mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Fix android build warnings
This commit is contained in:
parent
8325a28d09
commit
07d92d9e5a
@ -81,46 +81,46 @@ Mat BOWMSCTrainer::cluster() const {
|
||||
return cluster(mergedDescriptors);
|
||||
}
|
||||
|
||||
Mat BOWMSCTrainer::cluster(const Mat& descriptors) const {
|
||||
Mat BOWMSCTrainer::cluster(const Mat& _descriptors) const {
|
||||
|
||||
CV_Assert(!descriptors.empty());
|
||||
CV_Assert(!_descriptors.empty());
|
||||
|
||||
// TODO: sort the descriptors before clustering.
|
||||
|
||||
|
||||
Mat icovar = Mat::eye(descriptors.cols,descriptors.cols,descriptors.type());
|
||||
Mat icovar = Mat::eye(_descriptors.cols,_descriptors.cols,_descriptors.type());
|
||||
|
||||
vector<Mat> initialCentres;
|
||||
initialCentres.push_back(descriptors.row(0));
|
||||
for (int i = 1; i < descriptors.rows; i++) {
|
||||
initialCentres.push_back(_descriptors.row(0));
|
||||
for (int i = 1; i < _descriptors.rows; i++) {
|
||||
double minDist = DBL_MAX;
|
||||
for (size_t j = 0; j < initialCentres.size(); j++) {
|
||||
minDist = std::min(minDist,
|
||||
cv::Mahalanobis(descriptors.row(i),initialCentres[j],
|
||||
cv::Mahalanobis(_descriptors.row(i),initialCentres[j],
|
||||
icovar));
|
||||
}
|
||||
if (minDist > clusterSize)
|
||||
initialCentres.push_back(descriptors.row(i));
|
||||
initialCentres.push_back(_descriptors.row(i));
|
||||
}
|
||||
|
||||
std::vector<std::list<cv::Mat> > clusters;
|
||||
clusters.resize(initialCentres.size());
|
||||
for (int i = 0; i < descriptors.rows; i++) {
|
||||
for (int i = 0; i < _descriptors.rows; i++) {
|
||||
int index = 0; double dist = 0, minDist = DBL_MAX;
|
||||
for (size_t j = 0; j < initialCentres.size(); j++) {
|
||||
dist = cv::Mahalanobis(descriptors.row(i),initialCentres[j],icovar);
|
||||
dist = cv::Mahalanobis(_descriptors.row(i),initialCentres[j],icovar);
|
||||
if (dist < minDist) {
|
||||
minDist = dist;
|
||||
index = (int)j;
|
||||
}
|
||||
}
|
||||
clusters[index].push_back(descriptors.row(i));
|
||||
clusters[index].push_back(_descriptors.row(i));
|
||||
}
|
||||
|
||||
// TODO: throw away small clusters.
|
||||
|
||||
Mat vocabulary;
|
||||
Mat centre = Mat::zeros(1,descriptors.cols,descriptors.type());
|
||||
Mat centre = Mat::zeros(1,_descriptors.cols,_descriptors.type());
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
centre.setTo(0);
|
||||
for (std::list<cv::Mat>::iterator Ci = clusters[i].begin(); Ci != clusters[i].end(); Ci++) {
|
||||
|
@ -63,7 +63,7 @@ namespace of2 {
|
||||
static double logsumexp(double a, double b) {
|
||||
return a > b ? log(1 + exp(b - a)) + a : log(1 + exp(a - b)) + b;
|
||||
}
|
||||
|
||||
|
||||
FabMap::FabMap(const Mat& _clTree, double _PzGe,
|
||||
double _PzGNe, int _flags, int _numSamples) :
|
||||
clTree(_clTree), PzGe(_PzGe), PzGNe(_PzGNe), flags(
|
||||
@ -445,16 +445,16 @@ FabMap1::~FabMap1() {
|
||||
}
|
||||
|
||||
void FabMap1::getLikelihoods(const Mat& queryImgDescriptor,
|
||||
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
||||
const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
|
||||
|
||||
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
||||
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
|
||||
bool zq, zpq, Lzq;
|
||||
double logP = 0;
|
||||
for (int q = 0; q < clTree.cols; q++) {
|
||||
|
||||
zq = queryImgDescriptor.at<float>(0,q) > 0;
|
||||
zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0;
|
||||
Lzq = testImgDescriptors[i].at<float>(0,q) > 0;
|
||||
Lzq = testImageDescriptors[i].at<float>(0,q) > 0;
|
||||
|
||||
logP += log((this->*PzGL)(q, zq, zpq, Lzq));
|
||||
|
||||
@ -490,16 +490,16 @@ FabMapLUT::~FabMapLUT() {
|
||||
}
|
||||
|
||||
void FabMapLUT::getLikelihoods(const Mat& queryImgDescriptor,
|
||||
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
||||
const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
|
||||
|
||||
double precFactor = (double)pow(10.0, -precision);
|
||||
|
||||
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
||||
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
|
||||
unsigned long long int logP = 0;
|
||||
for (int q = 0; q < clTree.cols; q++) {
|
||||
logP += table[q][(queryImgDescriptor.at<float>(0,pq(q)) > 0) +
|
||||
((queryImgDescriptor.at<float>(0, q) > 0) << 1) +
|
||||
((testImgDescriptors[i].at<float>(0,q) > 0) << 2)];
|
||||
((testImageDescriptors[i].at<float>(0,q) > 0) << 2)];
|
||||
}
|
||||
matches.push_back(IMatch(0,(int)i,-precFactor*(double)logP,0));
|
||||
}
|
||||
@ -518,7 +518,7 @@ FabMapFBO::~FabMapFBO() {
|
||||
}
|
||||
|
||||
void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
|
||||
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
||||
const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
|
||||
|
||||
std::multiset<WordStats> wordData;
|
||||
setWordStatistics(queryImgDescriptor, wordData);
|
||||
@ -526,7 +526,7 @@ void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
|
||||
vector<int> matchIndices;
|
||||
vector<IMatch> queryMatches;
|
||||
|
||||
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
||||
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
|
||||
queryMatches.push_back(IMatch(0,(int)i,0,0));
|
||||
matchIndices.push_back((int)i);
|
||||
}
|
||||
@ -543,7 +543,7 @@ void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
|
||||
|
||||
for (size_t i = 0; i < matchIndices.size(); i++) {
|
||||
bool Lzq =
|
||||
testImgDescriptors[matchIndices[i]].at<float>(0,wordIter->q) > 0;
|
||||
testImageDescriptors[matchIndices[i]].at<float>(0,wordIter->q) > 0;
|
||||
queryMatches[matchIndices[i]].likelihood +=
|
||||
log((this->*PzGL)(wordIter->q,zq,zpq,Lzq));
|
||||
currBest =
|
||||
@ -689,17 +689,17 @@ void FabMap2::add(const vector<Mat>& queryImgDescriptors) {
|
||||
}
|
||||
|
||||
void FabMap2::getLikelihoods(const Mat& queryImgDescriptor,
|
||||
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
||||
const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
|
||||
|
||||
if (&testImgDescriptors== &(this->testImgDescriptors)) {
|
||||
if (&testImageDescriptors == &testImgDescriptors) {
|
||||
getIndexLikelihoods(queryImgDescriptor, testDefaults, testInvertedMap,
|
||||
matches);
|
||||
} else {
|
||||
CV_Assert(!(flags & MOTION_MODEL));
|
||||
vector<double> defaults;
|
||||
std::map<int, vector<int> > invertedMap;
|
||||
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
||||
addToIndex(testImgDescriptors[i],defaults,invertedMap);
|
||||
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
|
||||
addToIndex(testImageDescriptors[i],defaults,invertedMap);
|
||||
}
|
||||
getIndexLikelihoods(queryImgDescriptor, defaults, invertedMap, matches);
|
||||
}
|
||||
|
@ -47,18 +47,18 @@
|
||||
|
||||
#if CV_SSE2 || CV_SSE3
|
||||
# if !CV_SSE4_1 && !CV_SSE4_2
|
||||
# define _mm_blendv_pd(a, b, m) _mm_xor_pd(a, _mm_and_pd(_mm_xor_pd(b, a), m))
|
||||
# define _mm_blendv_ps(a, b, m) _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(b, a), m))
|
||||
# define _mm_blendv_pd(a, b, m) _mm_xor_pd(a, _mm_and_pd(_mm_xor_pd(b, a), m))
|
||||
# define _mm_blendv_ps(a, b, m) _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(b, a), m))
|
||||
# endif
|
||||
#endif
|
||||
|
||||
# if CV_AVX
|
||||
# define CV_HAAR_USE_AVX 1
|
||||
# else
|
||||
# if CV_SSE2 || CV_SSE3
|
||||
# define CV_HAAR_USE_SSE 1
|
||||
# endif
|
||||
# endif
|
||||
# if CV_AVX
|
||||
# define CV_HAAR_USE_AVX 1
|
||||
# else
|
||||
# if CV_SSE2 || CV_SSE3
|
||||
# define CV_HAAR_USE_SSE 1
|
||||
# endif
|
||||
# endif
|
||||
|
||||
/* these settings affect the quality of detection: change with care */
|
||||
#define CV_ADJUST_FEATURES 1
|
||||
@ -634,86 +634,86 @@ cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
|
||||
|
||||
|
||||
//AVX version icvEvalHidHaarClassifier. Process 8 CvHidHaarClassifiers per call. Check AVX support before invocation!!
