inline int Mat::type() const { return CV_MAT_TYPE(flags); } inline int Mat::type() const { return CV_MAT_TYPE(flags); }
inline int Mat::depth() const { return CV_MAT_DEPTH(flags); } inline int Mat::depth() const { return CV_MAT_DEPTH(flags); }
inline int Mat::channels() const { return CV_MAT_CN(flags); } inline int Mat::channels() const { return CV_MAT_CN(flags); }
inline size_t Mat::step1(int i) const { return step.p[i]/elemSize1(); } inline size_t Mat::step1(int i) const { return step.p[i]/elemSize1(); }
inline bool Mat::empty() const { return data == 0; } inline bool Mat::empty() const { return data == 0 || size.p[0] == 0; }
inline size_t Mat::total() const inline size_t Mat::total() const
{ {
if( dims <= 2 ) if( dims <= 2 )
@ -581,7 +587,7 @@ template<typename _Tp> inline MatIterator_<_Tp> Mat::end()
template<typename _Tp> inline Mat::operator vector<_Tp>() const template<typename _Tp> inline Mat::operator vector<_Tp>() const
{ {
if( !data ) if( empty() )
return vector<_Tp>(); return vector<_Tp>();
CV_Assert( dims >= 1 && DataType<_Tp>::channels == channels()); CV_Assert( dims >= 1 && DataType<_Tp>::channels == channels());
vector<_Tp> v(total()); vector<_Tp> v(total());
@ -611,10 +617,34 @@ template<typename _Tp, int m, int n> inline Mat::operator Matx<_Tp, m, n>() cons
Matx<_Tp, m, n> mtx; Mat tmp(rows, cols, DataType<_Tp>::type, mtx.val); Matx<_Tp, m, n> mtx; Mat tmp(rows, cols, DataType<_Tp>::type, mtx.val);
convertTo(tmp, tmp.type()); convertTo(tmp, tmp.type());
return mtx; return mtx;
} }
template<typename _Tp> inline void Mat::push_back(const _Tp& elem)
{
CV_Assert(DataType<_Tp>::type == type() && cols == 1
/* && dims == 2 (cols == 1 implies dims == 2) */);
uchar* tmp = dataend + step[0];
if( !isSubmatrix() && isContinuous() && tmp <= datalimit )
{
*(_Tp*)(data + (size.p[0]++)*step.p[0]) = elem;
dataend = tmp;
}
else
push_back_(&elem);
}
template<typename _Tp> inline void Mat::push_back(const Mat_<_Tp>& m)
{
push_back((const Mat&)m);
}
inline Mat::MSize::MSize(int* _p) : p(_p) {} inline Mat::MSize::MSize(int* _p) : p(_p) {}
inline Size Mat::MSize::operator()() const { return Size(p[1], p[0]); } inline Size Mat::MSize::operator()() const
{
CV_DbgAssert(p[-1] <= 2);
return Size(p[1], p[0]);
}
inline int Mat::MSize::operator[](int i) const { return p[i]; } inline int Mat::MSize::operator[](int i) const { return p[i]; }
inline int& Mat::MSize::operator[](int i) { return p[i]; } inline int& Mat::MSize::operator[](int i) { return p[i]; }
inline Mat::MSize::operator const int*() const { return p; } inline Mat::MSize::operator const int*() const { return p; }
@ -642,8 +672,17 @@ inline Mat::MStep::MStep() { p = buf; p[0] = p[1] = 0; }
inline Mat::MStep::MStep(size_t s) { p = buf; p[0] = s; p[1] = 0; } inline Mat::MStep::MStep(size_t s) { p = buf; p[0] = s; p[1] = 0; }
inline size_t Mat::MStep::operator[](int i) const { return p[i]; } inline size_t Mat::MStep::operator[](int i) const { return p[i]; }
inline size_t& Mat::MStep::operator[](int i) { return p[i]; } inline size_t& Mat::MStep::operator[](int i) { return p[i]; }
inline Mat::MStep::operator size_t() const { return p[0]; } inline Mat::MStep::operator size_t() const
inline Mat::MStep& Mat::MStep::operator = (size_t s) { p[0] = s; return *this; } {
CV_DbgAssert( p == buf );
return buf[0];
}
inline Mat::MStep& Mat::MStep::operator = (size_t s)
{
CV_DbgAssert( p == buf );
buf[0] = s;
return *this;
}
static inline Mat cvarrToMatND(const CvArr* arr, bool copyData=false, int coiMode=0) static inline Mat cvarrToMatND(const CvArr* arr, bool copyData=false, int coiMode=0)
{ {

View File

@ -2692,7 +2692,6 @@ operator << ( FileStorage& fs, const vector<_Tp>& vec )
} }
