mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 20:50:25 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
06bff34a6b
@ -1,6 +1,8 @@
|
||||
Build OpenCV.js {#tutorial_js_setup}
|
||||
===============================
|
||||
|
||||
@note
|
||||
You don't have to build your own copy if you simply want to start using it. Refer the Using Opencv.js tutorial for steps on getting a prebuilt copy from our releases or online documentation.
|
||||
|
||||
Installing Emscripten
|
||||
-----------------------------
|
||||
|
@ -4,7 +4,7 @@ Using OpenCV.js {#tutorial_js_usage}
|
||||
Steps
|
||||
-----
|
||||
|
||||
In this tutorial, you will learn how to include and start to use `opencv.js` inside a web page.
|
||||
In this tutorial, you will learn how to include and start to use `opencv.js` inside a web page. You can get a copy of `opencv.js` from `opencv-{VERSION_NUMBER}-docs.zip` in each [release](https://github.com/opencv/opencv/releases), or simply download the prebuilt script from the online documentations at "https://docs.opencv.org/{VERISON_NUMBER}/opencv.js" (For example, [https://docs.opencv.org/3.4.0/opencv.js](https://docs.opencv.org/3.4.0/opencv.js). Use `master` if you want the latest build). You can also build your own copy by following the tutorial on Build Opencv.js.
|
||||
|
||||
### Create a web page
|
||||
|
||||
@ -44,7 +44,7 @@ To run this web page, copy the content above and save to a local index.html file
|
||||
|
||||
Set the URL of `opencv.js` to `src` attribute of \<script\> tag.
|
||||
|
||||
@note For this tutorial, we host `opencv.js` at same folder as index.html.
|
||||
@note For this tutorial, we host `opencv.js` at same folder as index.html. You can also choose to use the URL of the prebuilt `opencv.js` in our online documentation.
|
||||
|
||||
Example for synchronous loading:
|
||||
@code{.js}
|
||||
|
@ -80,7 +80,7 @@ Additional Resources
|
||||
--------------------
|
||||
|
||||
-# A Quick guide to Python - [A Byte of Python](http://swaroopch.com/notes/python/)
|
||||
2. [Basic Numpy Tutorials](http://wiki.scipy.org/Tentative_NumPy_Tutorial)
|
||||
3. [Numpy Examples List](http://wiki.scipy.org/Numpy_Example_List)
|
||||
2. [NumPy Quickstart tutorial](https://numpy.org/devdocs/user/quickstart.html)
|
||||
3. [NumPy Reference](https://numpy.org/devdocs/reference/index.html#reference)
|
||||
4. [OpenCV Documentation](http://docs.opencv.org/)
|
||||
5. [OpenCV Forum](http://answers.opencv.org/questions/)
|
||||
|
@ -5,6 +5,8 @@ Although we get most of our images in a 2D format they do come from a 3D world.
|
||||
|
||||
- @subpage tutorial_camera_calibration_pattern
|
||||
|
||||
*Languages:* Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Laurent Berger
|
||||
@ -13,6 +15,8 @@ Although we get most of our images in a 2D format they do come from a 3D world.
|
||||
|
||||
- @subpage tutorial_camera_calibration_square_chess
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Victor Eruhimov
|
||||
@ -21,6 +25,8 @@ Although we get most of our images in a 2D format they do come from a 3D world.
|
||||
|
||||
- @subpage tutorial_camera_calibration
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 4.0
|
||||
|
||||
*Author:* Bernát Gábor
|
||||
@ -31,6 +37,8 @@ Although we get most of our images in a 2D format they do come from a 3D world.
|
||||
|
||||
- @subpage tutorial_real_time_pose
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Edgar Riba
|
||||
|
@ -6,6 +6,8 @@ understanding how to manipulate the images on a pixel level.
|
||||
|
||||
- @subpage tutorial_mat_the_basic_image_container
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Bernát Gábor
|
||||
@ -15,6 +17,8 @@ understanding how to manipulate the images on a pixel level.
|
||||
|
||||
- @subpage tutorial_how_to_scan_images
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Bernát Gábor
|
||||
@ -75,6 +79,8 @@ understanding how to manipulate the images on a pixel level.
|
||||
|
||||
- @subpage tutorial_file_input_output_with_xml_yml
|
||||
|
||||
*Languages:* C++, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Bernát Gábor
|
||||
@ -84,6 +90,8 @@ understanding how to manipulate the images on a pixel level.
|
||||
|
||||
- @subpage tutorial_how_to_use_OpenCV_parallel_for_
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \>= OpenCV 2.4.3
|
||||
|
||||
You will see how to use the OpenCV parallel_for_ to easily parallelize your code.
|
||||
|
@ -3,6 +3,8 @@ Deep Neural Networks (dnn module) {#tutorial_table_of_content_dnn}
|
||||
|
||||
- @subpage tutorial_dnn_googlenet
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 3.3
|
||||
|
||||
*Author:* Vitaliy Lyudvichenko
|
||||
@ -11,6 +13,8 @@ Deep Neural Networks (dnn module) {#tutorial_table_of_content_dnn}
|
||||
|
||||
- @subpage tutorial_dnn_halide
|
||||
|
||||
*Languages:* Halide
|
||||
|
||||
*Compatibility:* \> OpenCV 3.3
|
||||
|
||||
*Author:* Dmitry Kurtaev
|
||||
@ -19,6 +23,8 @@ Deep Neural Networks (dnn module) {#tutorial_table_of_content_dnn}
|
||||
|
||||
- @subpage tutorial_dnn_halide_scheduling
|
||||
|
||||
*Languages:* Halide
|
||||
|
||||
*Compatibility:* \> OpenCV 3.3
|
||||
|
||||
*Author:* Dmitry Kurtaev
|
||||
@ -27,6 +33,8 @@ Deep Neural Networks (dnn module) {#tutorial_table_of_content_dnn}
|
||||
|
||||
- @subpage tutorial_dnn_android
|
||||
|
||||
*Languages:* Java
|
||||
|
||||
*Compatibility:* \> OpenCV 3.3
|
||||
|
||||
*Author:* Dmitry Kurtaev
|
||||
@ -35,6 +43,8 @@ Deep Neural Networks (dnn module) {#tutorial_table_of_content_dnn}
|
||||
|
||||
- @subpage tutorial_dnn_yolo
|
||||
|
||||
*Languages:* C++, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 3.3.1
|
||||
|
||||
*Author:* Alessandro de Oliveira Faria
|
||||
@ -43,6 +53,8 @@ Deep Neural Networks (dnn module) {#tutorial_table_of_content_dnn}
|
||||
|
||||
- @subpage tutorial_dnn_javascript
|
||||
|
||||
*Languages:* JavaScript
|
||||
|
||||
*Compatibility:* \> OpenCV 3.3.1
|
||||
|
||||
*Author:* Dmitry Kurtaev
|
||||
@ -51,6 +63,8 @@ Deep Neural Networks (dnn module) {#tutorial_table_of_content_dnn}
|
||||
|
||||
- @subpage tutorial_dnn_custom_layers
|
||||
|
||||
*Languages:* C++, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 3.4.1
|
||||
|
||||
*Author:* Dmitry Kurtaev
|
||||
|
@ -89,6 +89,8 @@ OpenCV.
|
||||
|
||||
- @subpage tutorial_detection_of_planar_objects
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Victor Eruhimov
|
||||
@ -108,6 +110,8 @@ OpenCV.
|
||||
|
||||
- @subpage tutorial_akaze_tracking
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 3.0
|
||||
|
||||
*Author:* Fedor Morozov
|
||||
@ -116,6 +120,8 @@ OpenCV.
|
||||
|
||||
- @subpage tutorial_homography
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 3.0
|
||||
|
||||
This tutorial will explain the basic concepts of the homography with some
|
||||
|
@ -7,6 +7,8 @@ run the OpenCV algorithms.
|
||||
|
||||
- @subpage tutorial_gpu_basics_similarity
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Bernát Gábor
|
||||
@ -17,6 +19,8 @@ run the OpenCV algorithms.
|
||||
|
||||
- @subpage tutorial_gpu_thrust_interop
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \>= OpenCV 3.0
|
||||
|
||||
This tutorial will show you how to wrap a GpuMat into a thrust iterator in order to be able to
|
||||
|
@ -5,6 +5,8 @@ This section contains tutorials about how to read/save your image files.
|
||||
|
||||
- @subpage tutorial_raster_io_gdal
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Marvin Smith
|
||||
|
@ -15,6 +15,8 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
|
||||
- @subpage tutorial_random_generator_and_text
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Ana Huamán
|
||||
@ -333,7 +335,7 @@ In this section you will learn about the image processing (manipulation) functio
|
||||
|
||||
- @subpage tutorial_anisotropic_image_segmentation_by_a_gst
|
||||
|
||||
*Languages:* C++
|
||||
*Languages:* C++, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
|
@ -690,6 +690,6 @@ References {#tutorial_documentation_refs}
|
||||
[Documenting basics]: http://www.doxygen.nl/manual/docblocks.html
|
||||
[Markdown support]: http://www.doxygen.nl/manual/markdown.html
|
||||
[Formulas support]: http://www.doxygen.nl/manual/formulas.html
|
||||
[Supported formula commands]: http://docs.mathjax.org/en/latest/tex.html#supported-latex-commands
|
||||
[Supported formula commands]: http://docs.mathjax.org/en/latest/input/tex/macros/index.html
|
||||
[Command reference]: http://www.doxygen.nl/manual/commands.html
|
||||
[Google Scholar]: http://scholar.google.ru/
|
||||
|
@ -18,8 +18,8 @@ This tutorial assumes that you have the following available:
|
||||
Installation
|
||||
------------
|
||||
|
||||
[Download](http://go.microsoft.com/fwlink/?LinkId=285460) the Image Watch installer. The installer
|
||||
comes in a single file with extension .vsix (*Visual Studio Extension*). To launch it, simply
|
||||
Download the Image Watch installer. ([Visual Studio 2019](https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch2019) | [Visual Studio 2017](https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch2017) | [Visual Studio 2012, 2013, 2015](https://marketplace.visualstudio.com/items?itemName=VisualCPPTeam.ImageWatch))
|
||||
The installer comes in a single file with extension .vsix (*Visual Studio Extension*). To launch it, simply
|
||||
double-click on the .vsix file in Windows Explorer. When the installer has finished, make sure to
|
||||
restart Visual Studio to complete the installation.
|
||||
|
||||
|
@ -3,6 +3,8 @@ OpenCV iOS {#tutorial_table_of_content_ios}
|
||||
|
||||
- @subpage tutorial_hello
|
||||
|
||||
*Languages:* Objective-C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.4.3
|
||||
|
||||
*Author:* Charu Hans
|
||||
@ -11,6 +13,8 @@ OpenCV iOS {#tutorial_table_of_content_ios}
|
||||
|
||||
- @subpage tutorial_image_manipulation
|
||||
|
||||
*Languages:* Objective-C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.4.3
|
||||
|
||||
*Author:* Charu Hans
|
||||
@ -19,6 +23,8 @@ OpenCV iOS {#tutorial_table_of_content_ios}
|
||||
|
||||
- @subpage tutorial_video_processing
|
||||
|
||||
*Languages:* Objective-C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.4.3
|
||||
|
||||
*Author:* Eduard Feicho
|
||||
|
@ -7,6 +7,8 @@ create a photo panorama or you want to stitch scans.
