mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 20:50:25 +08:00
Summarize PnP pose computation on a single separate page.
This commit is contained in:
parent
b9d9730b62
commit
032a61b197
@ -240,7 +240,7 @@
|
||||
hal_id = {inria-00350283},
|
||||
hal_version = {v1},
|
||||
}
|
||||
@article{Collins14
|
||||
@article{Collins14,
|
||||
year = {2014},
|
||||
issn = {0920-5691},
|
||||
journal = {International Journal of Computer Vision},
|
||||
@ -1271,6 +1271,12 @@
|
||||
number={2},
|
||||
pages={117-135},
|
||||
}
|
||||
@inproceedings{Zuliani2014RANSACFD,
|
||||
title={RANSAC for Dummies With examples using the RANSAC toolbox for Matlab \& Octave and more...},
|
||||
author={Marco Zuliani},
|
||||
year={2014},
|
||||
url = {https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.1243&rep=rep1&type=pdf}
|
||||
}
|
||||
@inproceedings{forstner1987fast,
|
||||
title={A fast operator for detection and precise location of distincs points, corners and center of circular features},
|
||||
author={FORSTNER, W},
|
||||
|
@ -40,10 +40,11 @@
|
||||
publisher={IEEE}
|
||||
}
|
||||
|
||||
@inproceedings{Terzakis20,
|
||||
author = {Terzakis, George and Lourakis, Manolis},
|
||||
year = {2020},
|
||||
month = {09},
|
||||
pages = {},
|
||||
title = {A Consistently Fast and Globally Optimal Solution to the Perspective-n-Point Problem}
|
||||
@inproceedings{Terzakis2020SQPnP,
|
||||
title={A Consistently Fast and Globally Optimal Solution to the Perspective-n-Point Problem},
|
||||
author={George Terzakis and Manolis Lourakis},
|
||||
booktitle={European Conference on Computer Vision},
|
||||
pages={478--494},
|
||||
year={2020},
|
||||
publisher={Springer International Publishing}
|
||||
}
|
||||
|
176
modules/calib3d/doc/solvePnP.markdown
Normal file
176
modules/calib3d/doc/solvePnP.markdown
Normal file
@ -0,0 +1,176 @@
|
||||
# Perspective-n-Point (PnP) pose computation {#calib3d_solvePnP}
|
||||
|
||||
## Pose computation overview
|
||||
|
||||
The pose computation problem @cite Marchand16 consists in solving for the rotation and translation that minimizes the reprojection error from 3D-2D point correspondences.
|
||||
|
||||
The `solvePnP` and related functions estimate the object pose given a set of object points, their corresponding image projections, as well as the camera intrinsic matrix and the distortion coefficients, see the figure below (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward and the Z-axis forward).
|
||||
|
||||
![](pnp.jpg)
|
||||
|
||||
Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$
|
||||
using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$ (also denoted \f$ \bf{K} \f$ in the literature):
|
||||
|
||||
\f[
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
u \\
|
||||
v \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{T}_w
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix} \\
|
||||
\begin{bmatrix}
|
||||
u \\
|
||||
v \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\begin{bmatrix}
|
||||
f_x & 0 & c_x \\
|
||||
0 & f_y & c_y \\
|
||||
0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
r_{11} & r_{12} & r_{13} & t_x \\
|
||||
r_{21} & r_{22} & r_{23} & t_y \\
|
||||
r_{31} & r_{32} & r_{33} & t_z \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
\f]
|
||||
|
||||
The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow transforming
|
||||
a 3D point expressed in the world frame into the camera frame:
|
||||
|
||||
\f[
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
X_c \\
|
||||
Y_c \\
|
||||
Z_c \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\hspace{0.2em} ^{c}\bf{T}_w
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix} \\
|
||||
\begin{bmatrix}
|
||||
X_c \\
|
||||
Y_c \\
|
||||
Z_c \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\begin{bmatrix}
|
||||
r_{11} & r_{12} & r_{13} & t_x \\
|
||||
r_{21} & r_{22} & r_{23} & t_y \\
|
||||
r_{31} & r_{32} & r_{33} & t_z \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
\f]
|
||||
|
||||
## Pose computation methods
|
||||
@anchor calib3d_solvePnP_flags
|
||||
|
||||
Refer to the cv::SolvePnPMethod enum documentation for the list of possible values. Some details about each method are described below:
|
||||
|
||||
- cv::SOLVEPNP_ITERATIVE Iterative method is based on a Levenberg-Marquardt optimization. In
|
||||
this case the function finds such a pose that minimizes reprojection error, that is the sum
|
||||
of squared distances between the observed projections "imagePoints" and the projected (using
|
||||
cv::projectPoints ) "objectPoints". Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm.