CV_EXPORTS void write( FileStorage& fs, const string& name, const Mat& value ); CV_EXPORTS void write( FileStorage& fs, const string& name, const Mat& value );
CV_EXPORTS void write( FileStorage& fs, const string& name, const MatND& value );
CV_EXPORTS void write( FileStorage& fs, const string& name, const SparseMat& value ); CV_EXPORTS void write( FileStorage& fs, const string& name, const SparseMat& value );
template<typename _Tp> static inline FileStorage& operator << (FileStorage& fs, const _Tp& value) template<typename _Tp> static inline FileStorage& operator << (FileStorage& fs, const _Tp& value)

View File

@ -601,9 +601,9 @@ IplConvKernelFP;
#define CV_MAT_CONT_FLAG (1 << CV_MAT_CONT_FLAG_SHIFT) #define CV_MAT_CONT_FLAG (1 << CV_MAT_CONT_FLAG_SHIFT)
#define CV_IS_MAT_CONT(flags) ((flags) & CV_MAT_CONT_FLAG) #define CV_IS_MAT_CONT(flags) ((flags) & CV_MAT_CONT_FLAG)
#define CV_IS_CONT_MAT CV_IS_MAT_CONT #define CV_IS_CONT_MAT CV_IS_MAT_CONT
#define CV_MAT_TEMP_FLAG_SHIFT 15 #define CV_SUBMAT_FLAG_SHIFT 15
#define CV_MAT_TEMP_FLAG (1 << CV_MAT_TEMP_FLAG_SHIFT) #define CV_SUBMAT_FLAG (1 << CV_SUBMAT_FLAG_SHIFT)
#define CV_IS_TEMP_MAT(flags) ((flags) & CV_MAT_TEMP_FLAG) #define CV_IS_SUBMAT(flags) ((flags) & CV_MAT_SUBMAT_FLAG)
#define CV_MAGIC_MASK 0xFFFF0000 #define CV_MAGIC_MASK 0xFFFF0000
#define CV_MAT_MAGIC_VAL 0x42420000 #define CV_MAT_MAGIC_VAL 0x42420000
@ -653,6 +653,11 @@ CvMat;
(((const CvMat*)(mat))->type & CV_MAGIC_MASK) == CV_MAT_MAGIC_VAL && \ (((const CvMat*)(mat))->type & CV_MAGIC_MASK) == CV_MAT_MAGIC_VAL && \
((const CvMat*)(mat))->cols > 0 && ((const CvMat*)(mat))->rows > 0) ((const CvMat*)(mat))->cols > 0 && ((const CvMat*)(mat))->rows > 0)
#define CV_IS_MAT_HDR_Z(mat) \
((mat) != NULL && \
(((const CvMat*)(mat))->type & CV_MAGIC_MASK) == CV_MAT_MAGIC_VAL && \
((const CvMat*)(mat))->cols >= 0 && ((const CvMat*)(mat))->rows >= 0)
#define CV_IS_MAT(mat) \ #define CV_IS_MAT(mat) \
(CV_IS_MAT_HDR(mat) && ((const CvMat*)(mat))->data.ptr != NULL) (CV_IS_MAT_HDR(mat) && ((const CvMat*)(mat))->data.ptr != NULL)

View File

@ -109,7 +109,7 @@ cvCreateMatHeader( int rows, int cols, int type )
{ {
type = CV_MAT_TYPE(type); type = CV_MAT_TYPE(type);
if( rows <= 0 || cols <= 0 ) if( rows < 0 || cols <= 0 )
CV_Error( CV_StsBadSize, "Non-positive width or height" ); CV_Error( CV_StsBadSize, "Non-positive width or height" );
int min_step = CV_ELEM_SIZE(type)*cols; int min_step = CV_ELEM_SIZE(type)*cols;
@ -142,7 +142,7 @@ cvInitMatHeader( CvMat* arr, int rows, int cols,
if( (unsigned)CV_MAT_DEPTH(type) > CV_DEPTH_MAX ) if( (unsigned)CV_MAT_DEPTH(type) > CV_DEPTH_MAX )
CV_Error( CV_BadNumChannels, "" ); CV_Error( CV_BadNumChannels, "" );
if( rows <= 0 || cols <= 0 ) if( rows < 0 || cols <= 0 )
CV_Error( CV_StsBadSize, "Non-positive cols or rows" ); CV_Error( CV_StsBadSize, "Non-positive cols or rows" );
type = CV_MAT_TYPE( type ); type = CV_MAT_TYPE( type );
@ -175,12 +175,6 @@ cvInitMatHeader( CvMat* arr, int rows, int cols,
} }
#undef CV_IS_MAT_HDR_Z
#define CV_IS_MAT_HDR_Z(mat) \
((mat) != NULL && \
(((const CvMat*)(mat))->type & CV_MAGIC_MASK) == CV_MAT_MAGIC_VAL && \
((const CvMat*)(mat))->cols >= 0 && ((const CvMat*)(mat))->rows >= 0)
// Deallocates the CvMat structure and underlying data // Deallocates the CvMat structure and underlying data
CV_IMPL void CV_IMPL void
cvReleaseMat( CvMat** array ) cvReleaseMat( CvMat** array )
@ -248,7 +242,7 @@ cvInitMatNDHeader( CvMatND* mat, int dims, const int* sizes,
for( int i = dims - 1; i >= 0; i-- ) for( int i = dims - 1; i >= 0; i-- )
{ {
if( sizes[i] <= 0 ) if( sizes[i] < 0 )
CV_Error( CV_StsBadSize, "one of dimesion sizes is non-positive" ); CV_Error( CV_StsBadSize, "one of dimesion sizes is non-positive" );