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
CV_INLINE
|
||||
double icvEvalHidHaarClassifierAVX( CvHidHaarClassifier* classifier,
|
||||
double variance_norm_factor, size_t p_offset )
|
||||
double variance_norm_factor, size_t p_offset )
|
||||
{
|
||||
int CV_DECL_ALIGNED(32) idxV[8] = {0,0,0,0,0,0,0,0};
|
||||
char flags[8] = {0,0,0,0,0,0,0,0};
|
||||
CvHidHaarTreeNode* nodes[8];
|
||||
double res = 0;
|
||||
char exitConditionFlag = 0;
|
||||
for(;;)
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) tmp[8] = {0,0,0,0,0,0,0,0};
|
||||
nodes[0] = classifier ->node + idxV[0];
|
||||
nodes[1] = (classifier+1)->node + idxV[1];
|
||||
nodes[2] = (classifier+2)->node + idxV[2];
|
||||
nodes[3] = (classifier+3)->node + idxV[3];
|
||||
nodes[4] = (classifier+4)->node + idxV[4];
|
||||
nodes[5] = (classifier+5)->node + idxV[5];
|
||||
nodes[6] = (classifier+6)->node + idxV[6];
|
||||
nodes[7] = (classifier+7)->node + idxV[7];
|
||||
int CV_DECL_ALIGNED(32) idxV[8] = {0,0,0,0,0,0,0,0};
|
||||
char flags[8] = {0,0,0,0,0,0,0,0};
|
||||
CvHidHaarTreeNode* nodes[8];
|
||||
double res = 0;
|
||||
char exitConditionFlag = 0;
|
||||
for(;;)
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) tmp[8] = {0,0,0,0,0,0,0,0};
|
||||
nodes[0] = classifier ->node + idxV[0];
|
||||
nodes[1] = (classifier+1)->node + idxV[1];
|
||||
nodes[2] = (classifier+2)->node + idxV[2];
|
||||
nodes[3] = (classifier+3)->node + idxV[3];
|
||||
nodes[4] = (classifier+4)->node + idxV[4];
|
||||
nodes[5] = (classifier+5)->node + idxV[5];
|
||||
nodes[6] = (classifier+6)->node + idxV[6];
|
||||
nodes[7] = (classifier+7)->node + idxV[7];
|
||||
|
||||
__m256 t = _mm256_set1_ps(variance_norm_factor);
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,nodes[6]->threshold,nodes[5]->threshold,nodes[4]->threshold,nodes[3]->threshold,nodes[2]->threshold,nodes[1]->threshold,nodes[0]->threshold));
|
||||
__m256 t = _mm256_set1_ps(variance_norm_factor);
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,nodes[6]->threshold,nodes[5]->threshold,nodes[4]->threshold,nodes[3]->threshold,nodes[2]->threshold,nodes[1]->threshold,nodes[0]->threshold));
|
||||
|
||||
__m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0],p_offset), calc_sum(nodes[6]->feature.rect[0],p_offset), calc_sum(nodes[5]->feature.rect[0],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[0],p_offset), calc_sum(nodes[3]->feature.rect[0],p_offset), calc_sum(nodes[2]->feature.rect[0],p_offset), calc_sum(nodes[1]->feature.rect[0],
|
||||
p_offset),calc_sum(nodes[0]->feature.rect[0],p_offset));
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, nodes[6]->feature.rect[0].weight, nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight, nodes[3]->feature.rect[0].weight, nodes[2]->feature.rect[0].weight, nodes[1]->feature.rect[0].weight, nodes[0]->feature.rect[0].weight);
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
|
||||
offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1],p_offset),calc_sum(nodes[6]->feature.rect[1],p_offset),calc_sum(nodes[5]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[1],p_offset),calc_sum(nodes[3]->feature.rect[1],p_offset),calc_sum(nodes[2]->feature.rect[1],p_offset),calc_sum(nodes[1]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[0]->feature.rect[1],p_offset));
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, nodes[6]->feature.rect[1].weight, nodes[5]->feature.rect[1].weight, nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight, nodes[2]->feature.rect[1].weight, nodes[1]->feature.rect[1].weight, nodes[0]->feature.rect[1].weight);
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight));
|
||||
|
||||
if( nodes[0]->feature.rect[2].p0 )
|
||||
tmp[0] = calc_sum(nodes[0]->feature.rect[2],p_offset) * nodes[0]->feature.rect[2].weight;
|
||||
if( nodes[1]->feature.rect[2].p0 )
|
||||
__m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0],p_offset), calc_sum(nodes[6]->feature.rect[0],p_offset), calc_sum(nodes[5]->feature.rect[0],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[0],p_offset), calc_sum(nodes[3]->feature.rect[0],p_offset), calc_sum(nodes[2]->feature.rect[0],p_offset), calc_sum(nodes[1]->feature.rect[0],
|
||||
p_offset),calc_sum(nodes[0]->feature.rect[0],p_offset));
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, nodes[6]->feature.rect[0].weight, nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight, nodes[3]->feature.rect[0].weight, nodes[2]->feature.rect[0].weight, nodes[1]->feature.rect[0].weight, nodes[0]->feature.rect[0].weight);
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
|
||||
offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1],p_offset),calc_sum(nodes[6]->feature.rect[1],p_offset),calc_sum(nodes[5]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[1],p_offset),calc_sum(nodes[3]->feature.rect[1],p_offset),calc_sum(nodes[2]->feature.rect[1],p_offset),calc_sum(nodes[1]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[0]->feature.rect[1],p_offset));
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, nodes[6]->feature.rect[1].weight, nodes[5]->feature.rect[1].weight, nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight, nodes[2]->feature.rect[1].weight, nodes[1]->feature.rect[1].weight, nodes[0]->feature.rect[1].weight);
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight));
|
||||
|
||||
if( nodes[0]->feature.rect[2].p0 )
|
||||
tmp[0] = calc_sum(nodes[0]->feature.rect[2],p_offset) * nodes[0]->feature.rect[2].weight;
|
||||
if( nodes[1]->feature.rect[2].p0 )
|
||||
tmp[1] = calc_sum(nodes[1]->feature.rect[2],p_offset) * nodes[1]->feature.rect[2].weight;
|
||||
if( nodes[2]->feature.rect[2].p0 )
|
||||
if( nodes[2]->feature.rect[2].p0 )
|
||||
tmp[2] = calc_sum(nodes[2]->feature.rect[2],p_offset) * nodes[2]->feature.rect[2].weight;
|
||||
if( nodes[3]->feature.rect[2].p0 )
|
||||
if( nodes[3]->feature.rect[2].p0 )
|
||||
tmp[3] = calc_sum(nodes[3]->feature.rect[2],p_offset) * nodes[3]->feature.rect[2].weight;
|
||||
if( nodes[4]->feature.rect[2].p0 )
|
||||
tmp[4] = calc_sum(nodes[4]->feature.rect[2],p_offset) * nodes[4]->feature.rect[2].weight;
