mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 01:13:28 +08:00
Merge pull request #18744 from mpashchenkov:mp/onnx-dynamic-input-tensor
G-API: ONNX. Support tensor input for CNN with dynamic input * Added support for dynamic input tensor, refactored one input/output tests * Added multiple input/output fixture, test for mobilenet * Removed whitespace * Removed mistake in inferROI * Small fixes * One more fix * Code cleanup * Code cleanup X2 * bb rstrt * Fix review comments * One more fix review comments * Mistake
This commit is contained in:
parent
e4a9ad1730
commit
06477743ab
@ -167,8 +167,16 @@ inline void preprocess(const cv::Mat& src,
|
||||
// No layout or dimension transformations done here!
|
||||
// TODO: This needs to be aligned across all NN backends.
|
||||
GAPI_Assert(toCV(ti.type) == CV_32F && "Only 32F model input is supported for 32F data");
|
||||
GAPI_Assert(toORT(src.size) == ti.dims && "32F tensor dimensions should match with NN input");
|
||||
GAPI_Assert(!ti.is_dynamic && "Dynamic inputs are not supported for this case");
|
||||
const auto tensor_dims = toORT(src.size);
|
||||
if (tensor_dims.size() == ti.dims.size()) {
|
||||
for (size_t i = 0; i < ti.dims.size(); ++i) {
|
||||
GAPI_Assert((ti.dims[i] == -1 || ti.dims[i] == tensor_dims[i]) &&
|
||||
"32F tensor dimensions should match with all non-dynamic NN input dimensions");
|
||||
}
|
||||
} else {
|
||||
GAPI_Assert(false && "32F tensor size should match with NN input");
|
||||
}
|
||||
|
||||
dst = src;
|
||||
} else {
|
||||
// 8U input: full preprocessing path
|
||||
|
@ -12,29 +12,26 @@
|
||||
#include <onnxruntime_cxx_api.h>
|
||||
#include <ade/util/iota_range.hpp>
|
||||
|
||||
#include <opencv2/gapi/own/convert.hpp>
|
||||
#include <opencv2/gapi/infer/onnx.hpp>
|
||||
|
||||
namespace {
|
||||
|
||||
struct ONNXInitPath {
|
||||
ONNXInitPath() {
|
||||
const char* env_path = getenv("OPENCV_GAPI_ONNX_MODEL_PATH");
|
||||
if (env_path)
|
||||
if (env_path) {
|
||||
cvtest::addDataSearchPath(env_path);
|
||||
}
|
||||
}
|
||||
};
|
||||
static ONNXInitPath g_init_path;
|
||||
|
||||
cv::Mat initMatrixRandU(int type, cv::Size sz_in)
|
||||
{
|
||||
cv::Mat in_mat1 = cv::Mat(sz_in, type);
|
||||
cv::Mat initMatrixRandU(const int type, const cv::Size& sz_in) {
|
||||
const cv::Mat in_mat1 = cv::Mat(sz_in, type);
|
||||
|
||||
if (CV_MAT_DEPTH(type) < CV_32F)
|
||||
{
|
||||
if (CV_MAT_DEPTH(type) < CV_32F) {
|
||||
cv::randu(in_mat1, cv::Scalar::all(0), cv::Scalar::all(255));
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
const int fscale = 256; // avoid bits near ULP, generate stable test input
|
||||
cv::Mat in_mat32s(in_mat1.size(), CV_MAKE_TYPE(CV_32S, CV_MAT_CN(type)));
|
||||
cv::randu(in_mat32s, cv::Scalar::all(0), cv::Scalar::all(255 * fscale));
|
||||
@ -42,111 +39,238 @@ cv::Mat initMatrixRandU(int type, cv::Size sz_in)
|
||||
}
|
||||
return in_mat1;
|
||||
}
|
||||
}
|
||||
} // anonymous namespace
|
||||
namespace opencv_test
|
||||
{
|
||||
namespace {
|
||||
// FIXME: taken from the DNN module
|
||||
void normAssert(cv::InputArray ref, cv::InputArray test,
|
||||
