fixed octave computation in SURF_GPU

used random images in gpu filter tests
This commit is contained in:
Vladislav Vinogradov 2012-03-26 18:07:03 +00:00
parent 903c05db1a
commit 089a835c0a
7 changed files with 200 additions and 385 deletions

View File

@ -1516,13 +1516,14 @@ class CV_EXPORTS SURF_GPU
public:
enum KeypointLayout
{
SF_X = 0,
SF_Y,
SF_LAPLACIAN,
SF_SIZE,
SF_DIR,
SF_HESSIAN,
SF_FEATURE_STRIDE
X_ROW = 0,
Y_ROW,
LAPLACIAN_ROW,
OCTAVE_ROW,
SIZE_ROW,
ANGLE_ROW,
HESSIAN_ROW,
ROWS_COUNT
};
//! the default constructor

View File

@ -117,7 +117,7 @@ namespace cv { namespace gpu { namespace device
template <int N> __device__ float icvCalcHaarPatternSum(const float src[][5], int oldSize, int newSize, int y, int x)
{
#if __CUDA_ARCH__ >= 200
typedef double real_t;
typedef double real_t;
#else
typedef float real_t;
#endif
@ -248,7 +248,7 @@ namespace cv { namespace gpu { namespace device
template <typename Mask>
__global__ void icvFindMaximaInLayer(const PtrStepf det, const PtrStepf trace, int4* maxPosBuffer, unsigned int* maxCounter)
{
#if defined (__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
#if __CUDA_ARCH__ >= 110
extern __shared__ float N9[];
@ -368,10 +368,10 @@ namespace cv { namespace gpu { namespace device
// INTERPOLATION
__global__ void icvInterpolateKeypoint(const PtrStepf det, const int4* maxPosBuffer,
float* featureX, float* featureY, int* featureLaplacian, float* featureSize, float* featureHessian,
float* featureX, float* featureY, int* featureLaplacian, int* featureOctave, float* featureSize, float* featureHessian,
unsigned int* featureCounter)
{
#if defined (__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
#if __CUDA_ARCH__ >= 110
const int4 maxPos = maxPosBuffer[blockIdx.x];
@ -459,6 +459,7 @@ namespace cv { namespace gpu { namespace device
featureX[ind] = px;
featureY[ind] = py;
featureLaplacian[ind] = maxPos.w;
featureOctave[ind] = c_octave;
featureSize[ind] = psize;
featureHessian[ind] = N9[1][1][1];
}
@ -471,7 +472,7 @@ namespace cv { namespace gpu { namespace device
}
void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter,
float* featureX, float* featureY, int* featureLaplacian, float* featureSize, float* featureHessian,
float* featureX, float* featureY, int* featureLaplacian, int* featureOctave, float* featureSize, float* featureHessian,
unsigned int* featureCounter)
{
dim3 threads;
@ -482,7 +483,7 @@ namespace cv { namespace gpu { namespace device
dim3 grid;
grid.x = maxCounter;
icvInterpolateKeypoint<<<grid, threads>>>(det, maxPosBuffer, featureX, featureY, featureLaplacian, featureSize, featureHessian, featureCounter);
icvInterpolateKeypoint<<<grid, threads>>>(det, maxPosBuffer, featureX, featureY, featureLaplacian, featureOctave, featureSize, featureHessian, featureCounter);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );

View File

@ -948,7 +948,9 @@ namespace
{
DeviceInfo devInfo;
int cc = devInfo.majorVersion() * 10 + devInfo.minorVersion();
CV_Assert(cc >= 20 || ksize <= 16);
if (ksize > 16 && cc < 20)
CV_Error(CV_StsNotImplemented, "column linear filter doesn't implemented for kernel size > 16 for device with compute capabilities less than 2.0");
func(src, dst, kernel.ptr<float>(), ksize, anchor, brd_type, cc, StreamAccessor::getStream(s));
}