|
||||
if( nodes[5]->feature.rect[2].p0 )
|
||||
if( nodes[4]->feature.rect[2].p0 )
|
||||
tmp[4] = calc_sum(nodes[4]->feature.rect[2],p_offset) * nodes[4]->feature.rect[2].weight;
|
||||
if( nodes[5]->feature.rect[2].p0 )
|
||||
tmp[5] = calc_sum(nodes[5]->feature.rect[2],p_offset) * nodes[5]->feature.rect[2].weight;
|
||||
if( nodes[6]->feature.rect[2].p0 )
|
||||
if( nodes[6]->feature.rect[2].p0 )
|
||||
tmp[6] = calc_sum(nodes[6]->feature.rect[2],p_offset) * nodes[6]->feature.rect[2].weight;
|
||||
if( nodes[7]->feature.rect[2].p0 )
|
||||
if( nodes[7]->feature.rect[2].p0 )
|
||||
tmp[7] = calc_sum(nodes[7]->feature.rect[2],p_offset) * nodes[7]->feature.rect[2].weight;
|
||||
|
||||
sum = _mm256_add_ps(sum,_mm256_load_ps(tmp));
|
||||
|
||||
__m256 left = _mm256_set_ps(nodes[7]->left,nodes[6]->left,nodes[5]->left,nodes[4]->left,nodes[3]->left,nodes[2]->left,nodes[1]->left,nodes[0]->left);
|
||||
__m256 right = _mm256_set_ps(nodes[7]->right,nodes[6]->right,nodes[5]->right,nodes[4]->right,nodes[3]->right,nodes[2]->right,nodes[1]->right,nodes[0]->right);
|
||||
sum = _mm256_add_ps(sum,_mm256_load_ps(tmp));
|
||||
|
||||
_mm256_store_si256((__m256i*)idxV,_mm256_cvttps_epi32(_mm256_blendv_ps(right, left,_mm256_cmp_ps(sum, t, _CMP_LT_OQ ))));
|
||||
__m256 left = _mm256_set_ps(nodes[7]->left,nodes[6]->left,nodes[5]->left,nodes[4]->left,nodes[3]->left,nodes[2]->left,nodes[1]->left,nodes[0]->left);
|
||||
__m256 right = _mm256_set_ps(nodes[7]->right,nodes[6]->right,nodes[5]->right,nodes[4]->right,nodes[3]->right,nodes[2]->right,nodes[1]->right,nodes[0]->right);
|
||||
|
||||
for(int i = 0; i < 8; i++)
|
||||
{
|
||||
if(idxV[i]<=0)
|
||||
{
|
||||
if(!flags[i])
|
||||
{
|
||||
exitConditionFlag++;
|
||||
flags[i]=1;
|
||||
res+=((classifier+i)->alpha[-idxV[i]]);
|
||||
}
|
||||
idxV[i]=0;
|
||||
}
|
||||
}
|
||||
if(exitConditionFlag==8)
|
||||
return res;
|
||||
}
|
||||
_mm256_store_si256((__m256i*)idxV,_mm256_cvttps_epi32(_mm256_blendv_ps(right, left,_mm256_cmp_ps(sum, t, _CMP_LT_OQ ))));
|
||||
|
||||
for(int i = 0; i < 8; i++)
|
||||
{
|
||||
if(idxV[i]<=0)
|
||||
{
|
||||
if(!flags[i])
|
||||
{
|
||||
exitConditionFlag++;
|
||||
flags[i]=1;
|
||||
res+=((classifier+i)->alpha[-idxV[i]]);
|
||||
}
|
||||
idxV[i]=0;
|
||||
}
|
||||
}
|
||||
if(exitConditionFlag==8)
|
||||
return res;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
@ -723,50 +723,50 @@ double icvEvalHidHaarClassifier( CvHidHaarClassifier* classifier,
|
||||
size_t p_offset )
|
||||
{
|
||||
int idx = 0;
|
||||
/*#if CV_HAAR_USE_SSE && !CV_HAAR_USE_AVX
|
||||
if(cv::checkHardwareSupport(CV_CPU_SSE2))//based on old SSE variant. Works slow
|
||||
{
|
||||
double CV_DECL_ALIGNED(16) temp[2];
|
||||
__m128d zero = _mm_setzero_pd();
|
||||
do
|
||||
{
|
||||
CvHidHaarTreeNode* node = classifier->node + idx;
|
||||
__m128d t = _mm_set1_pd((node->threshold)*variance_norm_factor);
|
||||
__m128d left = _mm_set1_pd(node->left);
|
||||
__m128d right = _mm_set1_pd(node->right);
|
||||
/*#if CV_HAAR_USE_SSE && !CV_HAAR_USE_AVX
|
||||
if(cv::checkHardwareSupport(CV_CPU_SSE2))//based on old SSE variant. Works slow
|
||||
{
|
||||
double CV_DECL_ALIGNED(16) temp[2];
|
||||
__m128d zero = _mm_setzero_pd();
|
||||
do
|
||||
{
|
||||
CvHidHaarTreeNode* node = classifier->node + idx;
|
||||
__m128d t = _mm_set1_pd((node->threshold)*variance_norm_factor);
|
||||
__m128d left = _mm_set1_pd(node->left);
|
||||
__m128d right = _mm_set1_pd(node->right);
|
||||
|
||||
double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
_sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
_sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
_sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
_sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
|
||||
__m128d sum = _mm_set1_pd(_sum);
|
||||
t = _mm_cmplt_sd(sum, t);
|
||||
sum = _mm_blendv_pd(right, left, t);
|
||||
__m128d sum = _mm_set1_pd(_sum);
|
||||
t = _mm_cmplt_sd(sum, t);
|
||||
sum = _mm_blendv_pd(right, left, t);
|
||||
|
||||
_mm_store_pd(temp, sum);
|
||||
idx = (int)temp[0];
|
||||
}
|
||||
while(idx > 0 );
|
||||
|
||||
}
|
||||
else
|
||||
#endif*/
|
||||
_mm_store_pd(temp, sum);
|
||||
idx = (int)temp[0];
|
||||
}
|
||||
while(idx > 0 );
|
||||
|
||||
}
|
||||
else
|
||||
#endif*/
|
||||
{
|
||||
do
|
||||
{
|
||||
do
|
||||
{
|
||||
CvHidHaarTreeNode* node = classifier->node + idx;
|
||||
double t = node->threshold * variance_norm_factor;
|
||||
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
|
||||
idx = sum < t ? node->left : node->right;
|
||||
}
|
||||
while( idx > 0 );
|
||||
idx = sum < t ? node->left : node->right;
|
||||
}
|
||||
while( idx > 0 );
|
||||
}
|
||||
return classifier->alpha[-idx];
|
||||
}
|
||||
@ -777,18 +777,18 @@ static int
|
||||
cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
|
||||
CvPoint pt, double& stage_sum, int start_stage )
|
||||
{
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
bool haveAVX = false;
|
||||
if(cv::checkHardwareSupport(CV_CPU_AVX))
|
||||
if(_xgetbv(_XCR_XFEATURE_ENABLED_MASK)&0x6)// Check if the OS will save the YMM registers
|
||||
{
|
||||
haveAVX = true;
|
||||
}
|
||||
#else
|
||||
#ifdef CV_HAAR_USE_SSE
|
||||
bool haveSSE2 = cv::checkHardwareSupport(CV_CPU_SSE2);
|
||||
#endif
|
||||
#endif
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
bool haveAVX = false;
|
||||
if(cv::checkHardwareSupport(CV_CPU_AVX))
|
||||
if(_xgetbv(_XCR_XFEATURE_ENABLED_MASK)&0x6)// Check if the OS will save the YMM registers
|
||||
{
|
||||
haveAVX = true;
|
||||
}
|
||||
#else
|
||||
#ifdef CV_HAAR_USE_SSE
|
||||
bool haveSSE2 = cv::checkHardwareSupport(CV_CPU_SSE2);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
int p_offset, pq_offset;
|
||||
int i, j;
|
||||
@ -828,17 +828,17 @@ cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
|
||||
{
|
||||
stage_sum = 0.0;
|
||||
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
if(haveAVX)
|
||||
{
|
||||
for( ; j < cascade->stage_classifier[i].count-8; j+=8 )
|
||||
{
|
||||
stage_sum += icvEvalHidHaarClassifierAVX(
|
||||
cascade->stage_classifier[i].classifier+j,
|
||||