|
||||
|
||||
- @subpage tutorial_stitcher
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \>= OpenCV 3.2
|
||||
|
||||
*Author:* Jiri Horner
|
||||
|
@ -5,6 +5,8 @@ This section contains tutorials about how to read/save your video files.
|
||||
|
||||
- @subpage tutorial_video_input_psnr_ssim
|
||||
|
||||
*Languages:* C++, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Bernát Gábor
|
||||
@ -14,10 +16,16 @@ This section contains tutorials about how to read/save your video files.
|
||||
|
||||
- @subpage tutorial_video_write
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 2.0
|
||||
|
||||
*Author:* Bernát Gábor
|
||||
|
||||
- @subpage tutorial_kinect_openni
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
- @subpage tutorial_intelperc
|
||||
|
||||
*Languages:* C++
|
@ -818,4 +818,32 @@ public class Calib3dTest extends OpenCVTestCase {
|
||||
assertTrue(src.toList().get(i).equals(dst.toList().get(i)));
|
||||
}
|
||||
}
|
||||
|
||||
public void testEstimateNewCameraMatrixForUndistortRectify() {
|
||||
Mat K = new Mat().eye(3, 3, CvType.CV_64FC1);
|
||||
Mat K_new = new Mat().eye(3, 3, CvType.CV_64FC1);
|
||||
Mat K_new_truth = new Mat().eye(3, 3, CvType.CV_64FC1);
|
||||
Mat D = new Mat().zeros(4, 1, CvType.CV_64FC1);
|
||||
|
||||
K.put(0,0,600.4447738238429);
|
||||
K.put(1,1,578.9929805505851);
|
||||
K.put(0,2,992.0642578801213);
|
||||
K.put(1,2,549.2682624212172);
|
||||
|
||||
D.put(0,0,-0.05090103223466704);
|
||||
D.put(1,0,0.030944413642173308);
|
||||
D.put(2,0,-0.021509225493198905);
|
||||
D.put(3,0,0.0043378096628297145);
|
||||
|
||||
K_new_truth.put(0,0, 387.4809086880343);
|
||||
K_new_truth.put(0,2, 1036.669802754649);
|
||||
K_new_truth.put(1,1, 373.6375700303157);
|
||||
K_new_truth.put(1,2, 538.8373261247601);
|
||||
|
||||
Calib3d.fisheye_estimateNewCameraMatrixForUndistortRectify(K,D,new Size(1920,1080),
|
||||
new Mat().eye(3, 3, CvType.CV_64F), K_new, 0.0, new Size(1920,1080));
|
||||
|
||||
assertMatEqual(K_new, K_new_truth, EPS);
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -656,6 +656,51 @@ TEST_F(fisheyeTest, CalibrationWithDifferentPointsNumber)
|
||||
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
|
||||
}
|
||||
|
||||
TEST_F(fisheyeTest, estimateNewCameraMatrixForUndistortRectify)
|
||||
{
|
||||
cv::Size size(1920, 1080);
|
||||
|
||||
cv::Mat K_fullhd(3, 3, cv::DataType<double>::type);
|
||||
K_fullhd.at<double>(0, 0) = 600.44477382;
|
||||
K_fullhd.at<double>(0, 1) = 0.0;
|
||||
K_fullhd.at<double>(0, 2) = 992.06425788;
|
||||
|
||||
K_fullhd.at<double>(1, 0) = 0.0;
|
||||
K_fullhd.at<double>(1, 1) = 578.99298055;
|
||||
K_fullhd.at<double>(1, 2) = 549.26826242;
|
||||
|
||||
K_fullhd.at<double>(2, 0) = 0.0;
|
||||
K_fullhd.at<double>(2, 1) = 0.0;
|
||||
K_fullhd.at<double>(2, 2) = 1.0;
|
||||
|
||||
cv::Mat K_new_truth(3, 3, cv::DataType<double>::type);
|
||||
|
||||
K_new_truth.at<double>(0, 0) = 387.4809086880343;
|
||||
K_new_truth.at<double>(0, 1) = 0.0;
|
||||
K_new_truth.at<double>(0, 2) = 1036.669802754649;
|
||||
|
||||
K_new_truth.at<double>(1, 0) = 0.0;
|
||||
K_new_truth.at<double>(1, 1) = 373.6375700303157;
|
||||
K_new_truth.at<double>(1, 2) = 538.8373261247601;
|
||||
|
||||
K_new_truth.at<double>(2, 0) = 0.0;
|
||||
K_new_truth.at<double>(2, 1) = 0.0;
|
||||
K_new_truth.at<double>(2, 2) = 1.0;
|
||||
|
||||
cv::Mat D_fullhd(4, 1, cv::DataType<double>::type);
|
||||
D_fullhd.at<double>(0, 0) = -0.05090103223466704;
|
||||
D_fullhd.at<double>(1, 0) = 0.030944413642173308;
|
||||
D_fullhd.at<double>(2, 0) = -0.021509225493198905;
|
||||
D_fullhd.at<double>(3, 0) = 0.0043378096628297145;
|
||||
cv::Mat E = cv::Mat::eye(3, 3, cv::DataType<double>::type);
|
||||
|
||||
cv::Mat K_new(3, 3, cv::DataType<double>::type);
|
||||
|
||||
cv::fisheye::estimateNewCameraMatrixForUndistortRectify(K_fullhd, D_fullhd, size, E, K_new, 0.0, size);
|
||||
|
||||
EXPECT_MAT_NEAR(K_new, K_new_truth, 1e-6);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// fisheyeTest::
|
||||
|
||||
|
@ -1329,7 +1329,7 @@ void MatOp_AddEx::assign(const MatExpr& e, Mat& m, int _type) const
|
||||
}
|
||||
else if( e.s.isReal() && (dst.data != m.data || fabs(e.alpha) != 1))
|
||||
{
|
||||
if (e.a.channels() > 1)
|
||||
if (e.a.channels() > 1 && e.s[0] != 0.0)
|
||||
CV_LOG_ONCE_WARNING(NULL, "OpenCV/MatExpr: processing of multi-channel arrays might be changed in the future: "
|
||||
"https://github.com/opencv/opencv/issues/16739");
|
||||
e.a.convertTo(m, _type, e.alpha, e.s[0]);
|
||||
|
@ -61,27 +61,28 @@ public:
|
||||
ONNXGraphWrapper(opencv_onnx::GraphProto& _net) : net(_net)
|
||||
{
|
||||
numInputs = net.input_size();
|
||||
numInitializers = net.initializer_size();
|
||||
}
|
||||
|
||||
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE
|
||||
{
|
||||
opencv_onnx::NodeProto* node = 0;
|
||||
if (idx >= numInputs)
|
||||
node = net.mutable_node(idx - numInputs);
|
||||
if (idx >= numInputs + numInitializers)
|
||||
node = net.mutable_node(idx - numInputs - numInitializers);
|
||||
return makePtr<ONNXNodeWrapper>(node);
|
||||
}
|
||||
|
||||
virtual int getNumNodes() const CV_OVERRIDE
|
||||
{
|
||||
return numInputs + net.node_size();
|
||||
return numInputs + numInitializers + net.node_size();
|
||||
}
|
||||
|
||||
virtual int getNumOutputs(int nodeId) const CV_OVERRIDE
|
||||
{
|
||||
if (nodeId < numInputs)
|
||||
if (nodeId < numInputs + numInitializers)
|
||||
return 1;
|
||||
else
|
||||
return net.node(nodeId - numInputs).output_size();
|
||||
return net.node(nodeId - numInputs - numInitializers).output_size();
|
||||
}
|
||||
|
||||
virtual std::string getOutputName(int nodeId, int outId) const CV_OVERRIDE
|
||||
@ -89,18 +90,20 @@ public:
|
||||
CV_Assert(outId < getNumOutputs(nodeId));
|
||||
if (nodeId < numInputs)
|
||||
return net.input(nodeId).name();
|
||||
else if (nodeId < numInputs + numInitializers)
|
||||
return net.initializer(nodeId - numInputs).name();
|
||||
else
|
||||
return net.node(nodeId - numInputs).output(outId);
|
||||
return net.node(nodeId - numInputs - numInitializers).output(outId);
|
||||
}
|
||||
|
||||
virtual void removeNode(int idx) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(idx >= numInputs);
|
||||
net.mutable_node()->DeleteSubrange(idx - numInputs, 1);
|
||||
CV_Assert(idx >= numInputs + numInitializers);
|
||||
net.mutable_node()->DeleteSubrange(idx - numInputs - numInitializers, 1);
|
||||
}
|
||||
|
||||
private:
|
||||
int numInputs;
|
||||
int numInputs, numInitializers;
|
||||
opencv_onnx::GraphProto& net;
|
||||
};
|
||||
|
||||
@ -382,33 +385,63 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
class BatchNormalizationSubgraph : public Subgraph
|
||||
class BatchNormalizationSubgraphBase : public Subgraph
|
||||
{
|
||||
public:
|
||||
BatchNormalizationSubgraph()
|
||||
BatchNormalizationSubgraphBase()
|
||||
{
|
||||
int input = addNodeToMatch("");
|
||||
int data1 = addNodeToMatch("Constant");
|
||||
int data2 = addNodeToMatch("Constant");
|
||||
int data3 = addNodeToMatch("Constant");
|
||||
int data4 = addNodeToMatch("Constant");
|
||||
int shape1 = addNodeToMatch("Constant");
|
||||
int reshape1 = addNodeToMatch("Reshape", data1, shape1);
|
||||
int shape2 = addNodeToMatch("Constant");
|
||||
int reshape2 = addNodeToMatch("Reshape", data2, shape2);
|
||||
input = addNodeToMatch("");
|
||||
var = addNodeToMatch("");
|
||||
mean = addNodeToMatch("");
|
||||
weight = addNodeToMatch("");
|
||||
bias = addNodeToMatch("");
|
||||
A = addNodeToMatch("");
|
||||
shape1 = addNodeToMatch("");
|
||||
shape2 = addNodeToMatch("");
|
||||
}
|
||||
protected:
|
||||
int input, var, mean, weight, bias, A, shape1, shape2;
|
||||
};
|
||||
|
||||
class BatchNormalizationSubgraph1 : public BatchNormalizationSubgraphBase
|
||||
{
|
||||
public:
|
||||
BatchNormalizationSubgraph1()
|
||||
{
|
||||
int reshape1 = addNodeToMatch("Reshape", weight, shape1);
|
||||
int reshape2 = addNodeToMatch("Reshape", bias, shape2);
|
||||
int shape3 = addNodeToMatch("Constant");
|
||||
int reshape3 = addNodeToMatch("Reshape", data3, shape3);
|
||||
int reshape3 = addNodeToMatch("Reshape", var, shape3);
|
||||
int shape4 = addNodeToMatch("Constant");
|
||||
int reshape4 = addNodeToMatch("Reshape", data4, shape4);
|
||||
int reshape4 = addNodeToMatch("Reshape", mean, shape4);
|
||||
int sqrtNode = addNodeToMatch("Sqrt", reshape3);
|
||||
int A = addNodeToMatch("Constant");
|
||||
int divNode = addNodeToMatch("Div", A, sqrtNode);
|
||||
int mul1 = addNodeToMatch("Mul", reshape1, divNode);
|
||||
int mul2 = addNodeToMatch("Mul", reshape4, mul1);
|
||||
int sub = addNodeToMatch("Sub", reshape2, mul2);
|
||||
int mul3 = addNodeToMatch("Mul", input, mul1);
|
||||
addNodeToMatch("Add", mul3, sub);
|
||||
setFusedNode("BatchNormalization", input, data1, data2, data4 ,data3);
|
||||
setFusedNode("BatchNormalization", input, weight, bias, mean, var);
|
||||
}
|
||||
};
|
||||
|
||||
class BatchNormalizationSubgraph2 : public BatchNormalizationSubgraphBase
|
||||
{
|
||||
public:
|
||||
BatchNormalizationSubgraph2()
|
||||
{
|
||||
int sqrtNode = addNodeToMatch("Sqrt", var);
|