void normAssert(const cv::InputArray& ref, const cv::InputArray& test,
|
||||
const char *comment /*= ""*/,
|
||||
double l1 = 0.00001, double lInf = 0.0001)
|
||||
{
|
||||
double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
||||
const double l1 = 0.00001, const double lInf = 0.0001) {
|
||||
const double normL1 = cvtest::norm(ref, test, cv::NORM_L1) / ref.getMat().total();
|
||||
EXPECT_LE(normL1, l1) << comment;
|
||||
|
||||
double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
||||
const double normInf = cvtest::norm(ref, test, cv::NORM_INF);
|
||||
EXPECT_LE(normInf, lInf) << comment;
|
||||
}
|
||||
|
||||
std::string findModel(const std::string &model_name)
|
||||
{
|
||||
return findDataFile("vision/classification/squeezenet/model/" + model_name + ".onnx", false);
|
||||
inline std::string findModel(const std::string &model_name) {
|
||||
return findDataFile("vision/" + model_name + ".onnx", false);
|
||||
}
|
||||
|
||||
inline void preprocess(const cv::Mat& src,
|
||||
cv::Mat& dst,
|
||||
const cv::Scalar& mean,
|
||||
const cv::Scalar& std) {
|
||||
int new_h = 224;
|
||||
int new_w = 224;
|
||||
cv::Mat tmp, nmat, cvt;
|
||||
cv::resize(src, dst, cv::Size(new_w, new_h));
|
||||
dst.convertTo(cvt, CV_32F, 1.f / 255);
|
||||
nmat = cvt - mean;
|
||||
tmp = nmat / std;
|
||||
dst.create(cv::Size(new_w, new_h * src.channels()), CV_32F);
|
||||
inline void toCHW(const cv::Mat& src, cv::Mat& dst) {
|
||||
dst.create(cv::Size(src.cols, src.rows * src.channels()), CV_32F);
|
||||
std::vector<cv::Mat> planes;
|
||||
for (int i = 0; i < src.channels(); ++i) {
|
||||
planes.push_back(dst.rowRange(i * new_h, (i + 1) * new_h));
|
||||
planes.push_back(dst.rowRange(i * src.rows, (i + 1) * src.rows));
|
||||
}
|
||||
cv::split(tmp, planes);
|
||||
cv::split(src, planes);
|
||||
}
|
||||
|
||||
void InferONNX(const std::string& model_path,
|
||||
const cv::Mat& in,
|
||||
cv::Mat& out,
|
||||
const cv::Scalar& mean,
|
||||
const cv::Scalar& std)
|
||||
{
|
||||
// FIXME: It must be a FIXTURE test!
|
||||
Ort::Env env(ORT_LOGGING_LEVEL_WARNING, "test");
|
||||
Ort::SessionOptions session_options;
|
||||
Ort::Session session(env, model_path.data(), session_options);
|
||||
auto input_node_dims = // 0 - one input
|
||||
session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
|
||||
auto output_node_dims = // 0 - one output
|
||||
session.GetOutputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
|
||||
inline int toCV(const ONNXTensorElementDataType prec) {
|
||||
switch (prec) {
|
||||
case ONNX_TENSOR_ELEMENT_DATA_TYPE_UINT8: return CV_8U;
|
||||
case ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT: return CV_32F;
|
||||
default: GAPI_Assert(false && "Unsupported data type");
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
inline std::vector<int64_t> toORT(const cv::MatSize &sz) {
|
||||
return cv::to_own<int64_t>(sz);
|
||||
}
|
||||
|
||||
inline std::vector<const char*> getCharNames(const std::vector<std::string>& names) {
|
||||
std::vector<const char*> out_vec;
|
||||
for (const auto& el : names) {
|
||||
out_vec.push_back(el.data());
|
||||
}
|
||||
return out_vec;