variance_norm_factor, p_offset );
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
if(haveAVX)
|
||||
{
|
||||
for( ; j < cascade->stage_classifier[i].count-8; j+=8 )
|
||||
{
|
||||
stage_sum += icvEvalHidHaarClassifierAVX(
|
||||
cascade->stage_classifier[i].classifier+j,
|
||||
variance_norm_factor, p_offset );
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for( j = 0; j < ptr->count; j++ )
|
||||
{
|
||||
stage_sum += icvEvalHidHaarClassifier( ptr->classifier + j, variance_norm_factor, p_offset );
|
||||
@ -859,283 +859,283 @@ cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
|
||||
}
|
||||
else if( cascade->isStumpBased )
|
||||
{
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
if(haveAVX)
|
||||
{
|
||||
CvHidHaarClassifier* classifiers[8];
|
||||
CvHidHaarTreeNode* nodes[8];
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
stage_sum = 0.0;
|
||||
int j = 0;
|
||||
float CV_DECL_ALIGNED(32) buf[8];
|
||||
if( cascade->stage_classifier[i].two_rects )
|
||||
{
|
||||
for( ; j <= cascade->stage_classifier[i].count-8; j+=8 )
|
||||
{
|
||||
//__m256 stage_sumPart = _mm256_setzero_ps();
|
||||
classifiers[0] = cascade->stage_classifier[i].classifier + j;
|
||||
nodes[0] = classifiers[0]->node;
|
||||
classifiers[1] = cascade->stage_classifier[i].classifier + j + 1;
|
||||
nodes[1] = classifiers[1]->node;
|
||||
classifiers[2] = cascade->stage_classifier[i].classifier + j + 2;
|
||||
nodes[2]= classifiers[2]->node;
|
||||
classifiers[3] = cascade->stage_classifier[i].classifier + j + 3;
|
||||
nodes[3] = classifiers[3]->node;
|
||||
classifiers[4] = cascade->stage_classifier[i].classifier + j + 4;
|
||||
nodes[4] = classifiers[4]->node;
|
||||
classifiers[5] = cascade->stage_classifier[i].classifier + j + 5;
|
||||
nodes[5] = classifiers[5]->node;
|
||||
classifiers[6] = cascade->stage_classifier[i].classifier + j + 6;
|
||||
nodes[6] = classifiers[6]->node;
|
||||
classifiers[7] = cascade->stage_classifier[i].classifier + j + 7;
|
||||
nodes[7] = classifiers[7]->node;
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
if(haveAVX)
|
||||
{
|
||||
CvHidHaarClassifier* classifiers[8];
|
||||
CvHidHaarTreeNode* nodes[8];
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
stage_sum = 0.0;
|
||||
int j = 0;
|
||||
float CV_DECL_ALIGNED(32) buf[8];
|
||||
if( cascade->stage_classifier[i].two_rects )
|
||||
{
|
||||
for( ; j <= cascade->stage_classifier[i].count-8; j+=8 )
|
||||
{
|
||||
//__m256 stage_sumPart = _mm256_setzero_ps();
|
||||
classifiers[0] = cascade->stage_classifier[i].classifier + j;
|
||||
nodes[0] = classifiers[0]->node;
|
||||
classifiers[1] = cascade->stage_classifier[i].classifier + j + 1;
|
||||
nodes[1] = classifiers[1]->node;
|
||||
classifiers[2] = cascade->stage_classifier[i].classifier + j + 2;
|
||||
nodes[2]= classifiers[2]->node;
|
||||
classifiers[3] = cascade->stage_classifier[i].classifier + j + 3;
|
||||
nodes[3] = classifiers[3]->node;
|
||||
classifiers[4] = cascade->stage_classifier[i].classifier + j + 4;
|
||||
nodes[4] = classifiers[4]->node;
|
||||
classifiers[5] = cascade->stage_classifier[i].classifier + j + 5;
|
||||
nodes[5] = classifiers[5]->node;
|
||||
classifiers[6] = cascade->stage_classifier[i].classifier + j + 6;
|
||||
nodes[6] = classifiers[6]->node;
|
||||
classifiers[7] = cascade->stage_classifier[i].classifier + j + 7;
|
||||
nodes[7] = classifiers[7]->node;
|
||||
|
||||
__m256 t = _mm256_set1_ps(variance_norm_factor);
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,nodes[6]->threshold,nodes[5]->threshold,nodes[4]->threshold,nodes[3]->threshold,nodes[2]->threshold,nodes[1]->threshold,nodes[0]->threshold));
|
||||
__m256 t = _mm256_set1_ps(variance_norm_factor);
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,nodes[6]->threshold,nodes[5]->threshold,nodes[4]->threshold,nodes[3]->threshold,nodes[2]->threshold,nodes[1]->threshold,nodes[0]->threshold));
|
||||
|
||||
__m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0],p_offset), calc_sum(nodes[6]->feature.rect[0],p_offset), calc_sum(nodes[5]->feature.rect[0],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[0],p_offset), calc_sum(nodes[3]->feature.rect[0],p_offset), calc_sum(nodes[2]->feature.rect[0],p_offset), calc_sum(nodes[1]->feature.rect[0],
|
||||
p_offset),calc_sum(nodes[0]->feature.rect[0],p_offset));
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, nodes[6]->feature.rect[0].weight, nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight, nodes[3]->feature.rect[0].weight, nodes[2]->feature.rect[0].weight, nodes[1]->feature.rect[0].weight, nodes[0]->feature.rect[0].weight);
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
__m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0],p_offset), calc_sum(nodes[6]->feature.rect[0],p_offset), calc_sum(nodes[5]->feature.rect[0],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[0],p_offset), calc_sum(nodes[3]->feature.rect[0],p_offset), calc_sum(nodes[2]->feature.rect[0],p_offset), calc_sum(nodes[1]->feature.rect[0],
|
||||
p_offset),calc_sum(nodes[0]->feature.rect[0],p_offset));
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, nodes[6]->feature.rect[0].weight, nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight, nodes[3]->feature.rect[0].weight, nodes[2]->feature.rect[0].weight, nodes[1]->feature.rect[0].weight, nodes[0]->feature.rect[0].weight);
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
|
||||
offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1],p_offset),calc_sum(nodes[6]->feature.rect[1],p_offset),calc_sum(nodes[5]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[1],p_offset),calc_sum(nodes[3]->feature.rect[1],p_offset),calc_sum(nodes[2]->feature.rect[1],p_offset),calc_sum(nodes[1]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[0]->feature.rect[1],p_offset));
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, nodes[6]->feature.rect[1].weight, nodes[5]->feature.rect[1].weight, nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight, nodes[2]->feature.rect[1].weight, nodes[1]->feature.rect[1].weight, nodes[0]->feature.rect[1].weight);
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight));