|
||||
Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition.
|
||||
- cv::SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
|
||||
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
|
||||
In this case the function requires exactly four object and image points.
|
||||
- cv::SOLVEPNP_AP3P Method is based on the paper of T. Ke, S. Roumeliotis
|
||||
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
|
||||
In this case the function requires exactly four object and image points.
|
||||
- cv::SOLVEPNP_EPNP Method has been introduced by F. Moreno-Noguer, V. Lepetit and P. Fua in the
|
||||
paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
|
||||
- cv::SOLVEPNP_DLS **Broken implementation. Using this flag will fallback to EPnP.** \n
|
||||
Method is based on the paper of J. Hesch and S. Roumeliotis.
|
||||
"A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
|
||||
- cv::SOLVEPNP_UPNP **Broken implementation. Using this flag will fallback to EPnP.** \n
|
||||
Method is based on the paper of A. Penate-Sanchez, J. Andrade-Cetto,
|
||||
F. Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
|
||||
Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
|
||||
assuming that both have the same value. Then the cameraMatrix is updated with the estimated
|
||||
focal length.
|
||||
- cv::SOLVEPNP_IPPE Method is based on the paper of T. Collins and A. Bartoli.
|
||||
"Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method requires coplanar object points.
|
||||
- cv::SOLVEPNP_IPPE_SQUARE Method is based on the paper of Toby Collins and Adrien Bartoli.
|
||||
"Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method is suitable for marker pose estimation.
|
||||
It requires 4 coplanar object points defined in the following order:
|
||||
- point 0: [-squareLength / 2, squareLength / 2, 0]
|
||||
- point 1: [ squareLength / 2, squareLength / 2, 0]
|
||||
- point 2: [ squareLength / 2, -squareLength / 2, 0]
|
||||
- point 3: [-squareLength / 2, -squareLength / 2, 0]
|
||||
- cv::SOLVEPNP_SQPNP Method is based on the paper "A Consistently Fast and Globally Optimal Solution to the
|
||||
Perspective-n-Point Problem" by G. Terzakis and M.Lourakis (@cite Terzakis2020SQPnP). It requires 3 or more points.
|
||||
|
||||
## P3P
|
||||
|
||||
The cv::solveP3P() computes an object pose from exactly 3 3D-2D point correspondences. A P3P problem has up to 4 solutions.
|
||||
|
||||
@note The solutions are sorted by reprojection errors (lowest to highest).
|
||||
|
||||
## PnP
|
||||
|
||||
The cv::solvePnP() returns the rotation and the translation vectors that transform a 3D point expressed in the object
|
||||
coordinate frame to the camera coordinate frame, using different methods:
|
||||
- P3P methods (cv::SOLVEPNP_P3P, cv::SOLVEPNP_AP3P): need 4 input points to return a unique solution.
|
||||
- cv::SOLVEPNP_IPPE Input points must be >= 4 and object points must be coplanar.
|
||||
- cv::SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
|
||||
Number of input points must be 4. Object points must be defined in the following order:
|
||||
- point 0: [-squareLength / 2, squareLength / 2, 0]
|
||||
- point 1: [ squareLength / 2, squareLength / 2, 0]
|
||||
- point 2: [ squareLength / 2, -squareLength / 2, 0]
|
||||
- point 3: [-squareLength / 2, -squareLength / 2, 0]
|
||||
- for all the other flags, number of input points must be >= 4 and object points can be in any configuration.
|
||||
|
||||
## Generic PnP
|
||||
|
||||
The cv::solvePnPGeneric() allows retrieving all the possible solutions.
|
||||
|
||||
Currently, only cv::SOLVEPNP_P3P, cv::SOLVEPNP_AP3P, cv::SOLVEPNP_IPPE, cv::SOLVEPNP_IPPE_SQUARE, cv::SOLVEPNP_SQPNP can return multiple solutions.
|
||||
|
||||
## RANSAC PnP
|
||||
|
||||
The cv::solvePnPRansac() computes the object pose wrt. the camera frame using a RANSAC scheme to deal with outliers.
|
||||
|
||||
More information can be found in @cite Zuliani2014RANSACFD
|
||||
|
||||
## Pose refinement
|
||||
|
||||
Pose refinement consists in estimating the rotation and translation that minimizes the reprojection error using a non-linear minimization method and starting from an initial estimate of the solution. OpenCV proposes cv::solvePnPRefineLM() and cv::solvePnPRefineVVS() for this problem.