|
||||
}
|
||||
|
||||
inline void copyToOut(const cv::Mat& in, cv::Mat& out) {
|
||||
GAPI_Assert(in.depth() == CV_32F);
|
||||
GAPI_Assert(in.size == out.size);
|
||||
const float* const inptr = in.ptr<float>();
|
||||
float* const optr = out.ptr<float>();
|
||||
const int size = in.total();
|
||||
for (int i = 0; i < size; ++i) {
|
||||
optr[i] = inptr[i];
|
||||
}
|
||||
}
|
||||
|
||||
void remapYolo(const std::unordered_map<std::string, cv::Mat> &onnx,
|
||||
std::unordered_map<std::string, cv::Mat> &gapi) {
|
||||
GAPI_Assert(onnx.size() == 1u);
|
||||
GAPI_Assert(gapi.size() == 1u);
|
||||
// Result from Run method
|
||||
const cv::Mat& in = onnx.begin()->second;
|
||||
// Configured output
|
||||
cv::Mat& out = gapi.begin()->second;
|
||||
// Simple copy
|
||||
copyToOut(in, out);
|
||||
}
|
||||
|
||||
void remapSsdPorts(const std::unordered_map<std::string, cv::Mat> &onnx,
|
||||
std::unordered_map<std::string, cv::Mat> &gapi) {
|
||||
// Result from Run method
|
||||
const cv::Mat& in_num = onnx.at("num_detections:0");
|
||||
const cv::Mat& in_boxes = onnx.at("detection_boxes:0");
|
||||
const cv::Mat& in_scores = onnx.at("detection_scores:0");
|
||||
const cv::Mat& in_classes = onnx.at("detection_classes:0");
|
||||
// Configured outputs
|
||||
cv::Mat& out_boxes = gapi.at("out1");
|
||||
cv::Mat& out_classes = gapi.at("out2");
|
||||
cv::Mat& out_scores = gapi.at("out3");
|
||||
cv::Mat& out_num = gapi.at("out4");
|
||||
// Simple copy for outputs
|
||||
copyToOut(in_num, out_num);
|
||||
copyToOut(in_boxes, out_boxes);
|
||||
copyToOut(in_scores, out_scores);
|
||||
copyToOut(in_classes, out_classes);
|
||||
}
|
||||
|
||||
class ONNXtest : public ::testing::Test {
|
||||
public:
|
||||
std::string model_path;
|
||||
size_t num_in, num_out;
|
||||
std::vector<cv::Mat> out_gapi;
|
||||
std::vector<cv::Mat> out_onnx;
|
||||
cv::Mat in_mat1;
|
||||
|
||||
ONNXtest() {
|
||||
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "test");
|
||||
memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
|
||||
out_gapi.resize(1);
|
||||
out_onnx.resize(1);
|
||||
// FIXME: All tests chek "random" image
|
||||
// Ideally it should be a real image
|
||||
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void infer(const std::vector<cv::Mat>& ins,
|
||||
std::vector<cv::Mat>& outs) {
|
||||
// Prepare session
|
||||
session = Ort::Session(env, model_path.data(), session_options);
|
||||
num_in = session.GetInputCount();
|
||||
num_out = session.GetOutputCount();
|
||||
GAPI_Assert(num_in == ins.size());
|
||||
in_node_names.clear();
|
||||
out_node_names.clear();
|
||||
// Inputs Run params
|
||||
std::vector<Ort::Value> in_tensors;
|
||||
for(size_t i = 0; i < num_in; ++i) {
|
||||
char* in_node_name_p = session.GetInputName(i, allocator);
|
||||
in_node_names.push_back(std::string(in_node_name_p));
|
||||
allocator.Free(in_node_name_p);
|
||||
in_node_dims = toORT(ins[i].size);
|
||||
in_tensors.emplace_back(Ort::Value::CreateTensor<T>(memory_info,
|
||||
const_cast<T*>(ins[i].ptr<T>()),
|
||||
ins[i].total(),
|
||||
in_node_dims.data(),
|
||||
in_node_dims.size()));
|
||||
}