|
||||
|
||||
__m256 alpha0 = _mm256_set_ps(classifiers[7]->alpha[0],classifiers[6]->alpha[0],classifiers[5]->alpha[0],classifiers[4]->alpha[0],classifiers[3]->alpha[0],
|
||||
classifiers[2]->alpha[0],classifiers[1]->alpha[0],classifiers[0]->alpha[0]);
|
||||
__m256 alpha1 = _mm256_set_ps(classifiers[7]->alpha[1],classifiers[6]->alpha[1],classifiers[5]->alpha[1],classifiers[4]->alpha[1],classifiers[3]->alpha[1],
|
||||
classifiers[2]->alpha[1],classifiers[1]->alpha[1],classifiers[0]->alpha[1]);
|
||||
offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1],p_offset),calc_sum(nodes[6]->feature.rect[1],p_offset),calc_sum(nodes[5]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[1],p_offset),calc_sum(nodes[3]->feature.rect[1],p_offset),calc_sum(nodes[2]->feature.rect[1],p_offset),calc_sum(nodes[1]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[0]->feature.rect[1],p_offset));
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, nodes[6]->feature.rect[1].weight, nodes[5]->feature.rect[1].weight, nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight, nodes[2]->feature.rect[1].weight, nodes[1]->feature.rect[1].weight, nodes[0]->feature.rect[1].weight);
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight));
|
||||
|
||||
_mm256_store_ps(buf, _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ )));
|
||||
stage_sum+=(buf[0]+buf[1]+buf[2]+buf[3]+buf[4]+buf[5]+buf[6]+buf[7]);
|
||||
|
||||
}
|
||||
|
||||
for( ; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
__m256 alpha0 = _mm256_set_ps(classifiers[7]->alpha[0],classifiers[6]->alpha[0],classifiers[5]->alpha[0],classifiers[4]->alpha[0],classifiers[3]->alpha[0],
|
||||
classifiers[2]->alpha[0],classifiers[1]->alpha[0],classifiers[0]->alpha[0]);
|
||||
__m256 alpha1 = _mm256_set_ps(classifiers[7]->alpha[1],classifiers[6]->alpha[1],classifiers[5]->alpha[1],classifiers[4]->alpha[1],classifiers[3]->alpha[1],
|
||||
classifiers[2]->alpha[1],classifiers[1]->alpha[1],classifiers[0]->alpha[1]);
|
||||
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( ; j <= (cascade->stage_classifier[i].count)-8; j+=8 )
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) tmp[8] = {0,0,0,0,0,0,0,0};
|
||||
_mm256_store_ps(buf, _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ )));
|
||||
stage_sum+=(buf[0]+buf[1]+buf[2]+buf[3]+buf[4]+buf[5]+buf[6]+buf[7]);
|
||||
|
||||
classifiers[0] = cascade->stage_classifier[i].classifier + j;
|
||||
nodes[0] = classifiers[0]->node;
|
||||
classifiers[1] = cascade->stage_classifier[i].classifier + j + 1;
|
||||
nodes[1] = classifiers[1]->node;
|
||||
classifiers[2] = cascade->stage_classifier[i].classifier + j + 2;
|
||||
nodes[2]= classifiers[2]->node;
|
||||
classifiers[3] = cascade->stage_classifier[i].classifier + j + 3;
|
||||
nodes[3] = classifiers[3]->node;
|
||||
classifiers[4] = cascade->stage_classifier[i].classifier + j + 4;
|
||||
nodes[4] = classifiers[4]->node;
|
||||
classifiers[5] = cascade->stage_classifier[i].classifier + j + 5;
|
||||
nodes[5] = classifiers[5]->node;
|
||||
classifiers[6] = cascade->stage_classifier[i].classifier + j + 6;
|
||||
nodes[6] = classifiers[6]->node;
|
||||
classifiers[7] = cascade->stage_classifier[i].classifier + j + 7;
|
||||
nodes[7] = classifiers[7]->node;
|
||||
}
|
||||
|
||||
__m256 t = _mm256_set1_ps(variance_norm_factor);
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,nodes[6]->threshold,nodes[5]->threshold,nodes[4]->threshold,nodes[3]->threshold,nodes[2]->threshold,nodes[1]->threshold,nodes[0]->threshold));
|
||||
|
||||
__m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0],p_offset), calc_sum(nodes[6]->feature.rect[0],p_offset), calc_sum(nodes[5]->feature.rect[0],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[0],p_offset), calc_sum(nodes[3]->feature.rect[0],p_offset), calc_sum(nodes[2]->feature.rect[0],p_offset), calc_sum(nodes[1]->feature.rect[0],
|
||||
p_offset),calc_sum(nodes[0]->feature.rect[0],p_offset));
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, nodes[6]->feature.rect[0].weight, nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight, nodes[3]->feature.rect[0].weight, nodes[2]->feature.rect[0].weight, nodes[1]->feature.rect[0].weight, nodes[0]->feature.rect[0].weight);
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
for( ; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
|
||||
offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1],p_offset),calc_sum(nodes[6]->feature.rect[1],p_offset),calc_sum(nodes[5]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[1],p_offset),calc_sum(nodes[3]->feature.rect[1],p_offset),calc_sum(nodes[2]->feature.rect[1],p_offset),calc_sum(nodes[1]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[0]->feature.rect[1],p_offset));
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, nodes[6]->feature.rect[1].weight, nodes[5]->feature.rect[1].weight, nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight, nodes[2]->feature.rect[1].weight, nodes[1]->feature.rect[1].weight, nodes[0]->feature.rect[1].weight);
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight));
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( ; j <= (cascade->stage_classifier[i].count)-8; j+=8 )
|
||||
{
|
||||
float CV_DECL_ALIGNED(32) tmp[8] = {0,0,0,0,0,0,0,0};
|
||||
|
||||
if( nodes[0]->feature.rect[2].p0 )
|
||||
tmp[0] = calc_sum(nodes[0]->feature.rect[2],p_offset) * nodes[0]->feature.rect[2].weight;
|
||||
if( nodes[1]->feature.rect[2].p0 )
|
||||
tmp[1] = calc_sum(nodes[1]->feature.rect[2],p_offset) * nodes[1]->feature.rect[2].weight;
|
||||
if( nodes[2]->feature.rect[2].p0 )
|
||||
tmp[2] = calc_sum(nodes[2]->feature.rect[2],p_offset) * nodes[2]->feature.rect[2].weight;
|
||||
if( nodes[3]->feature.rect[2].p0 )
|
||||
tmp[3] = calc_sum(nodes[3]->feature.rect[2],p_offset) * nodes[3]->feature.rect[2].weight;
|
||||
if( nodes[4]->feature.rect[2].p0 )
|
||||
tmp[4] = calc_sum(nodes[4]->feature.rect[2],p_offset) * nodes[4]->feature.rect[2].weight;
|
||||
if( nodes[5]->feature.rect[2].p0 )
|
||||
tmp[5] = calc_sum(nodes[5]->feature.rect[2],p_offset) * nodes[5]->feature.rect[2].weight;