||||
int divNode = addNodeToMatch("Div", A, sqrtNode);
|
||||
int mul1 = addNodeToMatch("Mul", weight, divNode);
|
||||
int reshape2 = addNodeToMatch("Reshape", mul1, shape2);
|
||||
|
||||
int mulMean = addNodeToMatch("Mul", mean, mul1);
|
||||
int sub = addNodeToMatch("Sub", bias, mulMean);
|
||||
int reshape1 = addNodeToMatch("Reshape", sub, shape1);
|
||||
|
||||
int mulInput = addNodeToMatch("Mul", input, reshape2);
|
||||
addNodeToMatch("Add", mulInput, reshape1);
|
||||
setFusedNode("BatchNormalization", input, weight, bias, mean, var);
|
||||
}
|
||||
};
|
||||
|
||||
@ -424,7 +457,8 @@ void simplifySubgraphs(opencv_onnx::GraphProto& net)
|
||||
subgraphs.push_back(makePtr<NormalizeSubgraph1>());
|
||||
subgraphs.push_back(makePtr<NormalizeSubgraph2>());
|
||||
subgraphs.push_back(makePtr<NormalizeSubgraph3>());
|
||||
subgraphs.push_back(makePtr<BatchNormalizationSubgraph>());
|
||||
subgraphs.push_back(makePtr<BatchNormalizationSubgraph1>());
|
||||
subgraphs.push_back(makePtr<BatchNormalizationSubgraph2>());
|
||||
|
||||
simplifySubgraphs(Ptr<ImportGraphWrapper>(new ONNXGraphWrapper(net)), subgraphs);
|
||||
}
|
||||
|
@ -309,30 +309,11 @@ static void addConstant(const std::string& name,
|
||||
outShapes.insert(std::make_pair(name, shape(blob)));
|
||||
}
|
||||
|
||||
void addConstantNodesForInitializers(opencv_onnx::GraphProto& graph_proto)
|
||||
{
|
||||
int num_initializers = graph_proto.initializer_size();
|
||||
for (int id = 0; id < num_initializers; id++)
|
||||
{
|
||||
opencv_onnx::TensorProto initializer = graph_proto.initializer(id);
|
||||
opencv_onnx::NodeProto* constant_node = graph_proto.add_node();
|
||||
constant_node->set_op_type("Constant");
|
||||
constant_node->set_name(initializer.name());
|
||||
constant_node->add_output(initializer.name());
|
||||
opencv_onnx::AttributeProto* value = constant_node->add_attribute();
|
||||
opencv_onnx::TensorProto* tensor = initializer.New();
|
||||
tensor->CopyFrom(initializer);
|
||||
releaseONNXTensor(initializer);
|
||||
value->set_allocated_t(tensor);
|
||||
}
|
||||
}
|
||||
|
||||
void ONNXImporter::populateNet(Net dstNet)
|
||||
{
|
||||
CV_Assert(model_proto.has_graph());
|
||||
opencv_onnx::GraphProto graph_proto = model_proto.graph();
|
||||
|
||||
addConstantNodesForInitializers(graph_proto);
|
||||
simplifySubgraphs(graph_proto);
|
||||
|
||||
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto);
|
||||
|
@ -46,6 +46,14 @@ static int toNCHW(int idx)
|
||||
else return (4 + idx) % 3 + 1;
|
||||
}
|
||||
|
||||
static int toNCDHW(int idx)
|
||||
{
|
||||
CV_Assert(-5 <= idx && idx < 5);
|
||||
if (idx == 0) return 0;
|
||||
else if (idx > 0) return idx % 4 + 1;
|
||||
else return (5 + idx) % 4 + 1;
|
||||
}
|
||||
|
||||
// This values are used to indicate layer output's data layout where it's possible.
|
||||
enum DataLayout
|
||||
{
|
||||
@ -1323,6 +1331,8 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
if (getDataLayout(name, data_layouts) == DATA_LAYOUT_NHWC)
|
||||
axis = toNCHW(axis);
|
||||
else if (getDataLayout(name, data_layouts) == DATA_LAYOUT_NDHWC)
|
||||
axis = toNCDHW(axis);
|
||||
layerParams.set("axis", axis);
|
||||
|
||||
// input(0) or input(n-1) is concat_dim
|
||||
|
@ -330,6 +330,13 @@ TEST_P(Test_ONNX_layers, BatchNormalizationUnfused)
|
||||
testONNXModels("frozenBatchNorm2d");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, BatchNormalizationSubgraph)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
testONNXModels("batch_norm_subgraph");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Transpose)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
|
@ -222,6 +222,21 @@ TEST_P(Test_TensorFlow_layers, concat_axis_1)
|
||||
runTensorFlowNet("concat_axis_1");
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, concat_3d)
|
||||
{
|
||||
if (backend == DNN_BACKEND_OPENCV && target != DNN_TARGET_CPU)
|
||||
{
|
||||
if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
|
||||
if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL);
|
||||
}
|
||||
|
||||
if ((backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
|
||||
backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019) && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
|
||||
runTensorFlowNet("concat_3d");
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, batch_norm_1)
|
||||
{
|
||||
runTensorFlowNet("batch_norm");
|
||||
|
@ -1,4 +1,7 @@
|
||||
set(the_description "2D Features Framework")
|
||||
|
||||
ocv_add_dispatched_file(sift SSE4_1 AVX2 AVX512_SKX)
|
||||
|
||||
set(debug_modules "")
|
||||
if(DEBUG_opencv_features2d)
|
||||
list(APPEND debug_modules opencv_highgui)
|
||||
|
540
modules/features2d/src/sift.dispatch.cpp
Normal file
540
modules/features2d/src/sift.dispatch.cpp
Normal file
@ -0,0 +1,540 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
//
|
||||
// Copyright (c) 2006-2010, Rob Hess <hess@eecs.oregonstate.edu>
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
|
||||
/**********************************************************************************************\
|
||||
Implementation of SIFT is based on the code from http://blogs.oregonstate.edu/hess/code/sift/
|
||||
Below is the original copyright.
|
||||
Patent US6711293 expired in March 2020.
|
||||
|
||||
// Copyright (c) 2006-2010, Rob Hess <hess@eecs.oregonstate.edu>
|
||||
// All rights reserved.
|
||||
|
||||
// The following patent has been issued for methods embodied in this
|
||||
// software: "Method and apparatus for identifying scale invariant features
|
||||
// in an image and use of same for locating an object in an image," David
|
||||
// G. Lowe, US Patent 6,711,293 (March 23, 2004). Provisional application
|
||||
// filed March 8, 1999. Asignee: The University of British Columbia. For
|
||||
// further details, contact David Lowe (lowe@cs.ubc.ca) or the
|
||||
// University-Industry Liaison Office of the University of British
|
||||
// Columbia.
|
||||
|
||||
// Note that restrictions imposed by this patent (and possibly others)
|
||||
// exist independently of and may be in conflict with the freedoms granted
|
||||
// in this license, which refers to copyright of the program, not patents
|
||||
// for any methods that it implements. Both copyright and patent law must
|
||||
// be obeyed to legally use and redistribute this program and it is not the
|
||||
// purpose of this license to induce you to infringe any patents or other
|
||||
// property right claims or to contest validity of any such claims. If you
|
||||
// redistribute or use the program, then this license merely protects you
|
||||
// from committing copyright infringement. It does not protect you from
|
||||
// committing patent infringement. So, before you do anything with this
|
||||
// program, make sure that you have permission to do so not merely in terms
|
||||
// of copyright, but also in terms of patent law.
|
||||
|
||||
// Please note that this license is not to be understood as a guarantee
|
||||
// either. If you use the program according to this license, but in
|
||||
// conflict with patent law, it does not mean that the licensor will refund
|
||||
// you for any losses that you incur if you are sued for your patent
|
||||
// infringement.
|
||||
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
// * Redistributions of source code must retain the above copyright and
|
||||
// patent notices, this list of conditions and the following
|
||||
// disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above copyright
|
||||
// notice, this list of conditions and the following disclaimer in
|
||||
// the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Oregon State University nor the names of its
|
||||
// contributors may be used to endorse or promote products derived
|
||||
// from this software without specific prior written permission.
|
||||
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
// PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// HOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
\**********************************************************************************************/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <opencv2/core/hal/hal.hpp>
|
||||
#include <opencv2/core/utils/tls.hpp>
|
||||
|
||||
#include "sift.simd.hpp"
|
||||
#include "sift.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
|
||||
|
||||
namespace cv {
|
||||
|
||||
/*!
|
||||
SIFT implementation.
|
||||
|
||||
The class implements SIFT algorithm by D. Lowe.
|
||||
*/
|
||||
class SIFT_Impl : public SIFT
|
||||
{
|
||||
public:
|
||||
explicit SIFT_Impl( int nfeatures = 0, int nOctaveLayers = 3,
|
||||
double contrastThreshold = 0.04, double edgeThreshold = 10,
|
||||
double sigma = 1.6);
|
||||
|
||||
//! returns the descriptor size in floats (128)
|
||||
int descriptorSize() const CV_OVERRIDE;
|
||||
|
||||
//! returns the descriptor type
|
||||
int descriptorType() const CV_OVERRIDE;
|
||||
|
||||
//! returns the default norm type
|
||||
int defaultNorm() const CV_OVERRIDE;
|
||||
|
||||
//! finds the keypoints and computes descriptors for them using SIFT algorithm.