|
||||
|
||||
cv::solvePnPRefineLM() uses a non-linear Levenberg-Marquardt minimization scheme @cite Madsen04 @cite Eade13 and the current implementation computes the rotation update as a perturbation and not on SO(3).
|
||||
|
||||
cv::solvePnPRefineVVS() uses a Gauss-Newton non-linear minimization scheme @cite Marchand16 and with an update of the rotation part computed using the exponential map.
|
||||
|
||||
@note at least three 3D-2D point correspondences are necessary.
|
@ -447,7 +447,9 @@ enum { LMEDS = 4, //!< least-median of squares algorithm
|
||||
};
|
||||
|
||||
enum SolvePnPMethod {
|
||||
SOLVEPNP_ITERATIVE = 0,
|
||||
SOLVEPNP_ITERATIVE = 0, //!< Pose refinement using non-linear Levenberg-Marquardt minimization scheme @cite Madsen04 @cite Eade13 \n
|
||||
//!< Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm. \n
|
||||
//!< Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition.
|
||||
SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
|
||||
SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
|
||||
SOLVEPNP_DLS = 3, //!< **Broken implementation. Using this flag will fallback to EPnP.** \n
|
||||
@ -464,7 +466,7 @@ enum SolvePnPMethod {
|
||||
//!< - point 1: [ squareLength / 2, squareLength / 2, 0]
|
||||
//!< - point 2: [ squareLength / 2, -squareLength / 2, 0]
|
||||
//!< - point 3: [-squareLength / 2, -squareLength / 2, 0]
|
||||
SOLVEPNP_SQPNP = 8, //!< SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem @cite Terzakis20
|
||||
SOLVEPNP_SQPNP = 8, //!< SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem @cite Terzakis2020SQPnP
|
||||
#ifndef CV_DOXYGEN
|
||||
SOLVEPNP_MAX_COUNT //!< Used for count
|
||||
#endif
|
||||
@ -779,6 +781,9 @@ Check @ref tutorial_homography "the corresponding tutorial" for more details
|
||||
*/
|
||||
|
||||
/** @brief Finds an object pose from 3D-2D point correspondences.
|
||||
|
||||
@see @ref calib3d_solvePnP
|
||||
|
||||
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
|
||||
coordinate frame to the camera coordinate frame, using different methods:
|
||||
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): need 4 input points to return a unique solution.
|
||||
@ -805,133 +810,9 @@ the model coordinate system to the camera coordinate system.
|
||||
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
|
||||
the provided rvec and tvec values as initial approximations of the rotation and translation
|
||||
vectors, respectively, and further optimizes them.
|
||||
@param flags Method for solving a PnP problem:
|
||||
- @ref SOLVEPNP_ITERATIVE Iterative method is based on a Levenberg-Marquardt optimization. In
|
||||
this case the function finds such a pose that minimizes reprojection error, that is the sum
|
||||
of squared distances between the observed projections imagePoints and the projected (using
|
||||
@ref projectPoints ) objectPoints .
|
||||
- @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
|
||||
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
|
||||
In this case the function requires exactly four object and image points.
|
||||
- @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke, S. Roumeliotis
|
||||
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
|
||||
In this case the function requires exactly four object and image points.
|
||||
- @ref SOLVEPNP_EPNP Method has been introduced by F. Moreno-Noguer, V. Lepetit and P. Fua in the
|
||||
paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
|
||||
- @ref SOLVEPNP_DLS **Broken implementation. Using this flag will fallback to EPnP.** \n
|
||||
Method is based on the paper of J. Hesch and S. Roumeliotis.
|
||||
"A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
|
||||
- @ref SOLVEPNP_UPNP **Broken implementation. Using this flag will fallback to EPnP.** \n
|
||||
Method is based on the paper of A. Penate-Sanchez, J. Andrade-Cetto,
|
||||
F. Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
|
||||
Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
|
||||
assuming that both have the same value. Then the cameraMatrix is updated with the estimated
|
||||
focal length.
|
||||
- @ref SOLVEPNP_IPPE Method is based on the paper of T. Collins and A. Bartoli.
|
||||
"Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method requires coplanar object points.
|
||||
- @ref SOLVEPNP_IPPE_SQUARE Method is based on the paper of Toby Collins and Adrien Bartoli.
|
||||
"Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method is suitable for marker pose estimation.
|
||||
It requires 4 coplanar object points defined in the following order:
|
||||
- point 0: [-squareLength / 2, squareLength / 2, 0]
|
||||
- point 1: [ squareLength / 2, squareLength / 2, 0]
|
||||
- point 2: [ squareLength / 2, -squareLength / 2, 0]
|
||||
- point 3: [-squareLength / 2, -squareLength / 2, 0]
|
||||
- @ref SOLVEPNP_SQPNP Method is based on the paper "A Consistently Fast and Globally Optimal Solution to the
|
||||
Perspective-n-Point Problem" by G. Terzakis and M.Lourakis (@cite Terzakis20). It requires 3 or more points.