|
||||
if( nodes[6]->feature.rect[2].p0 )
|
||||
tmp[6] = calc_sum(nodes[6]->feature.rect[2],p_offset) * nodes[6]->feature.rect[2].weight;
|
||||
if( nodes[7]->feature.rect[2].p0 )
|
||||
tmp[7] = calc_sum(nodes[7]->feature.rect[2],p_offset) * nodes[7]->feature.rect[2].weight;
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_load_ps(tmp));
|
||||
classifiers[0] = cascade->stage_classifier[i].classifier + j;
|
||||
nodes[0] = classifiers[0]->node;
|
||||
classifiers[1] = cascade->stage_classifier[i].classifier + j + 1;
|
||||
nodes[1] = classifiers[1]->node;
|
||||
classifiers[2] = cascade->stage_classifier[i].classifier + j + 2;
|
||||
nodes[2]= classifiers[2]->node;
|
||||
classifiers[3] = cascade->stage_classifier[i].classifier + j + 3;
|
||||
nodes[3] = classifiers[3]->node;
|
||||
classifiers[4] = cascade->stage_classifier[i].classifier + j + 4;
|
||||
nodes[4] = classifiers[4]->node;
|
||||
classifiers[5] = cascade->stage_classifier[i].classifier + j + 5;
|
||||
nodes[5] = classifiers[5]->node;
|
||||
classifiers[6] = cascade->stage_classifier[i].classifier + j + 6;
|
||||
nodes[6] = classifiers[6]->node;
|
||||
classifiers[7] = cascade->stage_classifier[i].classifier + j + 7;
|
||||
nodes[7] = classifiers[7]->node;
|
||||
|
||||
__m256 alpha0 = _mm256_set_ps(classifiers[7]->alpha[0],classifiers[6]->alpha[0],classifiers[5]->alpha[0],classifiers[4]->alpha[0],classifiers[3]->alpha[0],
|
||||
classifiers[2]->alpha[0],classifiers[1]->alpha[0],classifiers[0]->alpha[0]);
|
||||
__m256 alpha1 = _mm256_set_ps(classifiers[7]->alpha[1],classifiers[6]->alpha[1],classifiers[5]->alpha[1],classifiers[4]->alpha[1],classifiers[3]->alpha[1],
|
||||
classifiers[2]->alpha[1],classifiers[1]->alpha[1],classifiers[0]->alpha[1]);
|
||||
__m256 t = _mm256_set1_ps(variance_norm_factor);
|
||||
t = _mm256_mul_ps(t, _mm256_set_ps(nodes[7]->threshold,nodes[6]->threshold,nodes[5]->threshold,nodes[4]->threshold,nodes[3]->threshold,nodes[2]->threshold,nodes[1]->threshold,nodes[0]->threshold));
|
||||
|
||||
__m256 outBuf = _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ ));
|
||||
outBuf = _mm256_hadd_ps(outBuf, outBuf);
|
||||
outBuf = _mm256_hadd_ps(outBuf, outBuf);
|
||||
_mm256_store_ps(buf, outBuf);
|
||||
stage_sum+=(buf[0]+buf[4]);//(buf[0]+buf[1]+buf[2]+buf[3]+buf[4]+buf[5]+buf[6]+buf[7]);
|
||||
}
|
||||
|
||||
for( ; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
__m256 offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[0],p_offset), calc_sum(nodes[6]->feature.rect[0],p_offset), calc_sum(nodes[5]->feature.rect[0],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[0],p_offset), calc_sum(nodes[3]->feature.rect[0],p_offset), calc_sum(nodes[2]->feature.rect[0],p_offset), calc_sum(nodes[1]->feature.rect[0],
|
||||
p_offset),calc_sum(nodes[0]->feature.rect[0],p_offset));
|
||||
__m256 weight = _mm256_set_ps(nodes[7]->feature.rect[0].weight, nodes[6]->feature.rect[0].weight, nodes[5]->feature.rect[0].weight,
|
||||
nodes[4]->feature.rect[0].weight, nodes[3]->feature.rect[0].weight, nodes[2]->feature.rect[0].weight, nodes[1]->feature.rect[0].weight, nodes[0]->feature.rect[0].weight);
|
||||
__m256 sum = _mm256_mul_ps(offset, weight);
|
||||
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
if( stage_sum < cascade->stage_classifier[i].threshold )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
#ifdef CV_HAAR_USE_SSE && !CV_HAAR_USE_AVX //old SSE optimization
|
||||
if(haveSSE2)
|
||||
{
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
__m128d stage_sum = _mm_setzero_pd();
|
||||
if( cascade->stage_classifier[i].two_rects )
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
offset = _mm256_set_ps(calc_sum(nodes[7]->feature.rect[1],p_offset),calc_sum(nodes[6]->feature.rect[1],p_offset),calc_sum(nodes[5]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[4]->feature.rect[1],p_offset),calc_sum(nodes[3]->feature.rect[1],p_offset),calc_sum(nodes[2]->feature.rect[1],p_offset),calc_sum(nodes[1]->feature.rect[1],p_offset),
|
||||
calc_sum(nodes[0]->feature.rect[1],p_offset));
|
||||
weight = _mm256_set_ps(nodes[7]->feature.rect[1].weight, nodes[6]->feature.rect[1].weight, nodes[5]->feature.rect[1].weight, nodes[4]->feature.rect[1].weight,
|
||||
nodes[3]->feature.rect[1].weight, nodes[2]->feature.rect[1].weight, nodes[1]->feature.rect[1].weight, nodes[0]->feature.rect[1].weight);
|
||||
|
||||
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
|
||||
__m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
|
||||
__m128d a = _mm_set_sd(classifier->alpha[0]);
|
||||
__m128d b = _mm_set_sd(classifier->alpha[1]);
|
||||
__m128d sum = _mm_set_sd(calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight +
|
||||
calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight);
|
||||
t = _mm_cmpgt_sd(t, sum);
|
||||
stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
|
||||
__m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
|
||||
__m128d a = _mm_set_sd(classifier->alpha[0]);
|
||||
__m128d b = _mm_set_sd(classifier->alpha[1]);
|
||||
double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
_sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
_sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
__m128d sum = _mm_set_sd(_sum);
|
||||
sum = _mm256_add_ps(sum, _mm256_mul_ps(offset,weight));
|
||||
|
||||
t = _mm_cmpgt_sd(t, sum);
|
||||
stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));
|
||||
}
|
||||
}
|
||||
__m128d i_threshold = _mm_set1_pd(cascade->stage_classifier[i].threshold);
|
||||
if( _mm_comilt_sd(stage_sum, i_threshold) )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
stage_sum = 0.0;
|
||||
if( cascade->stage_classifier[i].two_rects )
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
if( stage_sum < cascade->stage_classifier[i].threshold )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
else
|
||||
if( nodes[0]->feature.rect[2].p0 )
|
||||
tmp[0] = calc_sum(nodes[0]->feature.rect[2],p_offset) * nodes[0]->feature.rect[2].weight;
|
||||
if( nodes[1]->feature.rect[2].p0 )
|
||||
tmp[1] = calc_sum(nodes[1]->feature.rect[2],p_offset) * nodes[1]->feature.rect[2].weight;