mat->dim[i].size = sizes[i]; mat->dim[i].size = sizes[i];
if( step > INT_MAX ) if( step > INT_MAX )
@ -795,12 +789,15 @@ icvDeleteNode( CvSparseMat* mat, const int* idx, unsigned* precalc_hashval )
CV_IMPL void CV_IMPL void
cvCreateData( CvArr* arr ) cvCreateData( CvArr* arr )
{ {
if( CV_IS_MAT_HDR( arr )) if( CV_IS_MAT_HDR_Z( arr ))
{ {
size_t step, total_size; size_t step, total_size;
CvMat* mat = (CvMat*)arr; CvMat* mat = (CvMat*)arr;
step = mat->step; step = mat->step;
if( mat->rows == 0 || mat->cols == 0 )
return;
if( mat->data.ptr != 0 ) if( mat->data.ptr != 0 )
CV_Error( CV_StsError, "Data is already allocated" ); CV_Error( CV_StsError, "Data is already allocated" );
@ -849,6 +846,9 @@ cvCreateData( CvArr* arr )
CvMatND* mat = (CvMatND*)arr; CvMatND* mat = (CvMatND*)arr;
int i; int i;
size_t total_size = CV_ELEM_SIZE(mat->type); size_t total_size = CV_ELEM_SIZE(mat->type);
if( mat->dim[0].size == 0 )
return;
if( mat->data.ptr != 0 ) if( mat->data.ptr != 0 )
CV_Error( CV_StsError, "Data is already allocated" ); CV_Error( CV_StsError, "Data is already allocated" );
@ -1207,7 +1207,7 @@ cvGetSize( const CvArr* arr )
{ {
CvSize size = { 0, 0 }; CvSize size = { 0, 0 };
if( CV_IS_MAT_HDR( arr )) if( CV_IS_MAT_HDR_Z( arr ))
{ {
CvMat *mat = (CvMat*)arr; CvMat *mat = (CvMat*)arr;

View File

@ -166,38 +166,45 @@ static SetMaskFunc setMaskFuncTab[] =
/* dst = src */ /* dst = src */
void Mat::copyTo( Mat& dst ) const void Mat::copyTo( Mat& dst ) const
{ {
if( data == dst.data ) if( data == dst.data && data != 0 )
return; return;
if( dims > 2 ) if( dims > 2 )
{ {
dst.create( dims, size, type() ); dst.create( dims, size, type() );
const Mat* arrays[] = { this, &dst, 0 }; if( total() != 0 )
Mat planes[2]; {
NAryMatIterator it(arrays, planes); const Mat* arrays[] = { this, &dst, 0 };
CV_DbgAssert(it.planes[0].isContinuous() && Mat planes[2];
it.planes[1].isContinuous()); NAryMatIterator it(arrays, planes);
size_t planeSize = it.planes[0].elemSize()*it.planes[0].rows*it.planes[0].cols; CV_DbgAssert(it.planes[0].isContinuous() &&
it.planes[1].isContinuous());
for( int i = 0; i < it.nplanes; i++, ++it ) size_t planeSize = it.planes[0].elemSize()*it.planes[0].rows*it.planes[0].cols;
memcpy(it.planes[1].data, it.planes[0].data, planeSize);
for( int i = 0; i < it.nplanes; i++, ++it )
memcpy(it.planes[1].data, it.planes[0].data, planeSize);
}
return; return;
} }
dst.create( rows, cols, type() ); dst.create( rows, cols, type() );
Size sz = size(); Size sz = size();
const uchar* sptr = data;
uchar* dptr = dst.data; if( rows > 0 && cols > 0 )
sz.width *= (int)elemSize();
if( isContinuous() && dst.isContinuous() )
{ {
sz.width *= sz.height; const uchar* sptr = data;
sz.height = 1; uchar* dptr = dst.data;
}
for( ; sz.height--; sptr += step, dptr += dst.step ) size_t width = sz.width*elemSize();
memcpy( dptr, sptr, sz.width ); if( isContinuous() && dst.isContinuous() )
{
width *= sz.height;
sz.height = 1;
}
for( ; sz.height--; sptr += step, dptr += dst.step )
memcpy( dptr, sptr, width );
}
} }
void Mat::copyTo( Mat& dst, const Mat& mask ) const void Mat::copyTo( Mat& dst, const Mat& mask ) const

View File

@ -94,12 +94,12 @@ static inline void setSize( Mat& m, int _dims, const int* _sz,
if( !_sz ) if( !_sz )
return; return;
size_t esz = m.elemSize(), total = esz; size_t esz = CV_ELEM_SIZE(m.flags), total = esz;
int i; int i;
for( i = _dims-1; i >= 0; i-- ) for( i = _dims-1; i >= 0; i-- )
{ {
int s = _sz[i]; int s = _sz[i];
CV_Assert( s > 0 ); CV_Assert( s >= (i == 0 ? 0 : 1) );
m.size.p[i] = s; m.size.p[i] = s;
if( _steps ) if( _steps )
@ -121,11 +121,10 @@ static inline void setSize( Mat& m, int _dims, const int* _sz,