View File

@ -80,7 +80,7 @@ namespace cv { namespace gpu { namespace device
int img_rows, int img_cols, int octave, bool use_mask, int nLayers);
void icvInterpolateKeypoint_gpu(const PtrStepf& det, const int4* maxPosBuffer, unsigned int maxCounter,
float* featureX, float* featureY, int* featureLaplacian, float* featureSize, float* featureHessian,
float* featureX, float* featureY, int* featureLaplacian, int* featureOctave, float* featureSize, float* featureHessian,
unsigned int* featureCounter);
void icvCalcOrientation_gpu(const float* featureX, const float* featureY, const float* featureSize, float* featureDir, int nFeatures);
@ -161,7 +161,7 @@ namespace
ensureSizeIsEnough(img_rows * (surf_.nOctaveLayers + 2), img_cols, CV_32FC1, surf_.trace);
ensureSizeIsEnough(1, maxCandidates, CV_32SC4, surf_.maxPosBuffer);
ensureSizeIsEnough(SURF_GPU::SF_FEATURE_STRIDE, maxFeatures, CV_32FC1, keypoints);
ensureSizeIsEnough(SURF_GPU::ROWS_COUNT, maxFeatures, CV_32FC1, keypoints);
keypoints.setTo(Scalar::all(0));
for (int octave = 0; octave < surf_.nOctaves; ++octave)
@ -183,9 +183,10 @@ namespace
if (maxCounter > 0)
{
icvInterpolateKeypoint_gpu(surf_.det, surf_.maxPosBuffer.ptr<int4>(), maxCounter,
keypoints.ptr<float>(SURF_GPU::SF_X), keypoints.ptr<float>(SURF_GPU::SF_Y),
keypoints.ptr<int>(SURF_GPU::SF_LAPLACIAN), keypoints.ptr<float>(SURF_GPU::SF_SIZE),
keypoints.ptr<float>(SURF_GPU::SF_HESSIAN), counters.ptr<unsigned int>());
keypoints.ptr<float>(SURF_GPU::X_ROW), keypoints.ptr<float>(SURF_GPU::Y_ROW),
keypoints.ptr<int>(SURF_GPU::LAPLACIAN_ROW), keypoints.ptr<int>(SURF_GPU::OCTAVE_ROW),
keypoints.ptr<float>(SURF_GPU::SIZE_ROW), keypoints.ptr<float>(SURF_GPU::HESSIAN_ROW),
counters.ptr<unsigned int>());
}
}
unsigned int featureCounter;
@ -195,7 +196,7 @@ namespace
keypoints.cols = featureCounter;
if (surf_.upright)
keypoints.row(SURF_GPU::SF_DIR).setTo(Scalar::all(90.0));
keypoints.row(SURF_GPU::ANGLE_ROW).setTo(Scalar::all(90.0));
else
findOrientation(keypoints);
}
@ -205,8 +206,8 @@ namespace
const int nFeatures = keypoints.cols;
if (nFeatures > 0)
{
icvCalcOrientation_gpu(keypoints.ptr<float>(SURF_GPU::SF_X), keypoints.ptr<float>(SURF_GPU::SF_Y),
keypoints.ptr<float>(SURF_GPU::SF_SIZE), keypoints.ptr<float>(SURF_GPU::SF_DIR), nFeatures);
icvCalcOrientation_gpu(keypoints.ptr<float>(SURF_GPU::X_ROW), keypoints.ptr<float>(SURF_GPU::Y_ROW),
keypoints.ptr<float>(SURF_GPU::SIZE_ROW), keypoints.ptr<float>(SURF_GPU::ANGLE_ROW), nFeatures);
}
}
@ -216,8 +217,8 @@ namespace
if (nFeatures > 0)
{
ensureSizeIsEnough(nFeatures, descriptorSize, CV_32F, descriptors);
compute_descriptors_gpu(descriptors, keypoints.ptr<float>(SURF_GPU::SF_X), keypoints.ptr<float>(SURF_GPU::SF_Y),
keypoints.ptr<float>(SURF_GPU::SF_SIZE), keypoints.ptr<float>(SURF_GPU::SF_DIR), nFeatures);
compute_descriptors_gpu(descriptors, keypoints.ptr<float>(SURF_GPU::X_ROW), keypoints.ptr<float>(SURF_GPU::Y_ROW),
keypoints.ptr<float>(SURF_GPU::SIZE_ROW), keypoints.ptr<float>(SURF_GPU::ANGLE_ROW), nFeatures);
}
}
@ -266,20 +267,22 @@ void cv::gpu::SURF_GPU::uploadKeypoints(const vector<KeyPoint>& keypoints, GpuMa
keypointsGPU.release();
else
{
Mat keypointsCPU(SURF_GPU::SF_FEATURE_STRIDE, static_cast<int>(keypoints.size()), CV_32FC1);