|
||||
//! Optionally it can compute descriptors for the user-provided keypoints
|
||||
void detectAndCompute(InputArray img, InputArray mask,
|
||||
std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors,
|
||||
bool useProvidedKeypoints = false) CV_OVERRIDE;
|
||||
|
||||
void buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const;
|
||||
void buildDoGPyramid( const std::vector<Mat>& pyr, std::vector<Mat>& dogpyr ) const;
|
||||
void findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& keypoints ) const;
|
||||
|
||||
protected:
|
||||
CV_PROP_RW int nfeatures;
|
||||
CV_PROP_RW int nOctaveLayers;
|
||||
CV_PROP_RW double contrastThreshold;
|
||||
CV_PROP_RW double edgeThreshold;
|
||||
CV_PROP_RW double sigma;
|
||||
};
|
||||
|
||||
Ptr<SIFT> SIFT::create( int _nfeatures, int _nOctaveLayers,
|
||||
double _contrastThreshold, double _edgeThreshold, double _sigma )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma);
|
||||
}
|
||||
|
||||
static inline void
|
||||
unpackOctave(const KeyPoint& kpt, int& octave, int& layer, float& scale)
|
||||
{
|
||||
octave = kpt.octave & 255;
|
||||
layer = (kpt.octave >> 8) & 255;
|
||||
octave = octave < 128 ? octave : (-128 | octave);
|
||||
scale = octave >= 0 ? 1.f/(1 << octave) : (float)(1 << -octave);
|
||||
}
|
||||
|
||||
static Mat createInitialImage( const Mat& img, bool doubleImageSize, float sigma )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
Mat gray, gray_fpt;
|
||||
if( img.channels() == 3 || img.channels() == 4 )
|
||||
{
|
||||
cvtColor(img, gray, COLOR_BGR2GRAY);
|
||||
gray.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0);
|
||||
}
|
||||
else
|
||||
img.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0);
|
||||
|
||||
float sig_diff;
|
||||
|
||||
if( doubleImageSize )
|
||||
{
|
||||
sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA * 4, 0.01f) );
|
||||
Mat dbl;
|
||||
#if DoG_TYPE_SHORT
|
||||
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR_EXACT);
|
||||
#else
|
||||
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR);
|
||||
#endif
|
||||
Mat result;
|
||||
GaussianBlur(dbl, result, Size(), sig_diff, sig_diff);
|
||||
return result;
|
||||
}
|
||||
else
|
||||
{
|
||||
sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA, 0.01f) );
|
||||
Mat result;
|
||||
GaussianBlur(gray_fpt, result, Size(), sig_diff, sig_diff);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void SIFT_Impl::buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
std::vector<double> sig(nOctaveLayers + 3);
|
||||
pyr.resize(nOctaves*(nOctaveLayers + 3));
|
||||
|
||||
// precompute Gaussian sigmas using the following formula:
|
||||
// \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2
|
||||
sig[0] = sigma;
|
||||
double k = std::pow( 2., 1. / nOctaveLayers );
|
||||
for( int i = 1; i < nOctaveLayers + 3; i++ )
|
||||
{
|
||||
double sig_prev = std::pow(k, (double)(i-1))*sigma;
|
||||
double sig_total = sig_prev*k;
|
||||
sig[i] = std::sqrt(sig_total*sig_total - sig_prev*sig_prev);
|
||||
}
|
||||
|
||||
for( int o = 0; o < nOctaves; o++ )
|
||||
{
|
||||
for( int i = 0; i < nOctaveLayers + 3; i++ )
|
||||
{
|
||||
Mat& dst = pyr[o*(nOctaveLayers + 3) + i];
|
||||
if( o == 0 && i == 0 )
|
||||
dst = base;
|
||||
// base of new octave is halved image from end of previous octave
|
||||
else if( i == 0 )
|
||||
{
|
||||
const Mat& src = pyr[(o-1)*(nOctaveLayers + 3) + nOctaveLayers];
|
||||
resize(src, dst, Size(src.cols/2, src.rows/2),
|
||||
0, 0, INTER_NEAREST);
|
||||
}
|
||||
else
|
||||
{
|
||||
const Mat& src = pyr[o*(nOctaveLayers + 3) + i-1];
|
||||
GaussianBlur(src, dst, Size(), sig[i], sig[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class buildDoGPyramidComputer : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
buildDoGPyramidComputer(
|
||||
int _nOctaveLayers,
|
||||
const std::vector<Mat>& _gpyr,
|
||||
std::vector<Mat>& _dogpyr)
|
||||
: nOctaveLayers(_nOctaveLayers),
|
||||
gpyr(_gpyr),
|
||||
dogpyr(_dogpyr) { }
|
||||
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
|
||||
for( int a = begin; a < end; a++ )
|
||||
{
|
||||
const int o = a / (nOctaveLayers + 2);
|
||||
const int i = a % (nOctaveLayers + 2);
|
||||
|
||||
const Mat& src1 = gpyr[o*(nOctaveLayers + 3) + i];
|
||||
const Mat& src2 = gpyr[o*(nOctaveLayers + 3) + i + 1];
|
||||
Mat& dst = dogpyr[o*(nOctaveLayers + 2) + i];
|
||||
subtract(src2, src1, dst, noArray(), DataType<sift_wt>::type);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int nOctaveLayers;
|
||||
const std::vector<Mat>& gpyr;
|
||||
std::vector<Mat>& dogpyr;
|
||||
};
|
||||
|
||||
void SIFT_Impl::buildDoGPyramid( const std::vector<Mat>& gpyr, std::vector<Mat>& dogpyr ) const
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
int nOctaves = (int)gpyr.size()/(nOctaveLayers + 3);
|
||||
dogpyr.resize( nOctaves*(nOctaveLayers + 2) );
|
||||
|
||||
parallel_for_(Range(0, nOctaves * (nOctaveLayers + 2)), buildDoGPyramidComputer(nOctaveLayers, gpyr, dogpyr));
|
||||
}
|
||||
|
||||
class findScaleSpaceExtremaComputer : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
findScaleSpaceExtremaComputer(
|
||||
int _o,
|
||||
int _i,
|
||||
int _threshold,
|
||||
int _idx,
|
||||
int _step,
|
||||
int _cols,
|
||||
int _nOctaveLayers,
|
||||
double _contrastThreshold,
|
||||
double _edgeThreshold,
|
||||
double _sigma,
|
||||
const std::vector<Mat>& _gauss_pyr,
|
||||
const std::vector<Mat>& _dog_pyr,
|
||||
TLSData<std::vector<KeyPoint> > &_tls_kpts_struct)
|
||||
|
||||
: o(_o),
|
||||
i(_i),
|
||||
threshold(_threshold),
|
||||
idx(_idx),
|
||||
step(_step),
|
||||
cols(_cols),
|
||||
nOctaveLayers(_nOctaveLayers),
|
||||
contrastThreshold(_contrastThreshold),
|
||||
edgeThreshold(_edgeThreshold),
|
||||
sigma(_sigma),
|
||||
gauss_pyr(_gauss_pyr),
|
||||
dog_pyr(_dog_pyr),
|
||||
tls_kpts_struct(_tls_kpts_struct) { }
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
std::vector<KeyPoint>& kpts = tls_kpts_struct.getRef();
|
||||
|
||||
CV_CPU_DISPATCH(findScaleSpaceExtrema, (o, i, threshold, idx, step, cols, nOctaveLayers, contrastThreshold, edgeThreshold, sigma, gauss_pyr, dog_pyr, kpts, range),
|
||||
CV_CPU_DISPATCH_MODES_ALL);
|
||||
}
|
||||
private:
|
||||
int o, i;
|
||||
int threshold;
|
||||
int idx, step, cols;
|
||||
int nOctaveLayers;
|
||||
double contrastThreshold;
|
||||
double edgeThreshold;
|
||||
double sigma;
|
||||
const std::vector<Mat>& gauss_pyr;
|
||||
const std::vector<Mat>& dog_pyr;
|
||||
TLSData<std::vector<KeyPoint> > &tls_kpts_struct;
|
||||
};
|
||||
|
||||
//
|
||||
// Detects features at extrema in DoG scale space. Bad features are discarded
|
||||
// based on contrast and ratio of principal curvatures.
|
||||
void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& keypoints ) const
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const int nOctaves = (int)gauss_pyr.size()/(nOctaveLayers + 3);
|
||||
const int threshold = cvFloor(0.5 * contrastThreshold / nOctaveLayers * 255 * SIFT_FIXPT_SCALE);
|
||||
|
||||
keypoints.clear();
|
||||
TLSDataAccumulator<std::vector<KeyPoint> > tls_kpts_struct;
|
||||
|
||||
for( int o = 0; o < nOctaves; o++ )
|
||||
for( int i = 1; i <= nOctaveLayers; i++ )
|
||||
{
|
||||
const int idx = o*(nOctaveLayers+2)+i;
|
||||
const Mat& img = dog_pyr[idx];
|
||||
const int step = (int)img.step1();
|
||||
const int rows = img.rows, cols = img.cols;
|
||||
|
||||
parallel_for_(Range(SIFT_IMG_BORDER, rows-SIFT_IMG_BORDER),
|
||||
findScaleSpaceExtremaComputer(
|
||||
o, i, threshold, idx, step, cols,
|
||||
nOctaveLayers,
|
||||
contrastThreshold,
|
||||
edgeThreshold,
|
||||
sigma,
|
||||
gauss_pyr, dog_pyr, tls_kpts_struct));
|
||||
}
|
||||
|
||||
std::vector<std::vector<KeyPoint>*> kpt_vecs;
|
||||
tls_kpts_struct.gather(kpt_vecs);
|
||||
for (size_t i = 0; i < kpt_vecs.size(); ++i) {
|
||||
keypoints.insert(keypoints.end(), kpt_vecs[i]->begin(), kpt_vecs[i]->end());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static
|
||||
void calcSIFTDescriptor(
|
||||
const Mat& img, Point2f ptf, float ori, float scl,
|
||||
int d, int n, float* dst
|
||||
)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
CV_CPU_DISPATCH(calcSIFTDescriptor, (img, ptf, ori, scl, d, n, dst),
|
||||
CV_CPU_DISPATCH_MODES_ALL);
|
||||
}
|
||||
|
||||
class calcDescriptorsComputer : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
calcDescriptorsComputer(const std::vector<Mat>& _gpyr,
|
||||
const std::vector<KeyPoint>& _keypoints,
|
||||
Mat& _descriptors,
|
||||
int _nOctaveLayers,
|
||||
int _firstOctave)
|
||||
: gpyr(_gpyr),
|
||||
keypoints(_keypoints),
|
||||
descriptors(_descriptors),
|
||||
nOctaveLayers(_nOctaveLayers),
|
||||
firstOctave(_firstOctave) { }
|
||||
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
|
||||
static const int d = SIFT_DESCR_WIDTH, n = SIFT_DESCR_HIST_BINS;
|
||||
|
||||
for ( int i = begin; i<end; i++ )
|
||||
{
|
||||
KeyPoint kpt = keypoints[i];
|
||||
int octave, layer;
|
||||
float scale;
|
||||
unpackOctave(kpt, octave, layer, scale);
|
||||
CV_Assert(octave >= firstOctave && layer <= nOctaveLayers+2);
|
||||
float size=kpt.size*scale;
|
||||
Point2f ptf(kpt.pt.x*scale, kpt.pt.y*scale);
|
||||
const Mat& img = gpyr[(octave - firstOctave)*(nOctaveLayers + 3) + layer];
|
||||
|
||||
float angle = 360.f - kpt.angle;
|
||||
if(std::abs(angle - 360.f) < FLT_EPSILON)
|
||||
angle = 0.f;
|
||||
calcSIFTDescriptor(img, ptf, angle, size*0.5f, d, n, descriptors.ptr<float>((int)i));
|
||||
}
|
||||
}
|
||||
private:
|
||||
const std::vector<Mat>& gpyr;
|
||||
const std::vector<KeyPoint>& keypoints;
|
||||
Mat& descriptors;
|
||||
int nOctaveLayers;