m.step[1] = esz; m.step[1] = esz;
} }
} }
static void finalizeHdr(Mat& m) static void updateContinuityFlag(Mat& m)
{ {
int i, j; int i, j;
for( i = 0; i < m.dims; i++ ) for( i = 0; i < m.dims; i++ )
{ {
if( m.size[i] > 1 ) if( m.size[i] > 1 )
@ -137,19 +136,33 @@ static void finalizeHdr(Mat& m)
if( m.step[j]*m.size[j] < m.step[j-1] ) if( m.step[j]*m.size[j] < m.step[j-1] )
break; break;
} }
m.flags &= ~Mat::CONTINUOUS_FLAG;
int64 t = (int64)(m.step[0]/m.elemSize())*m.size[0]; int64 t = (int64)(m.step[0]/CV_ELEM_SIZE(m.flags))*m.size[0];
if( j <= i && t == (int)t ) if( j <= i && t == (int)t )
m.flags |= Mat::CONTINUOUS_FLAG; m.flags |= Mat::CONTINUOUS_FLAG;
else
m.flags &= ~Mat::CONTINUOUS_FLAG;
}
static void finalizeHdr(Mat& m)
{
updateContinuityFlag(m);
if( m.dims > 2 ) if( m.dims > 2 )
m.rows = m.cols = -1; m.rows = m.cols = -1;
if( m.data ) if( m.data )
{ {
m.dataend = m.data; m.datalimit = m.datastart + m.size[0]*m.step[0];
for( i = 0; i < m.dims; i++ ) if( m.size[0] > 0 )
m.dataend += (m.size[i] - 1)*m.step[i]; {
m.dataend = m.data;
for( int i = 0; i < m.dims; i++ )
m.dataend += (m.size[i] - 1)*m.step[i];
}
else
m.dataend = m.datalimit;
} }
else
m.dataend = m.datalimit = 0;
} }
@ -176,17 +189,20 @@ void Mat::create(int d, const int* _sizes, int _type)
flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL; flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL;
setSize(*this, d, _sizes, 0, allocator == 0); setSize(*this, d, _sizes, 0, allocator == 0);
if( !allocator ) if( size.p[0] > 0 )
{ {
size_t total = alignSize(step.p[0]*size.p[0], (int)sizeof(*refcount)); if( !allocator )
data = datastart = (uchar*)fastMalloc(total + (int)sizeof(*refcount)); {
refcount = (int*)(data + total); size_t total = alignSize(step.p[0]*size.p[0], (int)sizeof(*refcount));
*refcount = 1; data = datastart = (uchar*)fastMalloc(total + (int)sizeof(*refcount));
} refcount = (int*)(data + total);
else *refcount = 1;
{ }
allocator->allocate(dims, size, _type, refcount, datastart, data, step.p); else
CV_Assert( step[dims-1] == elemSize() ); {
allocator->allocate(dims, size, _type, refcount, datastart, data, step.p);
CV_Assert( step[dims-1] == (size_t)CV_ELEM_SIZE(flags) );
}
} }
finalizeHdr(*this); finalizeHdr(*this);
@ -216,7 +232,7 @@ void Mat::deallocate()
Mat::Mat(const Mat& m, const Range& rowRange, const Range& colRange) Mat::Mat(const Mat& m, const Range& rowRange, const Range& colRange)
: flags(0), dims(0), rows(0), cols(0), data(0), refcount(0), : flags(0), dims(0), rows(0), cols(0), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows) datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{ {
CV_Assert( m.dims >= 2 ); CV_Assert( m.dims >= 2 );
if( m.dims > 2 ) if( m.dims > 2 )
@ -231,19 +247,21 @@ Mat::Mat(const Mat& m, const Range& rowRange, const Range& colRange)
} }
*this = m; *this = m;
if( rowRange != Range::all() ) if( rowRange != Range::all() && rowRange != Range(0,rows) )
{ {
CV_Assert( 0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows ); CV_Assert( 0 <= rowRange.start && rowRange.start <= rowRange.end && rowRange.end <= m.rows );
rows = rowRange.size(); rows = rowRange.size();
data += step*rowRange.start; data += step*rowRange.start;
flags |= SUBMATRIX_FLAG;
} }
if( colRange != Range::all() ) if( colRange != Range::all() && colRange != Range(0,cols) )
{ {
CV_Assert( 0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols ); CV_Assert( 0 <= colRange.start && colRange.start <= colRange.end && colRange.end <= m.cols );
cols = colRange.size(); cols = colRange.size();
data += colRange.start*elemSize(); data += colRange.start*elemSize();