Mat keypointsCPU(SURF_GPU::ROWS_COUNT, static_cast<int>(keypoints.size()), CV_32FC1);
float* kp_x = keypointsCPU.ptr<float>(SURF_GPU::SF_X);
float* kp_y = keypointsCPU.ptr<float>(SURF_GPU::SF_Y);
int* kp_laplacian = keypointsCPU.ptr<int>(SURF_GPU::SF_LAPLACIAN);
float* kp_size = keypointsCPU.ptr<float>(SURF_GPU::SF_SIZE);
float* kp_dir = keypointsCPU.ptr<float>(SURF_GPU::SF_DIR);
float* kp_hessian = keypointsCPU.ptr<float>(SURF_GPU::SF_HESSIAN);
float* kp_x = keypointsCPU.ptr<float>(SURF_GPU::X_ROW);
float* kp_y = keypointsCPU.ptr<float>(SURF_GPU::Y_ROW);
int* kp_laplacian = keypointsCPU.ptr<int>(SURF_GPU::LAPLACIAN_ROW);
int* kp_octave = keypointsCPU.ptr<int>(SURF_GPU::OCTAVE_ROW);
float* kp_size = keypointsCPU.ptr<float>(SURF_GPU::SIZE_ROW);
float* kp_dir = keypointsCPU.ptr<float>(SURF_GPU::ANGLE_ROW);
float* kp_hessian = keypointsCPU.ptr<float>(SURF_GPU::HESSIAN_ROW);
for (size_t i = 0, size = keypoints.size(); i < size; ++i)
{
const KeyPoint& kp = keypoints[i];
kp_x[i] = kp.pt.x;
kp_y[i] = kp.pt.y;
kp_octave[i] = kp.octave;
kp_size[i] = kp.size;
kp_dir[i] = kp.angle;
kp_hessian[i] = kp.response;
@ -290,30 +293,6 @@ void cv::gpu::SURF_GPU::uploadKeypoints(const vector<KeyPoint>& keypoints, GpuMa
}
}
namespace
{
int getPointOctave(float size, const SURF_GPU& params)
{
int best_octave = 0;
float min_diff = numeric_limits<float>::max();
for (int octave = 1; octave < params.nOctaves; ++octave)
{
for (int layer = 0; layer < params.nOctaveLayers; ++layer)
{
float diff = std::abs(size - (float)calcSize(octave, layer));
if (min_diff > diff)
{
min_diff = diff;
best_octave = octave;
if (min_diff == 0)
return best_octave;
}
}
}
return best_octave;
}
}
void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat& keypointsGPU, vector<KeyPoint>& keypoints)
{
const int nFeatures = keypointsGPU.cols;
@ -322,18 +301,19 @@ void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat& keypointsGPU, vector<Key
keypoints.clear();
else
{
CV_Assert(keypointsGPU.type() == CV_32FC1 && keypointsGPU.rows == SF_FEATURE_STRIDE);
CV_Assert(keypointsGPU.type() == CV_32FC1 && keypointsGPU.rows == ROWS_COUNT);
Mat keypointsCPU(keypointsGPU);
keypoints.resize(nFeatures);
float* kp_x = keypointsCPU.ptr<float>(SF_X);
float* kp_y = keypointsCPU.ptr<float>(SF_Y);
int* kp_laplacian = keypointsCPU.ptr<int>(SF_LAPLACIAN);
float* kp_size = keypointsCPU.ptr<float>(SF_SIZE);
float* kp_dir = keypointsCPU.ptr<float>(SF_DIR);
float* kp_hessian = keypointsCPU.ptr<float>(SF_HESSIAN);
float* kp_x = keypointsCPU.ptr<float>(SURF_GPU::X_ROW);
float* kp_y = keypointsCPU.ptr<float>(SURF_GPU::Y_ROW);
int* kp_laplacian = keypointsCPU.ptr<int>(SURF_GPU::LAPLACIAN_ROW);
int* kp_octave = keypointsCPU.ptr<int>(SURF_GPU::OCTAVE_ROW);
float* kp_size = keypointsCPU.ptr<float>(SURF_GPU::SIZE_ROW);
float* kp_dir = keypointsCPU.ptr<float>(SURF_GPU::ANGLE_ROW);
float* kp_hessian = keypointsCPU.ptr<float>(SURF_GPU::HESSIAN_ROW);
for (int i = 0; i < nFeatures; ++i)
{
@ -341,10 +321,10 @@ void cv::gpu::SURF_GPU::downloadKeypoints(const GpuMat& keypointsGPU, vector<Key
kp.pt.x = kp_x[i];
kp.pt.y = kp_y[i];
kp.class_id = kp_laplacian[i];
kp.octave = kp_octave[i];
kp.size = kp_size[i];
kp.angle = kp_dir[i];
kp.response = kp_hessian[i];
kp.octave = getPointOctave(kp.size, *this);
}
}
}