|
||||
// Outputs Run params
|
||||
for(size_t i = 0; i < num_out; ++i) {
|
||||
char* out_node_name_p = session.GetOutputName(i, allocator);
|
||||
out_node_names.push_back(std::string(out_node_name_p));
|
||||
allocator.Free(out_node_name_p);
|
||||
}
|
||||
// Input/output order by names
|
||||
const auto in_run_names = getCharNames(in_node_names);
|
||||
const auto out_run_names = getCharNames(out_node_names);
|
||||
// Run
|
||||
auto result = session.Run(Ort::RunOptions{nullptr},
|
||||
in_run_names.data(),
|
||||
&in_tensors.front(),
|
||||
num_in,
|
||||
out_run_names.data(),
|
||||
num_out);
|
||||
// Copy outputs
|
||||
GAPI_Assert(result.size() == num_out);
|
||||
outs.resize(num_out);
|
||||
for (size_t i = 0; i < num_out; ++i) {
|
||||
const auto info = result[i].GetTensorTypeAndShapeInfo();
|
||||
const auto shape = info.GetShape();
|
||||
const auto type = info.GetElementType();
|
||||
cv::Mat mt(std::vector<int>(shape.begin(), shape.end()), toCV(type),
|
||||
reinterpret_cast<void*>(result[i].GetTensorMutableData<uint8_t*>()));
|
||||
mt.copyTo(outs[i]);
|
||||
}
|
||||
}
|
||||
// One input/output overload
|
||||
template<typename T>
|
||||
void infer(const cv::Mat& in, cv::Mat& out) {
|
||||
std::vector<cv::Mat> result;
|
||||
infer<T>({in}, result);
|
||||
GAPI_Assert(result.size() == 1u);
|
||||
out = result.front();
|
||||
}
|
||||
|
||||
void validate() {
|
||||
GAPI_Assert(!out_gapi.empty() && !out_onnx.empty());
|
||||
ASSERT_EQ(out_gapi.size(), out_onnx.size());
|
||||
const auto size = out_gapi.size();
|
||||
for (size_t i = 0; i < size; ++i) {
|
||||
normAssert(out_onnx[i], out_gapi[i], "Test outputs");
|
||||
}
|
||||
}
|
||||
|
||||
void useModel(const std::string& model_name) {
|
||||
model_path = findModel(model_name);
|
||||
}
|
||||
private:
|
||||
Ort::Env env{nullptr};
|
||||
Ort::MemoryInfo memory_info{nullptr};
|
||||
Ort::AllocatorWithDefaultOptions allocator;
|
||||
char* in_node_name_p = session.GetInputName(0, allocator);
|
||||
char* out_node_name_p = session.GetOutputName(0, allocator);
|
||||
std::string in_node_name(in_node_name_p);
|
||||
std::string out_node_name(out_node_name_p);
|
||||
allocator.Free(in_node_name_p);
|
||||
allocator.Free(out_node_name_p);
|
||||
Ort::SessionOptions session_options;
|
||||
Ort::Session session{nullptr};
|
||||
|
||||
auto memory_info = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
|
||||
cv::Mat dst;
|
||||
preprocess(in, dst, mean, std);
|
||||
std::vector<int64_t> in_node_dims;
|
||||
std::vector<std::string> in_node_names;
|
||||
std::vector<std::string> out_node_names;
|
||||
};
|
||||
|
||||
out.create(std::vector<int>(output_node_dims.begin(),
|
||||
output_node_dims.end()), CV_32F); // empty output Mat
|
||||
auto in_tensor = Ort::Value::CreateTensor<float>(memory_info,
|
||||
dst.ptr<float>(),
|
||||
dst.total(),
|
||||
input_node_dims.data(),
|
||||
input_node_dims.size());
|
||||
auto out_tensor = Ort::Value::CreateTensor<float>(memory_info,
|
||||
out.ptr<float>(),
|
||||
out.total(),
|
||||
output_node_dims.data(),
|
||||
output_node_dims.size());
|
||||
std::vector<const char *> in_names = {in_node_name.data()};