flags &= cols < m.cols ? ~CONTINUOUS_FLAG : -1; flags &= cols < m.cols ? ~CONTINUOUS_FLAG : -1;
flags |= SUBMATRIX_FLAG;
} }
if( rows == 1 ) if( rows == 1 )
@ -262,18 +280,21 @@ Mat::Mat(const Mat& m, const Range& rowRange, const Range& colRange)
Mat::Mat(const Mat& m, const Rect& roi) Mat::Mat(const Mat& m, const Rect& roi)
: flags(m.flags), dims(2), rows(roi.height), cols(roi.width), : flags(m.flags), dims(2), rows(roi.height), cols(roi.width),
data(m.data + roi.y*m.step[0]), refcount(m.refcount), data(m.data + roi.y*m.step[0]), refcount(m.refcount),
datastart(m.datastart), dataend(m.dataend), allocator(m.allocator), size(&rows) datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit),
allocator(m.allocator), size(&rows)
{ {
CV_Assert( m.dims <= 2 ); CV_Assert( m.dims <= 2 );
flags &= roi.width < m.cols ? ~CONTINUOUS_FLAG : -1; flags &= roi.width < m.cols ? ~CONTINUOUS_FLAG : -1;
flags |= roi.height == 1 ? CONTINUOUS_FLAG : 0; flags |= roi.height == 1 ? CONTINUOUS_FLAG : 0;
size_t esz = elemSize(); size_t esz = CV_ELEM_SIZE(flags);
data += roi.x*esz; data += roi.x*esz;
CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols && CV_Assert( 0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.cols &&
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows ); 0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.rows );
if( refcount ) if( refcount )
CV_XADD(refcount, 1); CV_XADD(refcount, 1);
if( roi.width < m.cols || roi.height < m.rows )
flags |= SUBMATRIX_FLAG;
step[0] = m.step[0]; step[1] = esz; step[0] = m.step[0]; step[1] = esz;
@ -286,9 +307,10 @@ Mat::Mat(const Mat& m, const Rect& roi)
Mat::Mat(int _dims, const int* _sizes, int _type, void* _data, const size_t* _steps) Mat::Mat(int _dims, const int* _sizes, int _type, void* _data, const size_t* _steps)
: flags(MAGIC_VAL|CV_MAT_TYPE(_type)), dims(0), rows(0), cols(0), : flags(MAGIC_VAL|CV_MAT_TYPE(_type)), dims(0),
data((uchar*)_data), refcount(0), rows(0), cols(0), data((uchar*)_data), refcount(0),
datastart((uchar*)_data), dataend((uchar*)_data), allocator(0), size(&rows) datastart((uchar*)_data), dataend((uchar*)_data), datalimit((uchar*)_data),
allocator(0), size(&rows)
{ {
setSize(*this, _dims, _sizes, _steps, true); setSize(*this, _dims, _sizes, _steps, true);
finalizeHdr(*this); finalizeHdr(*this);
@ -297,7 +319,7 @@ Mat::Mat(int _dims, const int* _sizes, int _type, void* _data, const size_t* _st
Mat::Mat(const Mat& m, const Range* ranges) Mat::Mat(const Mat& m, const Range* ranges)
: flags(m.flags), dims(0), rows(0), cols(0), data(0), refcount(0), : flags(m.flags), dims(0), rows(0), cols(0), data(0), refcount(0),
datastart(0), dataend(0), allocator(0), size(&rows) datastart(0), dataend(0), datalimit(0), allocator(0), size(&rows)
{ {
int i, d = m.dims; int i, d = m.dims;
@ -311,21 +333,21 @@ Mat::Mat(const Mat& m, const Range* ranges)
for( i = 0; i < d; i++ ) for( i = 0; i < d; i++ )
{ {
Range r = ranges[i]; Range r = ranges[i];
if( r != Range::all() ) if( r != Range::all() && r != Range(0, size.p[i]))
{ {
size[i] = r.end - r.start; size.p[i] = r.end - r.start;
data += r.start*step[i]; data += r.start*step.p[i];
flags |= SUBMATRIX_FLAG;
} }
} }
updateContinuityFlag(*this);
finalizeHdr(*this);
} }
Mat::Mat(const CvMatND* m, bool copyData) Mat::Mat(const CvMatND* m, bool copyData)
: flags(MAGIC_VAL|CV_MAT_TYPE(m->type)), dims(0), rows(0), cols(0), : flags(MAGIC_VAL|CV_MAT_TYPE(m->type)), dims(0), rows(0), cols(0),
data((uchar*)m->data.ptr), refcount(0), data((uchar*)m->data.ptr), refcount(0),
datastart((uchar*)m->data.ptr), dataend((uchar*)m->data.ptr), allocator(0), datastart((uchar*)m->data.ptr), allocator(0),
size(&rows) size(&rows)
{ {
int _sizes[CV_MAX_DIM]; int _sizes[CV_MAX_DIM];