View File

@ -437,7 +437,7 @@ TEST_P(Multiply_Array, WithScale)
cv::Mat dst_gold;
cv::multiply(mat1, mat2, dst_gold, scale, depth.second);
EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0);
EXPECT_MAT_NEAR(dst_gold, dst, 1.0);
}
}
@ -2715,7 +2715,7 @@ TEST_P(Sum, Sqr)
cv::Scalar val_gold = sqrSumGold(src);
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 10);
EXPECT_SCALAR_NEAR(val_gold, val, CV_MAT_DEPTH(type) < CV_32F ? 0.0 : 0.5);
}
INSTANTIATE_TEST_CASE_P(GPU_Core, Sum, testing::Combine(

View File

@ -85,7 +85,7 @@ testing::AssertionResult assertKeyPointsEquals(const char* gold_expr, const char
std::sort(actual.begin(), actual.end(), KeyPointLess());
std::sort(gold.begin(), gold.end(), KeyPointLess());
for (size_t i; i < gold.size(); ++i)
for (size_t i = 0; i < gold.size(); ++i)
{
const cv::KeyPoint& p1 = gold[i];
const cv::KeyPoint& p2 = actual[i];

View File

@ -68,59 +68,45 @@ cv::Mat getInnerROI(cv::InputArray m, int ksize)
IMPLEMENT_PARAM_CLASS(Anchor, cv::Point)
PARAM_TEST_CASE(Blur, cv::gpu::DeviceInfo, KSize, Anchor, UseRoi)
PARAM_TEST_CASE(Blur, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, Anchor, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Size ksize;
cv::Point anchor;
bool useRoi;
cv::Mat img;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
ksize = GET_PARAM(1);
anchor = GET_PARAM(2);
useRoi = GET_PARAM(3);
size = GET_PARAM(1);
type = GET_PARAM(2);
ksize = GET_PARAM(3);
anchor = GET_PARAM(4);
useRoi = GET_PARAM(5);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobp/aloe-L.png");
ASSERT_FALSE(img.empty());
}
};
TEST_P(Blur, Gray)
TEST_P(Blur, Accuracy)
{
cv::Mat img_gray;
cv::cvtColor(img, img_gray, CV_BGR2GRAY);
cv::Mat src = randomMat(size, type);
cv::gpu::GpuMat dst;
cv::gpu::blur(loadMat(img_gray, useRoi), dst, ksize, anchor);
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::blur(loadMat(src, useRoi), dst, ksize, anchor);
cv::Mat dst_gold;
cv::blur(img_gray, dst_gold, ksize, anchor);
EXPECT_MAT_NEAR(getInnerROI(dst_gold, ksize), getInnerROI(dst, ksize), 0.0);
}
TEST_P(Blur, Color)
{
cv::Mat img_rgba;
cv::cvtColor(img, img_rgba, CV_BGR2BGRA);
cv::gpu::GpuMat dst;
cv::gpu::blur(loadMat(img_rgba, useRoi), dst, ksize, anchor);
cv::Mat dst_gold;
cv::blur(img_rgba, dst_gold, ksize, anchor);
cv::blur(src, dst_gold, ksize, anchor);
EXPECT_MAT_NEAR(getInnerROI(dst_gold, ksize), getInnerROI(dst, ksize), 1.0);
}
INSTANTIATE_TEST_CASE_P(GPU_Filter, Blur, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(KSize(3, 3), KSize(5, 5), KSize(7, 7)),
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
WHOLE_SUBMAT));
@ -131,69 +117,52 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Blur, testing::Combine(
IMPLEMENT_PARAM_CLASS(Deriv_X, int)