|
||||
std::vector<const char *> out_names = {out_node_name.data()};
|
||||
session.Run(Ort::RunOptions{nullptr},
|
||||
in_names.data(),
|
||||
&in_tensor,
|
||||
session.GetInputCount(),
|
||||
out_names.data(),
|
||||
&out_tensor,
|
||||
session.GetOutputCount());
|
||||
}
|
||||
class ONNXClassificationTest : public ONNXtest {
|
||||
public:
|
||||
const cv::Scalar mean = { 0.485, 0.456, 0.406 };
|
||||
const cv::Scalar std = { 0.229, 0.224, 0.225 };
|
||||
|
||||
void preprocess(const cv::Mat& src, cv::Mat& dst) {
|
||||
const int new_h = 224;
|
||||
const int new_w = 224;
|
||||
cv::Mat tmp, cvt, rsz;
|
||||
cv::resize(src, rsz, cv::Size(new_w, new_h));
|
||||
rsz.convertTo(cvt, CV_32F, 1.f / 255);
|
||||
tmp = (cvt - mean) / std;
|
||||
toCHW(tmp, dst);
|
||||
dst = dst.reshape(1, {1, 3, new_h, new_w});
|
||||
}
|
||||
};
|
||||
|
||||
class ONNXGRayScaleTest : public ONNXtest {
|
||||
public:
|
||||
void preprocess(const cv::Mat& src, cv::Mat& dst) {
|
||||
const int new_h = 64;
|
||||
const int new_w = 64;
|
||||
cv::Mat cvc, rsz, cvt;
|
||||
cv::cvtColor(src, cvc, cv::COLOR_BGR2GRAY);
|
||||
cv::resize(cvc, rsz, cv::Size(new_w, new_h));
|
||||
rsz.convertTo(cvt, CV_32F);
|
||||
toCHW(cvt, dst);
|
||||
dst = dst.reshape(1, {1, 1, new_h, new_w});
|
||||
}
|
||||
};
|
||||
} // anonymous namespace
|
||||
|
||||
TEST(ONNX, Infer)
|
||||
TEST_F(ONNXClassificationTest, Infer)
|
||||
{
|
||||
cv::Mat in_mat1, out_gapi, out_onnx;
|
||||
std::string model_path = findModel("squeezenet1.0-9");
|
||||
// NOTE: All tests chek "random" image
|
||||
// Ideally it should be a real image
|
||||
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
|
||||
|
||||
cv::Scalar mean = { 0.485, 0.456, 0.406 };
|
||||
cv::Scalar std = { 0.229, 0.224, 0.225 };
|
||||
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
// ONNX_API code
|
||||
InferONNX(model_path, in_mat1, out_onnx, mean, std);
|
||||
|
||||
cv::Mat processed_mat;
|
||||
preprocess(in_mat1, processed_mat);
|
||||
infer<float>(processed_mat, out_onnx.front());
|
||||
// G_API code
|
||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||
cv::GMat in;
|
||||
@ -154,125 +278,196 @@ TEST(ONNX, Infer)
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
||||
// NOTE: We have to normalize U8 tensor
|
||||
// so cfgMeanStd() is here
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({mean},{std});
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
||||
comp.apply(cv::gin(in_mat1),
|
||||
cv::gout(out_gapi),
|
||||
cv::gout(out_gapi.front()),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
|
||||
// Validate
|
||||
ASSERT_EQ(1000u, out_onnx.total());
|
||||
ASSERT_EQ(1000u, out_gapi.total());
|
||||
normAssert(out_onnx, out_gapi, "Test classification output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(ONNX, InferROI)
|
||||
TEST_F(ONNXtest, InferTensor)
|
||||
{
|
||||
cv::Mat in_mat1, out_gapi, out_onnx;
|
||||
std::string model_path = findModel("squeezenet1.0-9");
|
||||
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
|
||||
|
||||
cv::Scalar mean = { 0.485, 0.456, 0.406 }; // squeeznet mean