@ -376,6 +398,10 @@ Mat Mat::diag(int d) const
m.flags &= ~CONTINUOUS_FLAG; m.flags &= ~CONTINUOUS_FLAG;
else else
m.flags |= CONTINUOUS_FLAG; m.flags |= CONTINUOUS_FLAG;
if( size() != Size(1,1) )
m.flags |= SUBMATRIX_FLAG;
return m; return m;
} }
@ -396,7 +422,7 @@ Mat::Mat(const IplImage* img, bool copyData)
flags = MAGIC_VAL + CV_MAKETYPE(depth, img->nChannels); flags = MAGIC_VAL + CV_MAKETYPE(depth, img->nChannels);
rows = img->height; cols = img->width; rows = img->height; cols = img->width;
datastart = data = (uchar*)img->imageData; datastart = data = (uchar*)img->imageData;
esz = elemSize(); esz = CV_ELEM_SIZE(flags);
} }
else else
{ {
@ -404,13 +430,14 @@ Mat::Mat(const IplImage* img, bool copyData)
bool selectedPlane = img->roi->coi && img->dataOrder == IPL_DATA_ORDER_PLANE; bool selectedPlane = img->roi->coi && img->dataOrder == IPL_DATA_ORDER_PLANE;
flags = MAGIC_VAL + CV_MAKETYPE(depth, selectedPlane ? 1 : img->nChannels); flags = MAGIC_VAL + CV_MAKETYPE(depth, selectedPlane ? 1 : img->nChannels);
rows = img->roi->height; cols = img->roi->width; rows = img->roi->height; cols = img->roi->width;
esz = elemSize(); esz = CV_ELEM_SIZE(flags);
data = datastart = (uchar*)img->imageData + data = datastart = (uchar*)img->imageData +
(selectedPlane ? (img->roi->coi - 1)*step*img->height : 0) + (selectedPlane ? (img->roi->coi - 1)*step*img->height : 0) +
img->roi->yOffset*step[0] + img->roi->xOffset*esz; img->roi->yOffset*step[0] + img->roi->xOffset*esz;
} }
dataend = datastart + step*(rows-1) + esz*cols; datalimit = datastart + step.p[0]*rows;
flags |= (cols*esz == step || rows == 1 ? CONTINUOUS_FLAG : 0); dataend = datastart + step.p[0]*(rows-1) + esz*cols;
flags |= (cols*esz == step.p[0] || rows == 1 ? CONTINUOUS_FLAG : 0);
step[1] = esz; step[1] = esz;
if( copyData ) if( copyData )
@ -438,7 +465,132 @@ Mat::operator IplImage() const
cvSetData(&img, data, (int)step[0]); cvSetData(&img, data, (int)step[0]);
return img; return img;
} }
void Mat::pop_back(size_t nelems)
{
CV_Assert( nelems <= (size_t)size.p[0] );
if( isSubmatrix() )
*this = rowRange(0, size.p[0] - (int)nelems);
else
{
size.p[0] -= (int)nelems;
dataend -= nelems*step.p[0];
/*if( size.p[0] <= 1 )
{
if( dims <= 2 )
flags |= CONTINUOUS_FLAG;
else
updateContinuityFlag(*this);
}*/
}
}
void Mat::push_back_(const void* elem)
{
int r = size.p[0];
if( isSubmatrix() || dataend + step.p[0] > datalimit )
reserve( std::max(r + 1, (r*3+1)/2) );
size_t esz = elemSize();
memcpy(data + r*step.p[0], elem, esz);
size.p[0] = r + 1;
dataend += step.p[0];
if( esz < step.p[0] )
flags &= ~CONTINUOUS_FLAG;
}
void Mat::reserve(size_t nelems)
{
const size_t MIN_SIZE = 64;
CV_Assert( (int)nelems >= 0 );
if( !isSubmatrix() && data + step.p[0]*nelems <= datalimit )
return;
int r = size.p[0];
size.p[0] = std::max((int)nelems, 1);
size_t newsize = total()*elemSize();
if( newsize < MIN_SIZE )
size.p[0] = (int)((MIN_SIZE + newsize - 1)*nelems/newsize);
Mat m(dims, size.p, type());
size.p[0] = r;
if( r > 0 )
{
Mat mpart = m.rowRange(0, r);
copyTo(mpart);
}
*this = m;
size.p[0] = r;
dataend = data + step.p[0]*r;
}
void Mat::resize(size_t nelems)
{
int saveRows = size.p[0];
CV_Assert( (int)nelems >= 0 );
if( isSubmatrix() || data + step.p[0]*nelems > datalimit )
reserve(nelems);
size.p[0] = (int)nelems;
dataend += (size.p[0] - saveRows)*step.p[0];
//updateContinuityFlag(*this);
}
void Mat::resize(size_t nelems, const Scalar& s)
{
int saveRows = size.p[0];
resize(nelems);
if( size.p[0] > saveRows )
{
Mat part = rowRange(saveRows, size.p[0]);
part = s;
}
}
void Mat::push_back(const Mat& elems)
{
int r = size.p[0], delta = elems.size.p[0];
if( delta == 0 )
return;
if( this != &elems )
{
size.p[0] = elems.size.p[0];