|
||||
if( nodes[2]->feature.rect[2].p0 )
|
||||
tmp[2] = calc_sum(nodes[2]->feature.rect[2],p_offset) * nodes[2]->feature.rect[2].weight;
|
||||
if( nodes[3]->feature.rect[2].p0 )
|
||||
tmp[3] = calc_sum(nodes[3]->feature.rect[2],p_offset) * nodes[3]->feature.rect[2].weight;
|
||||
if( nodes[4]->feature.rect[2].p0 )
|
||||
tmp[4] = calc_sum(nodes[4]->feature.rect[2],p_offset) * nodes[4]->feature.rect[2].weight;
|
||||
if( nodes[5]->feature.rect[2].p0 )
|
||||
tmp[5] = calc_sum(nodes[5]->feature.rect[2],p_offset) * nodes[5]->feature.rect[2].weight;
|
||||
if( nodes[6]->feature.rect[2].p0 )
|
||||
tmp[6] = calc_sum(nodes[6]->feature.rect[2],p_offset) * nodes[6]->feature.rect[2].weight;
|
||||
if( nodes[7]->feature.rect[2].p0 )
|
||||
tmp[7] = calc_sum(nodes[7]->feature.rect[2],p_offset) * nodes[7]->feature.rect[2].weight;
|
||||
|
||||
sum = _mm256_add_ps(sum, _mm256_load_ps(tmp));
|
||||
|
||||
__m256 alpha0 = _mm256_set_ps(classifiers[7]->alpha[0],classifiers[6]->alpha[0],classifiers[5]->alpha[0],classifiers[4]->alpha[0],classifiers[3]->alpha[0],
|
||||
classifiers[2]->alpha[0],classifiers[1]->alpha[0],classifiers[0]->alpha[0]);
|
||||
__m256 alpha1 = _mm256_set_ps(classifiers[7]->alpha[1],classifiers[6]->alpha[1],classifiers[5]->alpha[1],classifiers[4]->alpha[1],classifiers[3]->alpha[1],
|
||||
classifiers[2]->alpha[1],classifiers[1]->alpha[1],classifiers[0]->alpha[1]);
|
||||
|
||||
__m256 outBuf = _mm256_blendv_ps(alpha0, alpha1, _mm256_cmp_ps(t, sum, _CMP_LE_OQ ));
|
||||
outBuf = _mm256_hadd_ps(outBuf, outBuf);
|
||||
outBuf = _mm256_hadd_ps(outBuf, outBuf);
|
||||
_mm256_store_ps(buf, outBuf);
|
||||
stage_sum+=(buf[0]+buf[4]);//(buf[0]+buf[1]+buf[2]+buf[3]+buf[4]+buf[5]+buf[6]+buf[7]);
|
||||
}
|
||||
|
||||
for( ; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
if( stage_sum < cascade->stage_classifier[i].threshold )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
#if defined CV_HAAR_USE_SSE && CV_HAAR_USE_SSE && !CV_HAAR_USE_AVX //old SSE optimization
|
||||
if(haveSSE2)
|
||||
{
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
__m128d stage_sum = _mm_setzero_pd();
|
||||
if( cascade->stage_classifier[i].two_rects )
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
|
||||
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
|
||||
__m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
|
||||
__m128d a = _mm_set_sd(classifier->alpha[0]);
|
||||
__m128d b = _mm_set_sd(classifier->alpha[1]);
|
||||
__m128d sum = _mm_set_sd(calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight +
|
||||
calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight);
|
||||
t = _mm_cmpgt_sd(t, sum);
|
||||
stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
// ayasin - NHM perf optim. Avoid use of costly flaky jcc
|
||||
__m128d t = _mm_set_sd(node->threshold*variance_norm_factor);
|
||||
__m128d a = _mm_set_sd(classifier->alpha[0]);
|
||||
__m128d b = _mm_set_sd(classifier->alpha[1]);
|
||||
double _sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
_sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
_sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
__m128d sum = _mm_set_sd(_sum);
|
||||
|
||||
t = _mm_cmpgt_sd(t, sum);
|
||||
stage_sum = _mm_add_sd(stage_sum, _mm_blendv_pd(b, a, t));
|
||||
}
|
||||
}
|
||||
__m128d i_threshold = _mm_set1_pd(cascade->stage_classifier[i].threshold);
|
||||
if( _mm_comilt_sd(stage_sum, i_threshold) )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
stage_sum = 0.0;
|
||||
if( cascade->stage_classifier[i].two_rects )
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
CvHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||||
CvHidHaarTreeNode* node = classifier->node;
|
||||
double t = node->threshold*variance_norm_factor;
|
||||
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||||
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||||
if( node->feature.rect[2].p0 )
|
||||
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||||
stage_sum += classifier->alpha[sum >= t];
|
||||
}
|
||||
}
|
||||
if( stage_sum < cascade->stage_classifier[i].threshold )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
for( i = start_stage; i < cascade->count; i++ )
|
||||
{
|
||||
stage_sum = 0.0;
|
||||
int j = 0;
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
if(haveAVX)
|
||||
{
|
||||
for( ; j < cascade->stage_classifier[i].count-8; j+=8 )
|
||||
{
|
||||
stage_sum += icvEvalHidHaarClassifierAVX(
|
||||
cascade->stage_classifier[i].classifier+j,
|
||||
variance_norm_factor, p_offset );
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for(; j < cascade->stage_classifier[i].count; j++ )
|
||||
{
|
||||
|
||||
stage_sum += icvEvalHidHaarClassifier(
|
||||
cascade->stage_classifier[i].classifier + j,
|
||||
variance_norm_factor, p_offset );
|
||||
}
|
||||
|
||||
int k = 0;
|
||||
#ifdef CV_HAAR_USE_AVX
|
||||
if(haveAVX)
|
||||
{
|
||||
for( ; k < cascade->stage_classifier[i].count-8; k+=8 )
|
||||
{
|
||||
stage_sum += icvEvalHidHaarClassifierAVX(
|
||||
cascade->stage_classifier[i].classifier+k,
|
||||
variance_norm_factor, p_offset );
|
||||
}
|
||||
}
|
||||
#endif
|
||||
for(; k < cascade->stage_classifier[i].count; k++ )
|
||||
{
|
||||
|
||||
stage_sum += icvEvalHidHaarClassifier(
|
||||
cascade->stage_classifier[i].classifier + k,
|
||||
variance_norm_factor, p_offset );
|
||||
}
|
||||
|
||||
if( stage_sum < cascade->stage_classifier[i].threshold )
|
||||
return -i;
|
||||
}
|
||||
}
|
||||
//_mm256_zeroupper();
|
||||
//_mm256_zeroupper();
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
@ -1,13 +1,13 @@
|
||||
/*
|
||||
* pca.cpp
|
||||
*
|
||||
* Author:
|
||||
* Author:
|
||||
* Kevin Hughes <kevinhughes27[at]gmail[dot]com>
|
||||
*
|
||||
* Special Thanks to:
|
||||
* Philipp Wagner <bytefish[at]gmx[dot]de>
|
||||
*
|
||||
* This program demonstrates how to use OpenCV PCA with a
|
||||
* This program demonstrates how to use OpenCV PCA with a
|
||||
* specified amount of variance to retain. The effect
|
||||
* is illustrated further by using a trackbar to
|
||||
* change the value for retained varaince.