|
||||
int firstOctave;
|
||||
};
|
||||
|
||||
static void calcDescriptors(const std::vector<Mat>& gpyr, const std::vector<KeyPoint>& keypoints,
|
||||
Mat& descriptors, int nOctaveLayers, int firstOctave )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
parallel_for_(Range(0, static_cast<int>(keypoints.size())), calcDescriptorsComputer(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave));
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
SIFT_Impl::SIFT_Impl( int _nfeatures, int _nOctaveLayers,
|
||||
double _contrastThreshold, double _edgeThreshold, double _sigma )
|
||||
: nfeatures(_nfeatures), nOctaveLayers(_nOctaveLayers),
|
||||
contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma)
|
||||
{
|
||||
}
|
||||
|
||||
int SIFT_Impl::descriptorSize() const
|
||||
{
|
||||
return SIFT_DESCR_WIDTH*SIFT_DESCR_WIDTH*SIFT_DESCR_HIST_BINS;
|
||||
}
|
||||
|
||||
int SIFT_Impl::descriptorType() const
|
||||
{
|
||||
return CV_32F;
|
||||
}
|
||||
|
||||
int SIFT_Impl::defaultNorm() const
|
||||
{
|
||||
return NORM_L2;
|
||||
}
|
||||
|
||||
|
||||
void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask,
|
||||
std::vector<KeyPoint>& keypoints,
|
||||
OutputArray _descriptors,
|
||||
bool useProvidedKeypoints)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
int firstOctave = -1, actualNOctaves = 0, actualNLayers = 0;
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
|
||||
if( image.empty() || image.depth() != CV_8U )
|
||||
CV_Error( Error::StsBadArg, "image is empty or has incorrect depth (!=CV_8U)" );
|
||||
|
||||
if( !mask.empty() && mask.type() != CV_8UC1 )
|
||||
CV_Error( Error::StsBadArg, "mask has incorrect type (!=CV_8UC1)" );
|
||||
|
||||
if( useProvidedKeypoints )
|
||||
{
|
||||
firstOctave = 0;
|
||||
int maxOctave = INT_MIN;
|
||||
for( size_t i = 0; i < keypoints.size(); i++ )
|
||||
{
|
||||
int octave, layer;
|
||||
float scale;
|
||||
unpackOctave(keypoints[i], octave, layer, scale);
|
||||
firstOctave = std::min(firstOctave, octave);
|
||||
maxOctave = std::max(maxOctave, octave);
|
||||
actualNLayers = std::max(actualNLayers, layer-2);
|
||||
}
|
||||
|
||||
firstOctave = std::min(firstOctave, 0);
|
||||
CV_Assert( firstOctave >= -1 && actualNLayers <= nOctaveLayers );
|
||||
actualNOctaves = maxOctave - firstOctave + 1;
|
||||
}
|
||||
|
||||
Mat base = createInitialImage(image, firstOctave < 0, (float)sigma);
|
||||
std::vector<Mat> gpyr;
|
||||
int nOctaves = actualNOctaves > 0 ? actualNOctaves : cvRound(std::log( (double)std::min( base.cols, base.rows ) ) / std::log(2.) - 2) - firstOctave;
|
||||
|
||||
//double t, tf = getTickFrequency();
|
||||
//t = (double)getTickCount();
|
||||
buildGaussianPyramid(base, gpyr, nOctaves);
|
||||
|
||||
//t = (double)getTickCount() - t;
|
||||
//printf("pyramid construction time: %g\n", t*1000./tf);
|
||||
|
||||
if( !useProvidedKeypoints )
|
||||
{
|
||||
std::vector<Mat> dogpyr;
|
||||
buildDoGPyramid(gpyr, dogpyr);
|
||||
//t = (double)getTickCount();
|
||||
findScaleSpaceExtrema(gpyr, dogpyr, keypoints);
|
||||
KeyPointsFilter::removeDuplicatedSorted( keypoints );
|
||||
|
||||
if( nfeatures > 0 )
|
||||
KeyPointsFilter::retainBest(keypoints, nfeatures);
|
||||
//t = (double)getTickCount() - t;
|
||||
//printf("keypoint detection time: %g\n", t*1000./tf);
|
||||
|
||||
if( firstOctave < 0 )
|
||||
for( size_t i = 0; i < keypoints.size(); i++ )
|
||||
{
|
||||
KeyPoint& kpt = keypoints[i];
|
||||
float scale = 1.f/(float)(1 << -firstOctave);
|
||||
kpt.octave = (kpt.octave & ~255) | ((kpt.octave + firstOctave) & 255);
|
||||
kpt.pt *= scale;
|
||||
kpt.size *= scale;
|
||||
}
|
||||
|
||||
if( !mask.empty() )
|
||||
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
}
|
||||
else
|
||||
{
|
||||
// filter keypoints by mask
|
||||
//KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
}
|
||||
|
||||
if( _descriptors.needed() )
|
||||
{
|
||||
//t = (double)getTickCount();
|
||||
int dsize = descriptorSize();
|
||||
_descriptors.create((int)keypoints.size(), dsize, CV_32F);
|
||||
Mat descriptors = _descriptors.getMat();
|
||||
|
||||
calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave);
|
||||
//t = (double)getTickCount() - t;
|
||||
//printf("descriptor extraction time: %g\n", t*1000./tf);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -70,63 +70,13 @@
|
||||
\**********************************************************************************************/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include <iostream>
|
||||
#include <stdarg.h>
|
||||
|
||||
#include <opencv2/core/hal/hal.hpp>
|
||||
#include "opencv2/core/hal/intrin.hpp"
|
||||
|
||||
#include <opencv2/core/utils/tls.hpp>
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/*!
|
||||
SIFT implementation.
|
||||
|
||||
The class implements SIFT algorithm by D. Lowe.
|
||||
*/
|
||||
class SIFT_Impl : public SIFT
|
||||
{
|
||||
public:
|
||||
explicit SIFT_Impl( int nfeatures = 0, int nOctaveLayers = 3,
|
||||
double contrastThreshold = 0.04, double edgeThreshold = 10,
|
||||
double sigma = 1.6);
|
||||
|
||||
//! returns the descriptor size in floats (128)
|
||||
int descriptorSize() const CV_OVERRIDE;
|
||||
|
||||
//! returns the descriptor type
|
||||
int descriptorType() const CV_OVERRIDE;
|
||||
|
||||
//! returns the default norm type
|
||||
int defaultNorm() const CV_OVERRIDE;
|
||||
|
||||
//! finds the keypoints and computes descriptors for them using SIFT algorithm.
|
||||
//! Optionally it can compute descriptors for the user-provided keypoints
|
||||
void detectAndCompute(InputArray img, InputArray mask,
|
||||
std::vector<KeyPoint>& keypoints,
|
||||
OutputArray descriptors,
|
||||
bool useProvidedKeypoints = false) CV_OVERRIDE;
|
||||
|
||||
void buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const;
|
||||
void buildDoGPyramid( const std::vector<Mat>& pyr, std::vector<Mat>& dogpyr ) const;
|
||||
void findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& keypoints ) const;
|
||||
|
||||
protected:
|
||||
CV_PROP_RW int nfeatures;
|
||||
CV_PROP_RW int nOctaveLayers;
|
||||
CV_PROP_RW double contrastThreshold;
|
||||
CV_PROP_RW double edgeThreshold;
|
||||
CV_PROP_RW double sigma;
|
||||
};
|
||||
|
||||
Ptr<SIFT> SIFT::create( int _nfeatures, int _nOctaveLayers,
|
||||
double _contrastThreshold, double _edgeThreshold, double _sigma )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma);
|
||||
}
|
||||
namespace cv {
|
||||
|
||||
#if !defined(CV_CPU_DISPATCH_MODE) || !defined(CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY)
|
||||
/******************************* Defs and macros *****************************/
|
||||
|
||||
// default width of descriptor histogram array
|
||||
@ -151,7 +101,7 @@ static const int SIFT_ORI_HIST_BINS = 36;
|
||||
static const float SIFT_ORI_SIG_FCTR = 1.5f;
|
||||
|
||||
// determines the radius of the region used in orientation assignment
|
||||
static const float SIFT_ORI_RADIUS = 3 * SIFT_ORI_SIG_FCTR;
|
||||
static const float SIFT_ORI_RADIUS = 4.5f; // 3 * SIFT_ORI_SIG_FCTR;
|
||||
|
||||
// orientation magnitude relative to max that results in new feature
|
||||
static const float SIFT_ORI_PEAK_RATIO = 0.8f;
|
||||
@ -176,144 +126,41 @@ typedef float sift_wt;
|
||||
static const int SIFT_FIXPT_SCALE = 1;
|
||||
#endif
|
||||
|
||||
static inline void
|
||||
unpackOctave(const KeyPoint& kpt, int& octave, int& layer, float& scale)
|
||||
{
|
||||
octave = kpt.octave & 255;
|
||||
layer = (kpt.octave >> 8) & 255;
|
||||
octave = octave < 128 ? octave : (-128 | octave);
|
||||
scale = octave >= 0 ? 1.f/(1 << octave) : (float)(1 << -octave);
|
||||
}
|
||||
|
||||
static Mat createInitialImage( const Mat& img, bool doubleImageSize, float sigma )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
Mat gray, gray_fpt;
|
||||
if( img.channels() == 3 || img.channels() == 4 )
|
||||
{
|
||||
cvtColor(img, gray, COLOR_BGR2GRAY);
|
||||
gray.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0);
|
||||
}
|
||||
else
|
||||
img.convertTo(gray_fpt, DataType<sift_wt>::type, SIFT_FIXPT_SCALE, 0);
|
||||
|
||||
float sig_diff;
|
||||
|
||||
if( doubleImageSize )
|
||||
{
|
||||
sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA * 4, 0.01f) );
|
||||
Mat dbl;
|
||||
#if DoG_TYPE_SHORT
|
||||
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR_EXACT);
|
||||
#else
|
||||
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR);
|
||||
#endif
|
||||
Mat result;
|
||||
GaussianBlur(dbl, result, Size(), sig_diff, sig_diff);
|
||||
return result;
|
||||
}
|
||||
else
|
||||
{
|
||||
sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA, 0.01f) );
|
||||
Mat result;
|
||||
GaussianBlur(gray_fpt, result, Size(), sig_diff, sig_diff);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
#endif // definitions and macros
|
||||
|
||||
|
||||
void SIFT_Impl::buildGaussianPyramid( const Mat& base, std::vector<Mat>& pyr, int nOctaves ) const
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
|
||||
std::vector<double> sig(nOctaveLayers + 3);
|
||||
pyr.resize(nOctaves*(nOctaveLayers + 3));
|
||||
void findScaleSpaceExtrema(
|
||||
int octave,
|
||||
int layer,
|
||||
int threshold,
|
||||
int idx,
|
||||
int step,
|
||||
int cols,
|
||||
int nOctaveLayers,
|
||||
double contrastThreshold,
|
||||
double edgeThreshold,
|
||||
double sigma,
|
||||
const std::vector<Mat>& gauss_pyr,
|
||||
const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& kpts,
|
||||
const cv::Range& range);
|
||||
|
||||
// precompute Gaussian sigmas using the following formula:
|
||||
// \sigma_{total}^2 = \sigma_{i}^2 + \sigma_{i-1}^2
|
||||
sig[0] = sigma;
|
||||