IMPLEMENT_PARAM_CLASS(Deriv_Y, int)
PARAM_TEST_CASE(Sobel, cv::gpu::DeviceInfo, KSize, Deriv_X, Deriv_Y, BorderType, UseRoi)
PARAM_TEST_CASE(Sobel, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, Deriv_X, Deriv_Y, BorderType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Size ksize;
int dx;
int dy;
int borderType;
bool useRoi;
cv::Mat img;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
ksize = GET_PARAM(1);
dx = GET_PARAM(2);
dy = GET_PARAM(3);
borderType = GET_PARAM(4);
useRoi = GET_PARAM(5);
size = GET_PARAM(1);
type = GET_PARAM(2);
ksize = GET_PARAM(3);
dx = GET_PARAM(4);
dy = GET_PARAM(5);
borderType = GET_PARAM(6);
useRoi = GET_PARAM(7);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobp/aloe-L.png");
ASSERT_FALSE(img.empty());
}
};
TEST_P(Sobel, Gray)
TEST_P(Sobel, Accuracy)
{
if (dx == 0 && dy == 0)
return;
cv::Mat img_gray;
cv::cvtColor(img, img_gray, CV_BGR2GRAY);
cv::Mat src = randomMat(size, type);
cv::gpu::GpuMat dst;
cv::gpu::Sobel(loadMat(img_gray, useRoi), dst, -1, dx, dy, ksize.width, 1.0, borderType);
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::Sobel(loadMat(src, useRoi), dst, -1, dx, dy, ksize.width, 1.0, borderType);
cv::Mat dst_gold;
cv::Sobel(img_gray, dst_gold, -1, dx, dy, ksize.width, 1.0, 0.0, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(Sobel, Color)
{
if (dx == 0 && dy == 0)
return;
cv::Mat img_rgba;
cv::cvtColor(img, img_rgba, CV_BGR2BGRA);
cv::gpu::GpuMat dst;
cv::gpu::Sobel(loadMat(img_rgba, useRoi), dst, -1, dx, dy, ksize.width, 1.0, borderType);
cv::Mat dst_gold;
cv::Sobel(img_rgba, dst_gold, -1, dx, dy, ksize.width, 1.0, 0.0, borderType);
cv::Sobel(src, dst_gold, -1, dx, dy, ksize.width, 1.0, 0.0, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(GPU_Filter, Sobel, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(KSize(3, 3), KSize(5, 5), KSize(7, 7)),
testing::Values(Deriv_X(0), Deriv_X(1), Deriv_X(2)),
testing::Values(Deriv_Y(0), Deriv_Y(1), Deriv_Y(2)),
@ -206,67 +175,50 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Sobel, testing::Combine(
/////////////////////////////////////////////////////////////////////////////////////////////////
// Scharr
PARAM_TEST_CASE(Scharr, cv::gpu::DeviceInfo, Deriv_X, Deriv_Y, BorderType, UseRoi)
PARAM_TEST_CASE(Scharr, cv::gpu::DeviceInfo, cv::Size, MatType, Deriv_X, Deriv_Y, BorderType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
int dx;
int dy;
int borderType;
bool useRoi;
cv::Mat img;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
dx = GET_PARAM(1);
dy = GET_PARAM(2);
borderType = GET_PARAM(3);
useRoi = GET_PARAM(4);
size = GET_PARAM(1);
type = GET_PARAM(2);
dx = GET_PARAM(3);
dy = GET_PARAM(4);
borderType = GET_PARAM(5);