|
||||
@ -17,9 +17,9 @@
|
||||
* on this list of images. The author recommends using
|
||||
* the first 15 faces of the AT&T face data set:
|
||||
* http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
|
||||
*
|
||||
*
|
||||
* so for example your input text file would look like this:
|
||||
*
|
||||
*
|
||||
* <path_to_at&t_faces>/orl_faces/s1/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s2/1.pgm
|
||||
* <path_to_at&t_faces>/orl_faces/s3/1.pgm
|
||||
@ -50,7 +50,7 @@ using namespace std;
|
||||
|
||||
///////////////////////
|
||||
// Functions
|
||||
void read_imgList(const string& filename, vector<Mat>& images) {
|
||||
static void read_imgList(const string& filename, vector<Mat>& images) {
|
||||
std::ifstream file(filename.c_str(), ifstream::in);
|
||||
if (!file) {
|
||||
string error_message = "No valid input file was given, please check the given filename.";
|
||||
@ -62,19 +62,19 @@ void read_imgList(const string& filename, vector<Mat>& images) {
|
||||
}
|
||||
}
|
||||
|
||||
Mat formatImagesForPCA(const vector<Mat> &data)
|
||||
static Mat formatImagesForPCA(const vector<Mat> &data)
|
||||
{
|
||||
Mat dst(data.size(), data[0].rows*data[0].cols, CV_32F);
|
||||
for(unsigned int i = 0; i < data.size(); i++)
|
||||
{
|
||||
Mat image_row = data[i].clone().reshape(1,1);
|
||||
Mat row_i = dst.row(i);
|
||||
image_row.convertTo(row_i,CV_32F);
|
||||
image_row.convertTo(row_i,CV_32F);
|
||||
}
|
||||
return dst;
|
||||
}
|
||||
|
||||
Mat toGrayscale(InputArray _src) {
|
||||
static Mat toGrayscale(InputArray _src) {
|
||||
Mat src = _src.getMat();
|
||||
// only allow one channel
|
||||
if(src.channels() != 1) {
|
||||
@ -95,22 +95,22 @@ struct params
|
||||
string winName;
|
||||
};
|
||||
|
||||
void onTrackbar(int pos, void* ptr)
|
||||
{
|
||||
static void onTrackbar(int pos, void* ptr)
|
||||
{
|
||||
cout << "Retained Variance = " << pos << "% ";
|
||||
cout << "re-calculating PCA..." << std::flush;
|
||||
|
||||
|
||||
double var = pos / 100.0;
|
||||
|
||||
|
||||
struct params *p = (struct params *)ptr;
|
||||
|
||||
|
||||
p->pca = PCA(p->data, cv::Mat(), CV_PCA_DATA_AS_ROW, var);
|
||||
|
||||
|
||||
Mat point = p->pca.project(p->data.row(0));
|
||||
Mat reconstruction = p->pca.backProject(point);
|
||||
reconstruction = reconstruction.reshape(p->ch, p->rows);
|
||||
reconstruction = toGrayscale(reconstruction);
|
||||
|
||||
|
||||
imshow(p->winName, reconstruction);
|
||||
cout << "done! # of principal components: " << p->pca.eigenvectors.rows << endl;
|
||||
}
|
||||
@ -118,19 +118,19 @@ void onTrackbar(int pos, void* ptr)
|
||||
|
||||
///////////////////////
|
||||
// Main
|
||||
int main(int argc, char** argv)
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
if (argc != 2) {
|
||||
cout << "usage: " << argv[0] << " <image_list.txt>" << endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
// Get the path to your CSV.
|
||||
string imgList = string(argv[1]);
|
||||
|
||||
|
||||
// vector to hold the images
|
||||
vector<Mat> images;
|
||||
|
||||
|
||||
// Read in the data. This can fail if not valid
|
||||
try {
|
||||
read_imgList(imgList, images);
|
||||
@ -138,29 +138,29 @@ int main(int argc, char** argv)
|
||||
cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
// Quit if there are not enough images for this demo.
|
||||
if(images.size() <= 1) {
|
||||
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!";
|
||||
CV_Error(CV_StsError, error_message);
|
||||
}
|
||||
|
||||
|
||||
// Reshape and stack images into a rowMatrix
|
||||
Mat data = formatImagesForPCA(images);
|
||||
|
||||
|
||||
// perform PCA
|
||||
PCA pca(data, cv::Mat(), CV_PCA_DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance
|
||||
|
||||
// Demonstration of the effect of retainedVariance on the first image
|
||||
|
||||
// Demonstration of the effect of retainedVariance on the first image
|
||||
Mat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point"
|
||||
Mat reconstruction = pca.backProject(point); // re-create the image from the "point"
|
||||
reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shape
|
||||
reconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes
|
||||
|
||||
|
||||
// init highgui window
|
||||
string winName = "Reconstruction | press 'q' to quit";
|
||||
namedWindow(winName, CV_WINDOW_NORMAL);
|
||||
|
||||
|
||||
// params struct to pass to the trackbar handler
|
||||
params p;
|
||||
p.data = data;
|
||||
@ -168,17 +168,17 @@ int main(int argc, char** argv)
|
||||
p.rows = images[0].rows;
|
||||
p.pca = pca;
|
||||
p.winName = winName;
|
||||
|
||||
|
||||
// create the tracbar
|
||||
int pos = 95;
|
||||
createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p);
|
||||
|
||||
createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p);
|
||||
|
||||
// display until user presses q
|
||||
imshow(winName, reconstruction);
|
||||
|
||||
|
||||
char key = 0;
|
||||
while(key != 'q')
|
||||
key = waitKey();
|
||||
|
||||
return 0;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user