double k = std::pow( 2., 1. / nOctaveLayers );
|
||||
for( int i = 1; i < nOctaveLayers + 3; i++ )
|
||||
{
|
||||
double sig_prev = std::pow(k, (double)(i-1))*sigma;
|
||||
double sig_total = sig_prev*k;
|
||||
sig[i] = std::sqrt(sig_total*sig_total - sig_prev*sig_prev);
|
||||
}
|
||||
|
||||
for( int o = 0; o < nOctaves; o++ )
|
||||
{
|
||||
for( int i = 0; i < nOctaveLayers + 3; i++ )
|
||||
{
|
||||
Mat& dst = pyr[o*(nOctaveLayers + 3) + i];
|
||||
if( o == 0 && i == 0 )
|
||||
dst = base;
|
||||
// base of new octave is halved image from end of previous octave
|
||||
else if( i == 0 )
|
||||
{
|
||||
const Mat& src = pyr[(o-1)*(nOctaveLayers + 3) + nOctaveLayers];
|
||||
resize(src, dst, Size(src.cols/2, src.rows/2),
|
||||
0, 0, INTER_NEAREST);
|
||||
}
|
||||
else
|
||||
{
|
||||
const Mat& src = pyr[o*(nOctaveLayers + 3) + i-1];
|
||||
GaussianBlur(src, dst, Size(), sig[i], sig[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
void calcSIFTDescriptor(
|
||||
const Mat& img, Point2f ptf, float ori, float scl,
|
||||
int d, int n, float* dst
|
||||
);
|
||||
|
||||
|
||||
class buildDoGPyramidComputer : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
buildDoGPyramidComputer(
|
||||
int _nOctaveLayers,
|
||||
const std::vector<Mat>& _gpyr,
|
||||
std::vector<Mat>& _dogpyr)
|
||||
: nOctaveLayers(_nOctaveLayers),
|
||||
gpyr(_gpyr),
|
||||
dogpyr(_dogpyr) { }
|
||||
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
|
||||
for( int a = begin; a < end; a++ )
|
||||
{
|
||||
const int o = a / (nOctaveLayers + 2);
|
||||
const int i = a % (nOctaveLayers + 2);
|
||||
|
||||
const Mat& src1 = gpyr[o*(nOctaveLayers + 3) + i];
|
||||
const Mat& src2 = gpyr[o*(nOctaveLayers + 3) + i + 1];
|
||||
Mat& dst = dogpyr[o*(nOctaveLayers + 2) + i];
|
||||
subtract(src2, src1, dst, noArray(), DataType<sift_wt>::type);
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
int nOctaveLayers;
|
||||
const std::vector<Mat>& gpyr;
|
||||
std::vector<Mat>& dogpyr;
|
||||
};
|
||||
|
||||
void SIFT_Impl::buildDoGPyramid( const std::vector<Mat>& gpyr, std::vector<Mat>& dogpyr ) const
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
int nOctaves = (int)gpyr.size()/(nOctaveLayers + 3);
|
||||
dogpyr.resize( nOctaves*(nOctaveLayers + 2) );
|
||||
|
||||
parallel_for_(Range(0, nOctaves * (nOctaveLayers + 2)), buildDoGPyramidComputer(nOctaveLayers, gpyr, dogpyr));
|
||||
}
|
||||
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
|
||||
// Computes a gradient orientation histogram at a specified pixel
|
||||
static float calcOrientationHist( const Mat& img, Point pt, int radius,
|
||||
float sigma, float* hist, int n )
|
||||
static
|
||||
float calcOrientationHist(
|
||||
const Mat& img, Point pt, int radius,
|
||||
float sigma, float* hist, int n
|
||||
)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
@ -449,9 +296,12 @@ static float calcOrientationHist( const Mat& img, Point pt, int radius,
|
||||
// Interpolates a scale-space extremum's location and scale to subpixel
|
||||
// accuracy to form an image feature. Rejects features with low contrast.
|
||||
// Based on Section 4 of Lowe's paper.
|
||||
static bool adjustLocalExtrema( const std::vector<Mat>& dog_pyr, KeyPoint& kpt, int octv,
|
||||
static
|
||||
bool adjustLocalExtrema(
|
||||
const std::vector<Mat>& dog_pyr, KeyPoint& kpt, int octv,
|
||||
int& layer, int& r, int& c, int nOctaveLayers,
|
||||
float contrastThreshold, float edgeThreshold, float sigma )
|
||||
float contrastThreshold, float edgeThreshold, float sigma
|
||||
)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
@ -553,11 +403,12 @@ static bool adjustLocalExtrema( const std::vector<Mat>& dog_pyr, KeyPoint& kpt,
|
||||
return true;
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
class findScaleSpaceExtremaComputer : public ParallelLoopBody
|
||||
class findScaleSpaceExtremaT
|
||||
{
|
||||
public:
|
||||
findScaleSpaceExtremaComputer(
|
||||
findScaleSpaceExtremaT(
|
||||
int _o,
|
||||
int _i,
|
||||
int _threshold,
|
||||
@ -570,7 +421,7 @@ public:
|
||||
double _sigma,
|
||||
const std::vector<Mat>& _gauss_pyr,
|
||||
const std::vector<Mat>& _dog_pyr,
|
||||
TLSData<std::vector<KeyPoint> > &_tls_kpts_struct)
|
||||
std::vector<KeyPoint>& kpts)
|
||||
|
||||
: o(_o),
|
||||
i(_i),
|
||||
@ -584,8 +435,11 @@ public:
|
||||
sigma(_sigma),
|
||||
gauss_pyr(_gauss_pyr),
|
||||
dog_pyr(_dog_pyr),
|
||||
tls_kpts_struct(_tls_kpts_struct) { }
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE
|
||||
kpts_(kpts)
|
||||
{
|
||||
// nothing
|
||||
}
|
||||
void process(const cv::Range& range)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
@ -593,15 +447,12 @@ public:
|
||||
const int end = range.end;
|
||||
|
||||
static const int n = SIFT_ORI_HIST_BINS;
|
||||
float hist[n];
|
||||
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) hist[n];
|
||||
|
||||
const Mat& img = dog_pyr[idx];
|
||||
const Mat& prev = dog_pyr[idx-1];
|
||||
const Mat& next = dog_pyr[idx+1];
|
||||
|
||||
std::vector<KeyPoint> *tls_kpts = tls_kpts_struct.get();
|
||||
|
||||
KeyPoint kpt;
|
||||
for( int r = begin; r < end; r++)
|
||||
{
|
||||
const sift_wt* currptr = img.ptr<sift_wt>(r);
|
||||
@ -635,6 +486,7 @@ public:
|
||||
{
|
||||
CV_TRACE_REGION("pixel_candidate");
|
||||
|
||||
KeyPoint kpt;
|
||||
int r1 = r, c1 = c, layer = i;
|
||||
if( !adjustLocalExtrema(dog_pyr, kpt, o, layer, r1, c1,
|
||||
nOctaveLayers, (float)contrastThreshold,
|
||||
@ -659,9 +511,8 @@ public:
|
||||
kpt.angle = 360.f - (float)((360.f/n) * bin);
|
||||
if(std::abs(kpt.angle - 360.f) < FLT_EPSILON)
|
||||
kpt.angle = 0.f;
|
||||
{
|
||||
tls_kpts->push_back(kpt);
|
||||
}
|
||||
|
||||
kpts_.push_back(kpt);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -678,51 +529,42 @@ private:
|
||||
double sigma;
|
||||
const std::vector<Mat>& gauss_pyr;
|
||||
const std::vector<Mat>& dog_pyr;
|
||||
TLSData<std::vector<KeyPoint> > &tls_kpts_struct;
|
||||
std::vector<KeyPoint>& kpts_;
|
||||
};
|
||||
|
||||
//
|
||||
// Detects features at extrema in DoG scale space. Bad features are discarded
|
||||
// based on contrast and ratio of principal curvatures.
|
||||
void SIFT_Impl::findScaleSpaceExtrema( const std::vector<Mat>& gauss_pyr, const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& keypoints ) const
|
||||
} // namespace
|
||||
|
||||
|
||||
void findScaleSpaceExtrema(
|
||||
int octave,
|
||||
int layer,
|
||||
int threshold,
|
||||
int idx,
|
||||
int step,
|
||||
int cols,
|
||||
int nOctaveLayers,
|
||||
double contrastThreshold,
|
||||
double edgeThreshold,
|
||||
double sigma,
|
||||
const std::vector<Mat>& gauss_pyr,
|
||||
const std::vector<Mat>& dog_pyr,
|
||||
std::vector<KeyPoint>& kpts,
|
||||
const cv::Range& range)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const int nOctaves = (int)gauss_pyr.size()/(nOctaveLayers + 3);
|
||||
const int threshold = cvFloor(0.5 * contrastThreshold / nOctaveLayers * 255 * SIFT_FIXPT_SCALE);
|
||||
|
||||
keypoints.clear();
|
||||
TLSDataAccumulator<std::vector<KeyPoint> > tls_kpts_struct;
|
||||
|
||||
for( int o = 0; o < nOctaves; o++ )
|
||||
for( int i = 1; i <= nOctaveLayers; i++ )
|
||||
{
|
||||
const int idx = o*(nOctaveLayers+2)+i;
|
||||
const Mat& img = dog_pyr[idx];
|
||||
const int step = (int)img.step1();
|
||||
const int rows = img.rows, cols = img.cols;
|
||||
|
||||
parallel_for_(Range(SIFT_IMG_BORDER, rows-SIFT_IMG_BORDER),
|
||||
findScaleSpaceExtremaComputer(
|
||||
o, i, threshold, idx, step, cols,
|
||||
nOctaveLayers,
|
||||
contrastThreshold,
|
||||
edgeThreshold,
|
||||
sigma,
|
||||
gauss_pyr, dog_pyr, tls_kpts_struct));
|
||||
findScaleSpaceExtremaT(octave, layer, threshold, idx,
|
||||
step, cols,
|
||||
nOctaveLayers, contrastThreshold, edgeThreshold, sigma,
|
||||
gauss_pyr, dog_pyr,
|
||||
kpts)
|
||||
.process(range);
|
||||
}
|
||||
|
||||
std::vector<std::vector<KeyPoint>*> kpt_vecs;
|
||||
tls_kpts_struct.gather(kpt_vecs);
|
||||
for (size_t i = 0; i < kpt_vecs.size(); ++i) {
|
||||
keypoints.insert(keypoints.end(), kpt_vecs[i]->begin(), kpt_vecs[i]->end());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void calcSIFTDescriptor( const Mat& img, Point2f ptf, float ori, float scl,
|
||||
int d, int n, float* dst )
|
||||
void calcSIFTDescriptor(
|
||||
const Mat& img, Point2f ptf, float ori, float scl,
|
||||
int d, int n, float* dst
|
||||
)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
@ -734,7 +576,7 @@ static void calcSIFTDescriptor( const Mat& img, Point2f ptf, float ori, float sc
|
||||
float hist_width = SIFT_DESCR_SCL_FCTR * scl;
|
||||
int radius = cvRound(hist_width * 1.4142135623730951f * (d + 1) * 0.5f);
|
||||
// Clip the radius to the diagonal of the image to avoid autobuffer too large exception
|
||||
radius = std::min(radius, (int) sqrt(((double) img.cols)*img.cols + ((double) img.rows)*img.rows));
|
||||
radius = std::min(radius, (int)std::sqrt(((double) img.cols)*img.cols + ((double) img.rows)*img.rows));
|
||||
cos_t /= hist_width;
|
||||
sin_t /= hist_width;
|
||||
|
||||
@ -1016,175 +858,6 @@ static void calcSIFTDescriptor( const Mat& img, Point2f ptf, float ori, float sc
|
||||
#endif
|
||||
}
|
||||
|
||||
class calcDescriptorsComputer : public ParallelLoopBody
|
||||
{
|
||||
public:
|
||||
calcDescriptorsComputer(const std::vector<Mat>& _gpyr,
|
||||
const std::vector<KeyPoint>& _keypoints,
|
||||
Mat& _descriptors,
|
||||
int _nOctaveLayers,
|
||||
int _firstOctave)
|
||||
: gpyr(_gpyr),
|
||||
keypoints(_keypoints),
|
||||
descriptors(_descriptors),
|
||||
nOctaveLayers(_nOctaveLayers),
|
||||
firstOctave(_firstOctave) { }
|
||||
|
||||