useRoi = GET_PARAM(6);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobp/aloe-L.png");
ASSERT_FALSE(img.empty());
}
};
TEST_P(Scharr, Gray)
TEST_P(Scharr, Accuracy)
{
if (dx + dy != 1)
return;
cv::Mat img_gray;
cv::cvtColor(img, img_gray, CV_BGR2GRAY);
cv::Mat src = randomMat(size, type);
cv::gpu::GpuMat dst;
cv::gpu::Scharr(loadMat(img_gray, useRoi), dst, -1, dx, dy, 1.0, borderType);
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::Scharr(loadMat(src, useRoi), dst, -1, dx, dy, 1.0, borderType);
cv::Mat dst_gold;
cv::Scharr(img_gray, dst_gold, -1, dx, dy, 1.0, 0.0, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
TEST_P(Scharr, Color)
{
if (dx + dy != 1)
return;
cv::Mat img_rgba;
cv::cvtColor(img, img_rgba, CV_BGR2BGRA);
cv::gpu::GpuMat dst;
cv::gpu::Scharr(loadMat(img_rgba, useRoi), dst, -1, dx, dy, 1.0, borderType);
cv::Mat dst_gold;
cv::Scharr(img_rgba, dst_gold, -1, dx, dy, 1.0, 0.0, borderType);
cv::Scharr(src, dst_gold, -1, dx, dy, 1.0, 0.0, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
}
INSTANTIATE_TEST_CASE_P(GPU_Filter, Scharr, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(Deriv_X(0), Deriv_X(1)),
testing::Values(Deriv_Y(0), Deriv_Y(1)),
testing::Values(BorderType(cv::BORDER_REFLECT101),
@ -278,63 +230,47 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Scharr, testing::Combine(
/////////////////////////////////////////////////////////////////////////////////////////////////
// GaussianBlur
PARAM_TEST_CASE(GaussianBlur, cv::gpu::DeviceInfo, KSize, BorderType, UseRoi)
PARAM_TEST_CASE(GaussianBlur, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, BorderType, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Size ksize;
int borderType;
bool useRoi;
cv::Mat img;
double sigma1, sigma2;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
ksize = GET_PARAM(1);
borderType = GET_PARAM(2);
useRoi = GET_PARAM(3);
size = GET_PARAM(1);
type = GET_PARAM(2);
ksize = GET_PARAM(3);
borderType = GET_PARAM(4);
useRoi = GET_PARAM(5);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobp/aloe-L.png");
ASSERT_FALSE(img.empty());
sigma1 = randomDouble(0.1, 1.0);
sigma2 = randomDouble(0.1, 1.0);
}
};
TEST_P(GaussianBlur, Gray)
TEST_P(GaussianBlur, Accuracy)
{
cv::Mat img_gray;
cv::cvtColor(img, img_gray, CV_BGR2GRAY);
cv::Mat src = randomMat(size, type);
double sigma1 = randomDouble(0.1, 1.0);
double sigma2 = randomDouble(0.1, 1.0);
cv::gpu::GpuMat dst;
cv::gpu::GaussianBlur(loadMat(img_gray, useRoi), dst, ksize, sigma1, sigma2, borderType);
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::GaussianBlur(loadMat(src, useRoi), dst, ksize, sigma1, sigma2, borderType);
cv::Mat dst_gold;
cv::GaussianBlur(img_gray, dst_gold, ksize, sigma1, sigma2, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, 4.0);