|
||||
cv::Scalar std = { 0.229, 0.224, 0.225 }; // squeeznet std
|
||||
|
||||
cv::Rect ROI(cv::Point{0, 0}, cv::Size{250, 250});
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
// Create tensor
|
||||
// FIXME: Test cheks "random" image
|
||||
// Ideally it should be a real image
|
||||
const cv::Mat rand_mat = initMatrixRandU(CV_32FC3, cv::Size{224, 224});
|
||||
const std::vector<int> dims = {1, rand_mat.channels(), rand_mat.rows, rand_mat.cols};
|
||||
const cv::Mat tensor(dims, CV_32F, rand_mat.data);
|
||||
// ONNX_API code
|
||||
InferONNX(model_path, in_mat1(ROI), out_onnx, mean, std);
|
||||
infer<float>(tensor, out_onnx.front());
|
||||
// G_API code
|
||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||
cv::GMat in;
|
||||
cv::GMat out = cv::gapi::infer<SqueezNet>(in);
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path };
|
||||
comp.apply(cv::gin(tensor),
|
||||
cv::gout(out_gapi.front()),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
// Validate
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST_F(ONNXClassificationTest, InferROI)
|
||||
{
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
const cv::Rect ROI(cv::Point{0, 0}, cv::Size{250, 250});
|
||||
// ONNX_API code
|
||||
cv::Mat roi_mat;
|
||||
preprocess(in_mat1(ROI), roi_mat);
|
||||
infer<float>(roi_mat, out_onnx.front());
|
||||
// G_API code
|
||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||
cv::GMat in;
|
||||
cv::GOpaque<cv::Rect> rect;
|
||||
cv::GMat out = cv::gapi::infer<SqueezNet>(rect, in);
|
||||
cv::GComputation comp(cv::GIn(in, rect), cv::GOut(out));
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({mean},{std});
|
||||
// NOTE: We have to normalize U8 tensor
|
||||
// so cfgMeanStd() is here
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
||||
comp.apply(cv::gin(in_mat1, ROI),
|
||||
cv::gout(out_gapi),
|
||||
cv::gout(out_gapi.front()),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
|
||||
// Validate
|
||||
ASSERT_EQ(1000u, out_onnx.total());
|
||||
ASSERT_EQ(1000u, out_gapi.total());
|
||||
normAssert(out_onnx, out_gapi, "Test classification output");
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(ONNX, InferROIList)
|
||||
TEST_F(ONNXClassificationTest, InferROIList)
|
||||
{
|
||||
cv::Mat in_mat1;
|
||||
std::string model_path = findModel("squeezenet1.0-9");
|
||||
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
|
||||
|
||||
cv::Scalar mean = { 0.485, 0.456, 0.406 }; // squeeznet mean
|
||||
cv::Scalar std = { 0.229, 0.224, 0.225 }; // squeeznet std
|
||||
|
||||
std::vector<cv::Rect> rois = {
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
const std::vector<cv::Rect> rois = {
|
||||
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
|
||||
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
|
||||
};
|
||||
std::vector<cv::Mat> out_gapi;
|
||||
std::vector<cv::Mat> out_onnx(rois.size());
|
||||
// ONNX_API code
|
||||
out_onnx.resize(rois.size());
|
||||
for (size_t i = 0; i < rois.size(); ++i) {
|
||||
InferONNX(model_path, in_mat1(rois[i]), out_onnx[i], mean, std);
|
||||
cv::Mat roi_mat;
|
||||