void operator()( const cv::Range& range ) const CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
const int begin = range.start;
|
||||
const int end = range.end;
|
||||
|
||||
static const int d = SIFT_DESCR_WIDTH, n = SIFT_DESCR_HIST_BINS;
|
||||
|
||||
for ( int i = begin; i<end; i++ )
|
||||
{
|
||||
KeyPoint kpt = keypoints[i];
|
||||
int octave, layer;
|
||||
float scale;
|
||||
unpackOctave(kpt, octave, layer, scale);
|
||||
CV_Assert(octave >= firstOctave && layer <= nOctaveLayers+2);
|
||||
float size=kpt.size*scale;
|
||||
Point2f ptf(kpt.pt.x*scale, kpt.pt.y*scale);
|
||||
const Mat& img = gpyr[(octave - firstOctave)*(nOctaveLayers + 3) + layer];
|
||||
|
||||
float angle = 360.f - kpt.angle;
|
||||
if(std::abs(angle - 360.f) < FLT_EPSILON)
|
||||
angle = 0.f;
|
||||
calcSIFTDescriptor(img, ptf, angle, size*0.5f, d, n, descriptors.ptr<float>((int)i));
|
||||
}
|
||||
}
|
||||
private:
|
||||
const std::vector<Mat>& gpyr;
|
||||
const std::vector<KeyPoint>& keypoints;
|
||||
Mat& descriptors;
|
||||
int nOctaveLayers;
|
||||
int firstOctave;
|
||||
};
|
||||
|
||||
static void calcDescriptors(const std::vector<Mat>& gpyr, const std::vector<KeyPoint>& keypoints,
|
||||
Mat& descriptors, int nOctaveLayers, int firstOctave )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
parallel_for_(Range(0, static_cast<int>(keypoints.size())), calcDescriptorsComputer(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave));
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
SIFT_Impl::SIFT_Impl( int _nfeatures, int _nOctaveLayers,
|
||||
double _contrastThreshold, double _edgeThreshold, double _sigma )
|
||||
: nfeatures(_nfeatures), nOctaveLayers(_nOctaveLayers),
|
||||
contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma)
|
||||
{
|
||||
}
|
||||
|
||||
int SIFT_Impl::descriptorSize() const
|
||||
{
|
||||
return SIFT_DESCR_WIDTH*SIFT_DESCR_WIDTH*SIFT_DESCR_HIST_BINS;
|
||||
}
|
||||
|
||||
int SIFT_Impl::descriptorType() const
|
||||
{
|
||||
return CV_32F;
|
||||
}
|
||||
|
||||
int SIFT_Impl::defaultNorm() const
|
||||
{
|
||||
return NORM_L2;
|
||||
}
|
||||
|
||||
|
||||
void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask,
|
||||
std::vector<KeyPoint>& keypoints,
|
||||
OutputArray _descriptors,
|
||||
bool useProvidedKeypoints)
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
int firstOctave = -1, actualNOctaves = 0, actualNLayers = 0;
|
||||
Mat image = _image.getMat(), mask = _mask.getMat();
|
||||
|
||||
if( image.empty() || image.depth() != CV_8U )
|
||||
CV_Error( Error::StsBadArg, "image is empty or has incorrect depth (!=CV_8U)" );
|
||||
|
||||
if( !mask.empty() && mask.type() != CV_8UC1 )
|
||||
CV_Error( Error::StsBadArg, "mask has incorrect type (!=CV_8UC1)" );
|
||||
|
||||
if( useProvidedKeypoints )
|
||||
{
|
||||
firstOctave = 0;
|
||||
int maxOctave = INT_MIN;
|
||||
for( size_t i = 0; i < keypoints.size(); i++ )
|
||||
{
|
||||
int octave, layer;
|
||||
float scale;
|
||||
unpackOctave(keypoints[i], octave, layer, scale);
|
||||
firstOctave = std::min(firstOctave, octave);
|
||||
maxOctave = std::max(maxOctave, octave);
|
||||
actualNLayers = std::max(actualNLayers, layer-2);
|
||||
}
|
||||
|
||||
firstOctave = std::min(firstOctave, 0);
|
||||
CV_Assert( firstOctave >= -1 && actualNLayers <= nOctaveLayers );
|
||||
actualNOctaves = maxOctave - firstOctave + 1;
|
||||
}
|
||||
|
||||
Mat base = createInitialImage(image, firstOctave < 0, (float)sigma);
|
||||
std::vector<Mat> gpyr;
|
||||
int nOctaves = actualNOctaves > 0 ? actualNOctaves : cvRound(std::log( (double)std::min( base.cols, base.rows ) ) / std::log(2.) - 2) - firstOctave;
|
||||
|
||||
//double t, tf = getTickFrequency();
|
||||
//t = (double)getTickCount();
|
||||
buildGaussianPyramid(base, gpyr, nOctaves);
|
||||
|
||||
//t = (double)getTickCount() - t;
|
||||
//printf("pyramid construction time: %g\n", t*1000./tf);
|
||||
|
||||
if( !useProvidedKeypoints )
|
||||
{
|
||||
std::vector<Mat> dogpyr;
|
||||
buildDoGPyramid(gpyr, dogpyr);
|
||||
//t = (double)getTickCount();
|
||||
findScaleSpaceExtrema(gpyr, dogpyr, keypoints);
|
||||
KeyPointsFilter::removeDuplicatedSorted( keypoints );
|
||||
|
||||
if( nfeatures > 0 )
|
||||
KeyPointsFilter::retainBest(keypoints, nfeatures);
|
||||
//t = (double)getTickCount() - t;
|
||||
//printf("keypoint detection time: %g\n", t*1000./tf);
|
||||
|
||||
if( firstOctave < 0 )
|
||||
for( size_t i = 0; i < keypoints.size(); i++ )
|
||||
{
|
||||
KeyPoint& kpt = keypoints[i];
|
||||
float scale = 1.f/(float)(1 << -firstOctave);
|
||||
kpt.octave = (kpt.octave & ~255) | ((kpt.octave + firstOctave) & 255);
|
||||
kpt.pt *= scale;
|
||||
kpt.size *= scale;
|
||||
}
|
||||
|
||||
if( !mask.empty() )
|
||||
KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
}
|
||||
else
|
||||
{
|
||||
// filter keypoints by mask
|
||||
//KeyPointsFilter::runByPixelsMask( keypoints, mask );
|
||||
}
|
||||
|
||||
if( _descriptors.needed() )
|
||||
{
|
||||
//t = (double)getTickCount();
|
||||
int dsize = descriptorSize();
|
||||
_descriptors.create((int)keypoints.size(), dsize, CV_32F);
|
||||
Mat descriptors = _descriptors.getMat();
|
||||
|
||||
calcDescriptors(gpyr, keypoints, descriptors, nOctaveLayers, firstOctave);
|
||||
//t = (double)getTickCount() - t;
|
||||
//printf("descriptor extraction time: %g\n", t*1000./tf);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
} // namespace
|
BIN
modules/imgproc/doc/pics/colorscale_deepgreen.jpg
Normal file
BIN
modules/imgproc/doc/pics/colorscale_deepgreen.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.4 KiB |
@ -4247,7 +4247,8 @@ enum ColormapTypes
|
||||
COLORMAP_CIVIDIS = 17, //!< ![cividis](pics/colormaps/colorscale_cividis.jpg)
|
||||
COLORMAP_TWILIGHT = 18, //!< ![twilight](pics/colormaps/colorscale_twilight.jpg)
|
||||
COLORMAP_TWILIGHT_SHIFTED = 19, //!< ![twilight shifted](pics/colormaps/colorscale_twilight_shifted.jpg)
|
||||
COLORMAP_TURBO = 20 //!< ![turbo](pics/colormaps/colorscale_turbo.jpg)
|
||||
COLORMAP_TURBO = 20, //!< ![turbo](pics/colormaps/colorscale_turbo.jpg)
|
||||
COLORMAP_DEEPGREEN = 21 //!< ![deepgreen](pics/colormaps/colorscale_deepgreen.jpg)
|
||||
};
|
||||
|
||||
/** @example samples/cpp/falsecolor.cpp
|
||||
|
@ -297,6 +297,28 @@ namespace colormap
|
||||
}
|
||||
};
|
||||
|
||||
// Equals the colormap "deepgreen".
|
||||
class DeepGreen : public ColorMap {
|
||||
public:
|
||||
DeepGreen() : ColorMap() {
|
||||
init(256);
|
||||
}
|
||||
DeepGreen(int n) : ColorMap() {
|
||||
init(n);
|
||||
}
|
||||
void init(int n) {
|
||||
static const float r[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04761904761904762f, 0.09523809523809523f, 0.1428571428571428f, 0.1904761904761905f, 0.2380952380952381f, 0.2857142857142857f, 0.3333333333333333f, 0.3809523809523809f, 0.4285714285714285f, 0.4761904761904762f, 0.5238095238095238f, 0.5714285714285714f, 0.6190476190476191f, 0.6666666666666666f, 0.7142857142857143f, 0.7619047619047619f, 0.8095238095238095f, 0.8571428571428571f, 0.9047619047619048f, 0.9523809523809523f, 1 };
|
||||
static const float g[] = { 0, 0.01587301587301587f, 0.03174603174603174f, 0.04761904761904762f, 0.06349206349206349f, 0.07936507936507936f, 0.09523809523809523f, 0.1111111111111111f, 0.126984126984127f, 0.1428571428571428f, 0.1587301587301587f, 0.1746031746031746f, 0.1904761904761905f, 0.2063492063492063f, 0.2222222222222222f, 0.2380952380952381f, 0.253968253968254f, 0.2698412698412698f, 0.2857142857142857f, 0.3015873015873016f, 0.3174603174603174f, 0.3333333333333333f, 0.3492063492063492f, 0.3650793650793651f, 0.3809523809523809f, 0.3968253968253968f, 0.4126984126984127f, 0.4285714285714285f, 0.4444444444444444f, 0.4603174603174603f, 0.4761904761904762f, 0.492063492063492f, 0.5079365079365079f, 0.5238095238095238f, 0.5396825396825397f, 0.5555555555555556f, 0.5714285714285714f, 0.5873015873015873f, 0.6031746031746031f, 0.6190476190476191f, 0.6349206349206349f, 0.6507936507936508f, 0.6666666666666666f, 0.6825396825396826f, 0.6984126984126984f, 0.7142857142857143f, 0.7301587301587301f, 0.746031746031746f, 0.7619047619047619f, 0.7777777777777778f, 0.7936507936507936f, 0.8095238095238095f, 0.8253968253968254f, 0.8412698412698413f, 0.8571428571428571f, 0.873015873015873f, 0.8888888888888888f, 0.9047619047619048f, 0.9206349206349206f, 0.9365079365079365f, 0.9523809523809523f, 0.9682539682539683f, 0.9841269841269841f, 1 };
|
||||
static const float b[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.02380952380952381f, 0.04761904761904762f, 0.07142857142857142f, 0.09523809523809523f, 0.119047619047619f, 0.1428571428571428f, 0.1666666666666667f, 0.1904761904761905f, 0.2142857142857143f, 0.2380952380952381f, 0.2619047619047619f, 0.2857142857142857f, 0.3095238095238095f, 0.3333333333333333f, 0.3571428571428572f, 0.3809523809523809f, 0.4047619047619048f, 0.4285714285714285f, 0.4523809523809524f, 0.4761904761904762f, 0.5f, 0.5238095238095238f, 0.5476190476190477f, 0.5714285714285714f, 0.5952380952380952f, 0.6190476190476191f, 0.6428571428571429f, 0.6666666666666666f, 0.6904761904761905f, 0.7142857142857143f, 0.7380952380952381f, 0.7619047619047619f, 0.7857142857142857f, 0.8095238095238095f, 0.8333333333333334f, 0.8571428571428571f, 0.8809523809523809f, 0.9047619047619048f, 0.9285714285714286f, 0.9523809523809523f, 0.9761904761904762f, 1 };
|
||||
Mat X = linspace(0, 1, 64);
|
||||
this->_lut = ColorMap::linear_colormap(X,
|
||||
Mat(64, 1, CV_32FC1, (void*)r).clone(), // red
|
||||
Mat(64, 1, CV_32FC1, (void*)g).clone(), // green
|
||||
Mat(64, 1, CV_32FC1, (void*)b).clone(), // blue
|
||||
n); // number of sample points
|
||||
}
|
||||
};
|
||||
|
||||
// Equals the GNU Octave colormap "ocean".