}
TEST_P(GaussianBlur, Color)
{
cv::Mat img_rgba;
cv::cvtColor(img, img_rgba, CV_BGR2BGRA);
cv::gpu::GpuMat dst;
cv::gpu::GaussianBlur(loadMat(img_rgba, useRoi), dst, ksize, sigma1, sigma2, borderType);
cv::Mat dst_gold;
cv::GaussianBlur(img_rgba, dst_gold, ksize, sigma1, sigma2, borderType);
cv::GaussianBlur(src, dst_gold, ksize, sigma1, sigma2, borderType);
EXPECT_MAT_NEAR(dst_gold, dst, 4.0);
}
INSTANTIATE_TEST_CASE_P(GPU_Filter, GaussianBlur, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(KSize(3, 3),
KSize(5, 5),
KSize(7, 7),
@ -359,72 +295,46 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, GaussianBlur, testing::Combine(
/////////////////////////////////////////////////////////////////////////////////////////////////
// Laplacian
PARAM_TEST_CASE(Laplacian, cv::gpu::DeviceInfo, KSize, UseRoi)
PARAM_TEST_CASE(Laplacian, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Size ksize;
bool useRoi;
cv::Mat img;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
ksize = GET_PARAM(1);
useRoi = GET_PARAM(2);
size = GET_PARAM(1);
type = GET_PARAM(2);
ksize = GET_PARAM(3);
useRoi = GET_PARAM(4);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobp/aloe-L.png");
ASSERT_FALSE(img.empty());
}
};
TEST_P(Laplacian, Gray)
TEST_P(Laplacian, Accuracy)
{
cv::Mat img_gray;
cv::cvtColor(img, img_gray, CV_BGR2GRAY);
cv::Mat src = randomMat(size, type);
cv::gpu::GpuMat dst;
cv::gpu::Laplacian(loadMat(img_gray, useRoi), dst, -1, ksize.width);
cv::Mat dst_gold;
cv::Laplacian(img_gray, dst_gold, -1, ksize.width);
EXPECT_MAT_NEAR(getInnerROI(dst_gold, cv::Size(3, 3)), getInnerROI(dst, cv::Size(3, 3)), 0.0);
}
TEST_P(Laplacian, Color)
{
cv::Mat img_rgba;
cv::cvtColor(img, img_rgba, CV_BGR2BGRA);
cv::gpu::GpuMat dst;
cv::gpu::Laplacian(loadMat(img_rgba, useRoi), dst, -1, ksize.width);
cv::Mat dst_gold;
cv::Laplacian(img_rgba, dst_gold, -1, ksize.width);
EXPECT_MAT_NEAR(getInnerROI(dst_gold, cv::Size(3, 3)), getInnerROI(dst, cv::Size(3, 3)), 0.0);
}
TEST_P(Laplacian, Gray_32FC1)
{
cv::Mat src;
cv::cvtColor(img, src, CV_BGR2GRAY);
src.convertTo(src, CV_32F, 1.0 / 255.0);
cv::gpu::GpuMat dst;
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::Laplacian(loadMat(src, useRoi), dst, -1, ksize.width);
cv::Mat dst_gold;
cv::Laplacian(src, dst_gold, -1, ksize.width);
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
if (type == CV_32FC1)
EXPECT_MAT_NEAR(dst_gold, dst, 0.0);
else
EXPECT_MAT_NEAR(getInnerROI(dst_gold, cv::Size(3, 3)), getInnerROI(dst, cv::Size(3, 3)), 0.0);
}
INSTANTIATE_TEST_CASE_P(GPU_Filter, Laplacian, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)),
testing::Values(KSize(1, 1), KSize(3, 3)),
WHOLE_SUBMAT));