bool eq = size == elems.size;
size.p[0] = r;
if( !eq )
CV_Error(CV_StsUnmatchedSizes, "");
if( type() != elems.type() )
CV_Error(CV_StsUnmatchedFormats, "");
}
if( isSubmatrix() || dataend + step.p[0]*delta > datalimit )
reserve( std::max(r + delta, (r*3+1)/2) );
size.p[0] += delta;
dataend += step.p[0]*delta;
//updateContinuityFlag(*this);
if( isContinuous() && elems.isContinuous() )
memcpy(data + r*step.p[0], elems.data, elems.total()*elems.elemSize());
else
{
Mat part = rowRange(r, r + delta);
elems.copyTo(part);
}
}
Mat cvarrToMat(const CvArr* arr, bool copyData, Mat cvarrToMat(const CvArr* arr, bool copyData,
bool allowND, int coiMode) bool allowND, int coiMode)

View File

@ -3328,7 +3328,7 @@ cvGetFileNodeName( const CvFileNode* file_node )
static int static int
icvIsMat( const void* ptr ) icvIsMat( const void* ptr )
{ {
return CV_IS_MAT_HDR(ptr); return CV_IS_MAT_HDR_Z(ptr);
} }
static void static void
@ -3340,7 +3340,7 @@ icvWriteMat( CvFileStorage* fs, const char* name,
CvSize size; CvSize size;
int y; int y;
assert( CV_IS_MAT(mat) ); assert( CV_IS_MAT_HDR_Z(mat) );
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_MAT ); cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_MAT );
cvWriteInt( fs, "rows", mat->rows ); cvWriteInt( fs, "rows", mat->rows );
@ -3349,14 +3349,17 @@ icvWriteMat( CvFileStorage* fs, const char* name,
cvStartWriteStruct( fs, "data", CV_NODE_SEQ + CV_NODE_FLOW ); cvStartWriteStruct( fs, "data", CV_NODE_SEQ + CV_NODE_FLOW );
size = cvGetSize(mat); size = cvGetSize(mat);
if( CV_IS_MAT_CONT(mat->type) ) if( size.height > 0 && size.width > 0 && mat->data.ptr )
{ {
size.width *= size.height; if( CV_IS_MAT_CONT(mat->type) )
size.height = 1; {
} size.width *= size.height;
size.height = 1;
}
for( y = 0; y < size.height; y++ ) for( y = 0; y < size.height; y++ )
cvWriteRawData( fs, mat->data.ptr + y*mat->step, size.width, dt ); cvWriteRawData( fs, mat->data.ptr + y*mat->step, size.width, dt );
}
cvEndWriteStruct( fs ); cvEndWriteStruct( fs );
cvEndWriteStruct( fs ); cvEndWriteStruct( fs );
} }
@ -3379,11 +3382,11 @@ icvReadMat( CvFileStorage* fs, CvFileNode* node )
CvFileNode* data; CvFileNode* data;
int rows, cols, elem_type; int rows, cols, elem_type;
rows = cvReadIntByName( fs, node, "rows", 0 ); rows = cvReadIntByName( fs, node, "rows", -1 );
cols = cvReadIntByName( fs, node, "cols", 0 ); cols = cvReadIntByName( fs, node, "cols", -1 );
dt = cvReadStringByName( fs, node, "dt", 0 ); dt = cvReadStringByName( fs, node, "dt", 0 );
if( rows == 0 || cols == 0 || dt == 0 ) if( rows < 0 || cols < 0 || dt < 0 )
CV_Error( CV_StsError, "Some of essential matrix attributes are absent" ); CV_Error( CV_StsError, "Some of essential matrix attributes are absent" );
elem_type = icvDecodeSimpleFormat( dt ); elem_type = icvDecodeSimpleFormat( dt );
@ -3391,13 +3394,19 @@ icvReadMat( CvFileStorage* fs, CvFileNode* node )
data = cvGetFileNodeByName( fs, node, "data" ); data = cvGetFileNodeByName( fs, node, "data" );
if( !data ) if( !data )
CV_Error( CV_StsError, "The matrix data is not found in file storage" ); CV_Error( CV_StsError, "The matrix data is not found in file storage" );
if( icvFileNodeSeqLen( data ) != rows*cols*CV_MAT_CN(elem_type) ) int nelems = icvFileNodeSeqLen( data );
if( nelems > 0 && nelems != rows*cols*CV_MAT_CN(elem_type) )
CV_Error( CV_StsUnmatchedSizes, CV_Error( CV_StsUnmatchedSizes,
"The matrix size does not match to the number of stored elements" ); "The matrix size does not match to the number of stored elements" );
mat = cvCreateMat( rows, cols, elem_type ); if( nelems > 0 )
cvReadRawData( fs, data, mat->data.ptr, dt ); {
mat = cvCreateMat( rows, cols, elem_type );