|
||||
class Ocean : public ColorMap {
|
||||
public:
|
||||
@ -742,6 +764,7 @@ namespace colormap
|
||||
colormap == COLORMAP_BONE ? (colormap::ColorMap*)(new colormap::Bone) :
|
||||
colormap == COLORMAP_CIVIDIS ? (colormap::ColorMap*)(new colormap::Cividis) :
|
||||
colormap == COLORMAP_COOL ? (colormap::ColorMap*)(new colormap::Cool) :
|
||||
colormap == COLORMAP_DEEPGREEN ? (colormap::ColorMap*)(new colormap::DeepGreen) :
|
||||
colormap == COLORMAP_HOT ? (colormap::ColorMap*)(new colormap::Hot) :
|
||||
colormap == COLORMAP_HSV ? (colormap::ColorMap*)(new colormap::HSV) :
|
||||
colormap == COLORMAP_INFERNO ? (colormap::ColorMap*)(new colormap::Inferno) :
|
||||
|
@ -109,6 +109,7 @@ Thanks to:
|
||||
#include <vector>
|
||||
|
||||
//Include Directshow stuff here so we don't worry about needing all the h files.
|
||||
#define NO_DSHOW_STRSAFE
|
||||
#include "dshow.h"
|
||||
#include "strmif.h"
|
||||
#include "aviriff.h"
|
||||
|
@ -14,10 +14,30 @@
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static mfxIMPL getImpl()
|
||||
{
|
||||
static const size_t res = utils::getConfigurationParameterSizeT("OPENCV_VIDEOIO_MFX_IMPL", MFX_IMPL_AUTO_ANY);
|
||||
return (mfxIMPL)res;
|
||||
}
|
||||
|
||||
static size_t getExtraSurfaceNum()
|
||||
{
|
||||
static const size_t res = cv::utils::getConfigurationParameterSizeT("OPENCV_VIDEOIO_MFX_EXTRA_SURFACE_NUM", 1);
|
||||
return res;
|
||||
}
|
||||
|
||||
static size_t getPoolTimeoutSec()
|
||||
{
|
||||
static const size_t res = utils::getConfigurationParameterSizeT("OPENCV_VIDEOIO_MFX_POOL_TIMEOUT", 1);
|
||||
return res;
|
||||
}
|
||||
|
||||
//==================================================================================================
|
||||
|
||||
bool DeviceHandler::init(MFXVideoSession &session)
|
||||
{
|
||||
mfxStatus res = MFX_ERR_NONE;
|
||||
mfxIMPL impl = MFX_IMPL_AUTO_ANY;
|
||||
mfxIMPL impl = getImpl();
|
||||
mfxVersion ver = { {19, 1} };
|
||||
|
||||
res = session.Init(impl, &ver);
|
||||
@ -114,11 +134,26 @@ SurfacePool::~SurfacePool()
|
||||
{
|
||||
}
|
||||
|
||||
SurfacePool * SurfacePool::_create(const mfxFrameAllocRequest &request, const mfxVideoParam ¶ms)
|
||||
{
|
||||
return new SurfacePool(request.Info.Width,
|
||||
request.Info.Height,
|
||||
saturate_cast<ushort>((size_t)request.NumFrameSuggested + getExtraSurfaceNum()),
|
||||
params.mfx.FrameInfo);
|
||||
}
|
||||
|
||||
mfxFrameSurface1 *SurfacePool::getFreeSurface()
|
||||
{
|
||||
const int64 start = cv::getTickCount();
|
||||
do
|
||||
{
|
||||
for(std::vector<mfxFrameSurface1>::iterator i = surfaces.begin(); i != surfaces.end(); ++i)
|
||||
if (!i->Data.Locked)
|
||||
return &(*i);
|
||||
sleep_ms(10);
|
||||
}
|
||||
while((cv::getTickCount() - start) / cv::getTickFrequency() < getPoolTimeoutSec()); // seconds
|
||||
DBG(cout << "No free surface!" << std::endl);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -6,6 +6,7 @@
|
||||
#define MFXHELPER_H
|
||||
|
||||
#include "opencv2/core.hpp"
|
||||
#include "opencv2/core/utils/configuration.private.hpp"
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
@ -259,11 +260,10 @@ public:
|
||||
DBG(std::cout << "MFX QueryIOSurf: " << res << std::endl);
|
||||
if (res < MFX_ERR_NONE)
|
||||
return 0;
|
||||
return new SurfacePool(request.Info.Width,
|
||||
request.Info.Height,
|
||||
request.NumFrameSuggested,
|
||||
params.mfx.FrameInfo);
|
||||
return _create(request, params);
|
||||
}
|
||||
private:
|
||||
static SurfacePool* _create(const mfxFrameAllocRequest& request, const mfxVideoParam& params);
|
||||
private:
|
||||
SurfacePool(const SurfacePool &);
|
||||
SurfacePool &operator=(const SurfacePool &);
|
||||
@ -285,6 +285,29 @@ protected:
|
||||
};
|
||||
|
||||
|
||||
// TODO: move to core::util?
|
||||
#ifdef CV_CXX11
|
||||
#include <thread>
|
||||
static void sleep_ms(int64 ms)
|
||||
{
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(ms));
|
||||
}
|
||||
#elif defined(__linux__)
|
||||
#include <time.h>
|
||||
static void sleep_ms(int64 ms)
|
||||
{
|
||||
nanosleep(ms * 1000 * 1000);
|
||||
}
|
||||
#elif defined _WIN32
|
||||
static void sleep_ms(int64 ms)
|
||||
{
|
||||
Sleep(ms);
|
||||
}
|
||||
#else
|
||||
#error "Can not detect sleep_ms() implementation"
|
||||
#endif
|
||||
|
||||
|
||||
// Linux specific
|
||||
#ifdef __linux__
|
||||
|
||||
@ -310,7 +333,6 @@ private:
|
||||
#ifdef _WIN32
|
||||
|
||||
#include <Windows.h>
|
||||
inline void sleep(unsigned long sec) { Sleep(1000 * sec); }
|
||||
|
||||
class DXHandle : public DeviceHandler {
|
||||
public:
|
||||
|
@ -215,7 +215,7 @@ bool VideoCapture_IntelMFX::grabFrame()
|
||||
else if (res == MFX_WRN_DEVICE_BUSY)
|
||||
{
|
||||
DBG(cout << "Waiting for device" << endl);
|
||||
sleep(1);
|
||||
sleep_ms(1000);
|
||||
continue;
|
||||
}
|
||||
else if (res == MFX_WRN_VIDEO_PARAM_CHANGED)
|
||||
|
@ -11,6 +11,18 @@
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static size_t getBitrateDivisor()
|
||||
{
|
||||
static const size_t res = utils::getConfigurationParameterSizeT("OPENCV_VIDEOIO_MFX_BITRATE_DIVISOR", 300);
|
||||
return res;
|
||||
}
|
||||
|
||||
static mfxU32 getWriterTimeoutMS()
|
||||
{
|
||||
static const size_t res = utils::getConfigurationParameterSizeT("OPENCV_VIDEOIO_MFX_WRITER_TIMEOUT", 1);
|
||||
return saturate_cast<mfxU32>(res * 1000); // convert from seconds
|
||||
}
|
||||
|
||||
inline mfxU32 codecIdByFourCC(int fourcc)
|
||||
{
|
||||
const int CC_MPG2 = FourCC('M', 'P', 'G', '2').vali32;
|
||||
@ -78,7 +90,7 @@ VideoWriter_IntelMFX::VideoWriter_IntelMFX(const String &filename, int _fourcc,
|
||||
memset(¶ms, 0, sizeof(params));
|
||||
params.mfx.CodecId = codecId;
|
||||
params.mfx.TargetUsage = MFX_TARGETUSAGE_BALANCED;
|
||||
params.mfx.TargetKbps = (mfxU16)cvRound(frameSize.area() * fps / 500); // TODO: set in options
|
||||
params.mfx.TargetKbps = saturate_cast<mfxU16>((frameSize.area() * fps) / (42.6666 * getBitrateDivisor())); // TODO: set in options
|
||||
params.mfx.RateControlMethod = MFX_RATECONTROL_VBR;
|
||||
params.mfx.FrameInfo.FrameRateExtN = cvRound(fps * 1000);
|
||||
params.mfx.FrameInfo.FrameRateExtD = 1000;
|
||||
@ -211,7 +223,7 @@ bool VideoWriter_IntelMFX::write_one(cv::InputArray bgr)
|
||||
res = encoder->EncodeFrameAsync(NULL, workSurface, &bs->stream, &sync);
|
||||
if (res == MFX_ERR_NONE)
|
||||
{
|
||||
res = session->SyncOperation(sync, 1000); // 1 sec, TODO: provide interface to modify timeout
|
||||
res = session->SyncOperation(sync, getWriterTimeoutMS()); // TODO: provide interface to modify timeout
|
||||
if (res == MFX_ERR_NONE)
|
||||
{
|
||||
// ready to write
|
||||
@ -240,7 +252,7 @@ bool VideoWriter_IntelMFX::write_one(cv::InputArray bgr)
|
||||
else if (res == MFX_WRN_DEVICE_BUSY)
|
||||
{
|
||||
DBG(cout << "Waiting for device" << endl);
|
||||
sleep(1);
|
||||
sleep_ms(1000);
|
||||
continue;
|
||||
}
|
||||
else
|
||||
|
Loading…
Reference in New Issue
Block a user