preprocess(in_mat1(rois[i]), roi_mat);
|
||||
infer<float>(roi_mat, out_onnx[i]);
|
||||
}
|
||||
|
||||
// G_API code
|
||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||
cv::GMat in;
|
||||
cv::GArray<cv::Rect> rr;
|
||||
cv::GArray<cv::GMat> out = cv::gapi::infer<SqueezNet>(rr, in);
|
||||
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({mean},{std});
|
||||
// NOTE: We have to normalize U8 tensor
|
||||
// so cfgMeanStd() is here
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
||||
comp.apply(cv::gin(in_mat1, rois),
|
||||
cv::gout(out_gapi),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
|
||||
// Validate
|
||||
for (size_t i = 0; i < rois.size(); ++i) {
|
||||
ASSERT_EQ(1000u, out_onnx[i].total());
|
||||
ASSERT_EQ(1000u, out_gapi[i].total());
|
||||
normAssert(out_onnx[i], out_gapi[i], "Test classification output");
|
||||
}
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST(ONNX, Infer2ROIList)
|
||||
TEST_F(ONNXClassificationTest, Infer2ROIList)
|
||||
{
|
||||
cv::Mat in_mat1;
|
||||
std::string model_path = findModel("squeezenet1.0-9");
|
||||
in_mat1 = initMatrixRandU(CV_8UC3, cv::Size{640, 480});
|
||||
|
||||
cv::Scalar mean = { 0.485, 0.456, 0.406 }; // squeeznet mean
|
||||
cv::Scalar std = { 0.229, 0.224, 0.225 }; // squeeznet std
|
||||
|
||||
std::vector<cv::Rect> rois = {
|
||||
useModel("classification/squeezenet/model/squeezenet1.0-9");
|
||||
const std::vector<cv::Rect> rois = {
|
||||
cv::Rect(cv::Point{ 0, 0}, cv::Size{80, 120}),
|
||||
cv::Rect(cv::Point{50, 100}, cv::Size{250, 360}),
|
||||
};
|
||||
std::vector<cv::Mat> out_gapi;
|
||||
std::vector<cv::Mat> out_onnx(rois.size());
|
||||
// ONNX_API code
|
||||
out_onnx.resize(rois.size());
|
||||
for (size_t i = 0; i < rois.size(); ++i) {
|
||||
InferONNX(model_path, in_mat1(rois[i]), out_onnx[i], mean, std);
|
||||
cv::Mat roi_mat;
|
||||
preprocess(in_mat1(rois[i]), roi_mat);
|
||||
infer<float>(roi_mat, out_onnx[i]);
|
||||
}
|
||||
|
||||
// G_API code
|
||||
G_API_NET(SqueezNet, <cv::GMat(cv::GMat)>, "squeeznet");
|
||||
cv::GMat in;
|
||||
cv::GArray<cv::Rect> rr;
|
||||
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in,rr);
|
||||
cv::GArray<cv::GMat> out = cv::gapi::infer2<SqueezNet>(in, rr);
|
||||
cv::GComputation comp(cv::GIn(in, rr), cv::GOut(out));
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({mean},{std});
|
||||
// NOTE: We have to normalize U8 tensor
|
||||
// so cfgMeanStd() is here
|
||||
auto net = cv::gapi::onnx::Params<SqueezNet> { model_path }.cfgMeanStd({ mean }, { std });
|
||||
comp.apply(cv::gin(in_mat1, rois),
|
||||
cv::gout(out_gapi),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
|
||||
// Validate
|
||||
for (size_t i = 0; i < rois.size(); ++i) {
|
||||
ASSERT_EQ(1000u, out_onnx[i].total());
|
||||
ASSERT_EQ(1000u, out_gapi[i].total());
|
||||
normAssert(out_onnx[i], out_gapi[i], "Test classification output");
|
||||
}
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST_F(ONNXtest, InferDynamicInputTensor)
|
||||
{
|
||||
useModel("object_detection_segmentation/tiny-yolov2/model/tinyyolov2-8");
|
||||
// Create tensor
|
||||