cvReadRawData( fs, data, mat->data.ptr, dt );
}
else
mat = cvCreateMatHeader( rows, cols, elem_type );
ptr = mat; ptr = mat;
return ptr; return ptr;
@ -3409,7 +3418,7 @@ icvReadMat( CvFileStorage* fs, CvFileNode* node )
static int static int
icvIsMatND( const void* ptr ) icvIsMatND( const void* ptr )
{ {
return CV_IS_MATND(ptr); return CV_IS_MATND_HDR(ptr);
} }
@ -3417,13 +3426,13 @@ static void
icvWriteMatND( CvFileStorage* fs, const char* name, icvWriteMatND( CvFileStorage* fs, const char* name,
const void* struct_ptr, CvAttrList /*attr*/ ) const void* struct_ptr, CvAttrList /*attr*/ )
{ {
void* mat = (void*)struct_ptr; CvMatND* mat = (CvMatND*)struct_ptr;
CvMatND stub; CvMatND stub;
CvNArrayIterator iterator; CvNArrayIterator iterator;
int dims, sizes[CV_MAX_DIM]; int dims, sizes[CV_MAX_DIM];
char dt[16]; char dt[16];
assert( CV_IS_MATND(mat) ); assert( CV_IS_MATND_HDR(mat) );
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_MATND ); cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_MATND );
dims = cvGetDims( mat, sizes ); dims = cvGetDims( mat, sizes );
@ -3433,11 +3442,14 @@ icvWriteMatND( CvFileStorage* fs, const char* name,
cvWriteString( fs, "dt", icvEncodeFormat( cvGetElemType(mat), dt ), 0 ); cvWriteString( fs, "dt", icvEncodeFormat( cvGetElemType(mat), dt ), 0 );
cvStartWriteStruct( fs, "data", CV_NODE_SEQ + CV_NODE_FLOW ); cvStartWriteStruct( fs, "data", CV_NODE_SEQ + CV_NODE_FLOW );
cvInitNArrayIterator( 1, &mat, 0, &stub, &iterator ); if( mat->dim[0].size > 0 && mat->data.ptr )
{
cvInitNArrayIterator( 1, (CvArr**)&mat, 0, &stub, &iterator );
do do
cvWriteRawData( fs, iterator.ptr[0], iterator.size.width, dt ); cvWriteRawData( fs, iterator.ptr[0], iterator.size.width, dt );
while( cvNextNArraySlice( &iterator )); while( cvNextNArraySlice( &iterator ));
}
cvEndWriteStruct( fs ); cvEndWriteStruct( fs );
cvEndWriteStruct( fs ); cvEndWriteStruct( fs );
} }
@ -3472,16 +3484,25 @@ icvReadMatND( CvFileStorage* fs, CvFileNode* node )
data = cvGetFileNodeByName( fs, node, "data" ); data = cvGetFileNodeByName( fs, node, "data" );
if( !data ) if( !data )
CV_Error( CV_StsError, "The matrix data is not found in file storage" ); CV_Error( CV_StsError, "The matrix data is not found in file storage" );
for( total_size = CV_MAT_CN(elem_type), i = 0; i < dims; i++ ) for( total_size = CV_MAT_CN(elem_type), i = 0; i < dims; i++ )
total_size *= sizes[i]; total_size *= sizes[i];
if( icvFileNodeSeqLen( data ) != total_size ) int nelems = icvFileNodeSeqLen( data );
if( nelems > 0 && nelems != total_size )
CV_Error( CV_StsUnmatchedSizes, CV_Error( CV_StsUnmatchedSizes,
"The matrix size does not match to the number of stored elements" ); "The matrix size does not match to the number of stored elements" );
mat = cvCreateMatND( dims, sizes, elem_type ); if( nelems > 0 )
cvReadRawData( fs, data, mat->data.ptr, dt ); {
mat = cvCreateMatND( dims, sizes, elem_type );
cvReadRawData( fs, data, mat->data.ptr, dt );
}
else
mat = cvCreateMatNDHeader( dims, sizes, elem_type );
ptr = mat; ptr = mat;
return ptr; return ptr;
@ -5304,12 +5325,12 @@ void read( const FileNode& node, Mat& mat, const Mat& default_mat )
return; return;
} }
void* obj = cvRead((CvFileStorage*)node.fs, (CvFileNode*)*node); void* obj = cvRead((CvFileStorage*)node.fs, (CvFileNode*)*node);
if(CV_IS_MAT(obj)) if(CV_IS_MAT_HDR_Z(obj))
{ {
Mat((const CvMat*)obj).copyTo(mat); Mat((const CvMat*)obj).copyTo(mat);
cvReleaseMat((CvMat**)&obj); cvReleaseMat((CvMat**)&obj);
} }
else if(CV_IS_MATND(obj)) else if(CV_IS_MATND_HDR(obj))
{ {
Mat((const CvMatND*)obj).copyTo(mat); Mat((const CvMatND*)obj).copyTo(mat);
cvReleaseMatND((CvMatND**)&obj); cvReleaseMatND((CvMatND**)&obj);