Added Features2D descriptor tutorial + drawMatches in rst

This commit is contained in:
Ana Huaman 2011-08-12 17:01:10 +00:00
parent e6d308ca89
commit 07754b6309
7 changed files with 290 additions and 4 deletions

View File

@ -358,7 +358,15 @@ extlinks = {'cvt_color': ('http://opencv.willowgarage.com/documentation/cpp/imgp
'xmlymlpers':('http://opencv.itseez.com/modules/core/doc/xml_yaml_persistence.html#%s', None),
'huivideo' : ('http://opencv.itseez.com/modules/highgui/doc/reading_and_writing_images_and_video.html#%s', None),
'filtering':('http://opencv.itseez.com/modules/imgproc/doc/filtering.html#%s', None),
'point_polygon_test' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-pointpolygontest%s', None)
'point_polygon_test' : ('http://opencv.willowgarage.com/documentation/cpp/imgproc_structural_analysis_and_shape_descriptors.html#cv-pointpolygontest%s', None),
'feature_detector' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_feature_detectors.html#featuredetector%s', None),
'feature_detector_detect' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_feature_detectors.html#cv-featuredetector-detect%s', None ),
'surf_feature_detector' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_feature_detectors.html#surffeaturedetector%s', None ),
'draw_keypoints' : ('http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawkeypoints%s', None ),
'descriptor_extractor': ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#descriptorextractor%s', None ),
'descriptor_extractor_compute' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#cv-descriptorextractor-compute%s', None ),
'surf_descriptor_extractor' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_common_interfaces_of_descriptor_extractors.html#surfdescriptorextractor%s', None ),
'draw_matches' : ( 'http://opencv.willowgarage.com/documentation/cpp/features2d_drawing_function_of_keypoints_and_matches.html#cv-drawmatches%s', None )
}

View File

@ -0,0 +1,103 @@
.. _feature_description:
Feature Description
*******************
Goal
=====
In this tutorial you will learn how to:
.. container:: enumeratevisibleitemswithsquare
* Use the :descriptor_extractor:`DescriptorExtractor<>` interface in order to find the feature vector correspondent to the keypoints. Specifically:
* Use :surf_descriptor_extractor:`SurfDescriptorExtractor<>` and its function :descriptor_extractor:`compute<>` to perform the required calculations.
* Use the function :draw_matches:`drawMatches<>` to draw the detected matches.
Theory
======
Code
====
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_descriptor.cpp>`_
.. code-block:: cpp
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
void readme();
/** @function main */
int main( int argc, char** argv )
{
if( argc != 3 )
{ return -1; }
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
if( !img_1.data || !img_2.data )
{ return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 );
//-- Step 3: Matching descriptor vectors with a brute force matcher
BruteForceMatcher< L2<float> > matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
//-- Draw matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );
//-- Show detected matches
imshow("Matches", img_matches );
waitKey(0);
return 0;
}
/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
Explanation
============
Result
======
#. Here is the result after applying the BruteForce matcher between the two original images:
.. image:: images/Feature_Description_BruteForce_Result.jpg
:align: center
:height: 200pt

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

View File

@ -0,0 +1,97 @@
.. _feature_detection:
Feature Detection
******************
Goal
=====
In this tutorial you will learn how to:
.. container:: enumeratevisibleitemswithsquare
* Use the :feature_detector:`FeatureDetector<>` interface in order to find interest points. Specifically:
* Use the :surf_feature_detector:`SurfFeatureDetector<>` and its function :feature_detector_detect:`detect<>` to perform the detection process
* Use the function :draw_keypoints:`drawKeypoints<>` to draw the detected keypoints
Theory
======
Code
====
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_detector.cpp>`_
.. code-block:: cpp
#include <stdio.h>
#include <iostream>
#include "opencv2/core/core.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/highgui/highgui.hpp"
using namespace cv;
void readme();
/** @function main */
int main( int argc, char** argv )
{
if( argc != 3 )
{ readme(); return -1; }
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
if( !img_1.data || !img_2.data )
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 400;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
//-- Draw keypoints
Mat img_keypoints_1; Mat img_keypoints_2;
drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
//-- Show detected (drawn) keypoints
imshow("Keypoints 1", img_keypoints_1 );
imshow("Keypoints 2", img_keypoints_2 );
waitKey(0);
return 0;
}
/** @function readme */
void readme()
{ std::cout << " Usage: ./SURF_detector <img1> <img2>" << std::endl; }
Explanation
============
Result
======
#. Here is the result of the feature detection applied to the first image:
.. image:: images/Feature_Detection_Result_a.jpg
:align: center
:height: 125pt
#. And here is the result for the second image:
.. image:: images/Feature_Detection_Result_b.jpg
:align: center
:height: 200pt

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

View File

@ -3,7 +3,7 @@
*feature2d* module. 2D Features framework
-----------------------------------------------------------
Learn about how to use the feature points detectors, descriptors and matching framework found inside OpenCV.
Learn about how to use the feature points detectors, descriptors and matching framework found inside OpenCV.ddddddd
.. include:: ../../definitions/tocDefinitions.rst
@ -86,6 +86,84 @@ Learn about how to use the feature points detectors, descriptors and matching f
:height: 90pt
:width: 90pt
+
.. tabularcolumns:: m{100pt} m{300pt}
.. cssclass:: toctableopencv
===================== ==============================================
|FeatureDetect| **Title:** :ref:`feature_detection`
*Compatibility:* > OpenCV 2.0
*Author:* |Author_AnaH|
In this tutorial, you will use *features2d* to detect interest points.
===================== ==============================================
.. |FeatureDetect| image:: images/Feature_Detection_Tutorial_Cover.jpg
:height: 90pt
:width: 90pt
+
.. tabularcolumns:: m{100pt} m{300pt}
.. cssclass:: toctableopencv
===================== ==============================================
|FeatureDescript| **Title:** :ref:`feature_description`
*Compatibility:* > OpenCV 2.0
*Author:* |Author_AnaH|
In this tutorial, you will use *features2d* to calculate feature vectors.
===================== ==============================================
.. |FeatureDescript| image:: images/Feature_Description_Tutorial_Cover.jpg
:height: 90pt
:width: 90pt
+
.. tabularcolumns:: m{100pt} m{300pt}
.. cssclass:: toctableopencv
===================== ==============================================
|FeatureFlann| **Title:** :ref:`feature_flann_matcher`
*Compatibility:* > OpenCV 2.0
*Author:* |Author_AnaH|
In this tutorial, you will use *features2d* to detect interest points.
===================== ==============================================
.. |FeatureFlann| image:: images/Feature_Detection_Tutorial_Cover.jpg
:height: 90pt
:width: 90pt
+
.. tabularcolumns:: m{100pt} m{300pt}
.. cssclass:: toctableopencv
===================== ==============================================
|FeatureHomo| **Title:** :ref:`feature_homography`
*Compatibility:* > OpenCV 2.0
*Author:* |Author_AnaH|
In this tutorial, you will use *features2d* to detect interest points.
===================== ==============================================
.. |FeatureHomo| image:: images/Feature_Detection_Tutorial_Cover.jpg
:height: 90pt
:width: 90pt
+
.. tabularcolumns:: m{100pt} m{300pt}
.. cssclass:: toctableopencv