// FIXME: Test cheks "random" image
|
||||
// Ideally it should be a real image
|
||||
const cv::Mat rand_mat = initMatrixRandU(CV_32FC3, cv::Size{416, 416});
|
||||
const std::vector<int> dims = {1, rand_mat.channels(), rand_mat.rows, rand_mat.cols};
|
||||
cv::Mat tensor(dims, CV_32F, rand_mat.data);
|
||||
const cv::Mat in_tensor = tensor / 255.f;
|
||||
// ONNX_API code
|
||||
infer<float>(in_tensor, out_onnx.front());
|
||||
// G_API code
|
||||
G_API_NET(YoloNet, <cv::GMat(cv::GMat)>, "YoloNet");
|
||||
cv::GMat in;
|
||||
cv::GMat out = cv::gapi::infer<YoloNet>(in);
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
||||
auto net = cv::gapi::onnx::Params<YoloNet>{model_path}
|
||||
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 125, 13, 13}}}, remapYolo)
|
||||
.cfgOutputLayers({"out"});
|
||||
comp.apply(cv::gin(in_tensor),
|
||||
cv::gout(out_gapi.front()),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
// Validate
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST_F(ONNXGRayScaleTest, InferImage)
|
||||
{
|
||||
useModel("body_analysis/emotion_ferplus/model/emotion-ferplus-8");
|
||||
// ONNX_API code
|
||||
cv::Mat prep_mat;
|
||||
preprocess(in_mat1, prep_mat);
|
||||
infer<float>(prep_mat, out_onnx.front());
|
||||
// G_API code
|
||||
G_API_NET(EmotionNet, <cv::GMat(cv::GMat)>, "emotion-ferplus");
|
||||
cv::GMat in;
|
||||
cv::GMat out = cv::gapi::infer<EmotionNet>(in);
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out));
|
||||
auto net = cv::gapi::onnx::Params<EmotionNet> { model_path }
|
||||
.cfgNormalize({ false }); // model accepts 0..255 range in FP32;
|
||||
comp.apply(cv::gin(in_mat1),
|
||||
cv::gout(out_gapi.front()),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
// Validate
|
||||
validate();
|
||||
}
|
||||
|
||||
TEST_F(ONNXtest, InferMultOutput)
|
||||
{
|
||||
useModel("object_detection_segmentation/ssd-mobilenetv1/model/ssd_mobilenet_v1_10");
|
||||
// ONNX_API code
|
||||
const auto prep_mat = in_mat1.reshape(1, {1, in_mat1.rows, in_mat1.cols, in_mat1.channels()});
|
||||
infer<uint8_t>({prep_mat}, out_onnx);
|
||||
// G_API code
|
||||
using SSDOut = std::tuple<cv::GMat, cv::GMat, cv::GMat, cv::GMat>;
|
||||
G_API_NET(MobileNet, <SSDOut(cv::GMat)>, "ssd_mobilenet");
|
||||
cv::GMat in;
|
||||
cv::GMat out1, out2, out3, out4;
|
||||
std::tie(out1, out2, out3, out4) = cv::gapi::infer<MobileNet>(in);
|
||||
cv::GComputation comp(cv::GIn(in), cv::GOut(out1, out2, out3, out4));
|
||||
auto net = cv::gapi::onnx::Params<MobileNet>{model_path}
|
||||
.cfgOutputLayers({"out1", "out2", "out3", "out4"})
|
||||
.cfgPostProc({cv::GMatDesc{CV_32F, {1, 100, 4}},
|
||||
cv::GMatDesc{CV_32F, {1, 100}},
|
||||
cv::GMatDesc{CV_32F, {1, 100}},
|
||||
cv::GMatDesc{CV_32F, {1, 1}}}, remapSsdPorts);
|
||||
out_gapi.resize(num_out);
|
||||
comp.apply(cv::gin(in_mat1),
|
||||
cv::gout(out_gapi[0], out_gapi[1], out_gapi[2], out_gapi[3]),
|
||||
cv::compile_args(cv::gapi::networks(net)));
|
||||
// Validate
|
||||
validate();
|
||||
}
|
||||
} // namespace opencv_test
|
||||
|
||||
#endif // HAVE_ONNX
|
||||
|
Loading…
Reference in New Issue
Block a user