|
||||
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
|
||||
|
||||
|
||||
The function estimates the object pose given a set of object points, their corresponding image
|
||||
projections, as well as the camera intrinsic matrix and the distortion coefficients, see the figure below
|
||||
(more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
|
||||
and the Z-axis forward).
|
||||
|
||||
![](pnp.jpg)
|
||||
|
||||
Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$
|
||||
using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$:
|
||||
|
||||
\f[
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
u \\
|
||||
v \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{T}_w
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix} \\
|
||||
\begin{bmatrix}
|
||||
u \\
|
||||
v \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\begin{bmatrix}
|
||||
f_x & 0 & c_x \\
|
||||
0 & f_y & c_y \\
|
||||
0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
r_{11} & r_{12} & r_{13} & t_x \\
|
||||
r_{21} & r_{22} & r_{23} & t_y \\
|
||||
r_{31} & r_{32} & r_{33} & t_z \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
\f]
|
||||
|
||||
The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow transforming
|
||||
a 3D point expressed in the world frame into the camera frame:
|
||||
|
||||
\f[
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
X_c \\
|
||||
Y_c \\
|
||||
Z_c \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\hspace{0.2em} ^{c}\bf{T}_w
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix} \\
|
||||
\begin{bmatrix}
|
||||
X_c \\
|
||||
Y_c \\
|
||||
Z_c \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\begin{bmatrix}
|
||||
r_{11} & r_{12} & r_{13} & t_x \\
|
||||
r_{21} & r_{22} & r_{23} & t_y \\
|
||||
r_{31} & r_{32} & r_{33} & t_z \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
\f]
|
||||
More information about Perspective-n-Points is described in @ref calib3d_solvePnP
|
||||
|
||||
@note
|
||||
- An example of how to use solvePnP for planar augmented reality can be found at
|
||||
@ -971,6 +852,8 @@ CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
|
||||
|
||||
/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
|
||||
|
||||
@see @ref calib3d_solvePnP
|
||||
|
||||
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
|
||||
1xN/Nx1 3-channel, where N is the number of points. vector\<Point3d\> can be also passed here.
|
||||
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
|
||||
@ -1019,6 +902,8 @@ CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoint
|
||||
|
||||
/** @brief Finds an object pose from 3 3D-2D point correspondences.
|
||||
|
||||
@see @ref calib3d_solvePnP
|
||||
|
||||
@param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
|
||||
1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
|
||||
@param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
|
||||
@ -1050,6 +935,8 @@ CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
|
||||
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
|
||||
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
|
||||
|
||||
@see @ref calib3d_solvePnP
|
||||
|
||||
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
|
||||
where N is the number of points. vector\<Point3d\> can also be passed here.
|
||||
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
|
||||
@ -1077,6 +964,8 @@ CV_EXPORTS_W void solvePnPRefineLM( InputArray objectPoints, InputArray imagePoi
|
||||
/** @brief Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
|
||||
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
|
||||
|
||||
@see @ref calib3d_solvePnP
|
||||
|
||||
@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
|
||||
where N is the number of points. vector\<Point3d\> can also be passed here.
|
||||
@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
|
||||
@ -1105,6 +994,9 @@ CV_EXPORTS_W void solvePnPRefineVVS( InputArray objectPoints, InputArray imagePo
|
||||
double VVSlambda = 1);
|
||||
|
||||
/** @brief Finds an object pose from 3D-2D point correspondences.
|
||||
|
||||
@see @ref calib3d_solvePnP
|
||||
|
||||
This function returns a list of all the possible solutions (a solution is a <rotation vector, translation vector>
|
||||
couple), depending on the number of input points and the chosen method:
|
||||
- P3P methods (@ref SOLVEPNP_P3P, @ref SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
|
||||
@ -1132,37 +1024,7 @@ the model coordinate system to the camera coordinate system.
|
||||
@param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
|
||||
the provided rvec and tvec values as initial approximations of the rotation and translation
|
||||
vectors, respectively, and further optimizes them.
|
||||
@param flags Method for solving a PnP problem:
|
||||
- @ref SOLVEPNP_ITERATIVE Iterative method is based on a Levenberg-Marquardt optimization. In
|
||||
this case the function finds such a pose that minimizes reprojection error, that is the sum
|
||||
of squared distances between the observed projections imagePoints and the projected (using
|
||||
projectPoints ) objectPoints .
|
||||
- @ref SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
|
||||
"Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
|
||||
In this case the function requires exactly four object and image points.
|
||||
- @ref SOLVEPNP_AP3P Method is based on the paper of T. Ke, S. Roumeliotis
|
||||
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
|
||||
In this case the function requires exactly four object and image points.
|
||||
- @ref SOLVEPNP_EPNP Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
|
||||
paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
|
||||
- @ref SOLVEPNP_DLS **Broken implementation. Using this flag will fallback to EPnP.** \n
|
||||
Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
|
||||
"A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
|
||||
- @ref SOLVEPNP_UPNP **Broken implementation. Using this flag will fallback to EPnP.** \n
|
||||
Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
|
||||
F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
|
||||
Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
|
||||
assuming that both have the same value. Then the cameraMatrix is updated with the estimated
|
||||
focal length.
|
||||
- @ref SOLVEPNP_IPPE Method is based on the paper of T. Collins and A. Bartoli.
|
||||
"Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method requires coplanar object points.
|
||||
- @ref SOLVEPNP_IPPE_SQUARE Method is based on the paper of Toby Collins and Adrien Bartoli.
|
||||
"Infinitesimal Plane-Based Pose Estimation" (@cite Collins14). This method is suitable for marker pose estimation.
|
||||
It requires 4 coplanar object points defined in the following order:
|
||||
- point 0: [-squareLength / 2, squareLength / 2, 0]
|
||||
- point 1: [ squareLength / 2, squareLength / 2, 0]
|
||||
- point 2: [ squareLength / 2, -squareLength / 2, 0]
|
||||
- point 3: [-squareLength / 2, -squareLength / 2, 0]
|
||||
@param flags Method for solving a PnP problem: see @ref calib3d_solvePnP_flags
|
||||
@param rvec Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
|
||||
and useExtrinsicGuess is set to true.
|
||||
@param tvec Translation vector used to initialize an iterative PnP refinement algorithm, when flag is @ref SOLVEPNP_ITERATIVE
|
||||
@ -1171,98 +1033,7 @@ and useExtrinsicGuess is set to true.
|
||||
(\f$ \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \f$) between the input image points
|
||||
and the 3D object points projected with the estimated pose.
|
||||
|
||||
The function estimates the object pose given a set of object points, their corresponding image
|
||||
projections, as well as the camera intrinsic matrix and the distortion coefficients, see the figure below
|
||||
(more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
|
||||
and the Z-axis forward).
|
||||
|
||||
![](pnp.jpg)
|
||||
|
||||
Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$
|
||||
using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$:
|
||||
|
||||
\f[
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
u \\
|
||||
v \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{T}_w
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix} \\
|
||||
\begin{bmatrix}
|
||||
u \\
|
||||
v \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\begin{bmatrix}
|
||||
f_x & 0 & c_x \\
|
||||
0 & f_y & c_y \\
|
||||
0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
1 & 0 & 0 & 0 \\
|
||||
0 & 1 & 0 & 0 \\
|
||||
0 & 0 & 1 & 0
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
r_{11} & r_{12} & r_{13} & t_x \\
|
||||
r_{21} & r_{22} & r_{23} & t_y \\
|
||||
r_{31} & r_{32} & r_{33} & t_z \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
\f]
|
||||
|
||||
The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow transforming
|
||||
a 3D point expressed in the world frame into the camera frame:
|
||||
|
||||
\f[
|
||||
\begin{align*}
|
||||
\begin{bmatrix}
|
||||
X_c \\
|
||||
Y_c \\
|
||||
Z_c \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\hspace{0.2em} ^{c}\bf{T}_w
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix} \\
|
||||
\begin{bmatrix}
|
||||
X_c \\
|
||||
Y_c \\
|
||||
Z_c \\
|
||||
1
|
||||
\end{bmatrix} &=
|
||||
\begin{bmatrix}
|
||||
r_{11} & r_{12} & r_{13} & t_x \\
|
||||
r_{21} & r_{22} & r_{23} & t_y \\
|
||||
r_{31} & r_{32} & r_{33} & t_z \\
|
||||
0 & 0 & 0 & 1
|
||||
\end{bmatrix}
|
||||
\begin{bmatrix}
|
||||
X_{w} \\
|
||||
Y_{w} \\
|
||||
Z_{w} \\
|
||||
1
|
||||
\end{bmatrix}
|
||||
\end{align*}
|
||||
\f]
|
||||
More information is described in @ref calib3d_solvePnP
|
||||
|
||||
@note
|
||||
- An example of how to use solvePnP for planar augmented reality can be found at
|
||||
|
Loading…
Reference in New Issue
Block a user