@ -433,58 +343,38 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Laplacian, testing::Combine(
IMPLEMENT_PARAM_CLASS(Iterations, int)
PARAM_TEST_CASE(Erode, cv::gpu::DeviceInfo, Anchor, Iterations, UseRoi)
PARAM_TEST_CASE(Erode, cv::gpu::DeviceInfo, cv::Size, MatType, Anchor, Iterations, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Point anchor;
int iterations;
bool useRoi;
cv::Mat img;
cv::Mat kernel;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
anchor = GET_PARAM(1);
iterations = GET_PARAM(2);
useRoi = GET_PARAM(3);
size = GET_PARAM(1);
type = GET_PARAM(2);
anchor = GET_PARAM(3);
iterations = GET_PARAM(4);
useRoi = GET_PARAM(5);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobp/aloe-L.png");
ASSERT_FALSE(img.empty());
kernel = cv::Mat::ones(3, 3, CV_8U);
}
};
TEST_P(Erode, Gray)
TEST_P(Erode, Accuracy)
{
cv::Mat img_gray;
cv::cvtColor(img, img_gray, CV_BGR2GRAY);
cv::Mat src = randomMat(size, type);
cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
cv::gpu::GpuMat dst;
cv::gpu::erode(loadMat(img_gray, useRoi), dst, kernel, anchor, iterations);
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::erode(loadMat(src, useRoi), dst, kernel, anchor, iterations);
cv::Mat dst_gold;
cv::erode(img_gray, dst_gold, kernel, anchor, iterations);
cv::Size ksize = cv::Size(kernel.cols + iterations * (kernel.cols - 1), kernel.rows + iterations * (kernel.rows - 1));
EXPECT_MAT_NEAR(getInnerROI(dst_gold, ksize), getInnerROI(dst, ksize), 0.0);
}
TEST_P(Erode, Color)
{
cv::Mat img_rgba;
cv::cvtColor(img, img_rgba, CV_BGR2BGRA);
cv::gpu::GpuMat dst;
cv::gpu::erode(loadMat(img_rgba, useRoi), dst, kernel, anchor, iterations);
cv::Mat dst_gold;
cv::erode(img_rgba, dst_gold, kernel, anchor, iterations);
cv::erode(src, dst_gold, kernel, anchor, iterations);
cv::Size ksize = cv::Size(kernel.cols + iterations * (kernel.cols - 1), kernel.rows + iterations * (kernel.rows - 1));
@ -493,6 +383,8 @@ TEST_P(Erode, Color)
INSTANTIATE_TEST_CASE_P(GPU_Filter, Erode, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
testing::Values(Iterations(1), Iterations(2), Iterations(3)),
WHOLE_SUBMAT));
@ -500,58 +392,38 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Erode, testing::Combine(
/////////////////////////////////////////////////////////////////////////////////////////////////
// Dilate
PARAM_TEST_CASE(Dilate, cv::gpu::DeviceInfo, Anchor, Iterations, UseRoi)
PARAM_TEST_CASE(Dilate, cv::gpu::DeviceInfo, cv::Size, MatType, Anchor, Iterations, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Point anchor;
int iterations;
bool useRoi;
cv::Mat img;
cv::Mat kernel;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
anchor = GET_PARAM(1);
iterations = GET_PARAM(2);
useRoi = GET_PARAM(3);
size = GET_PARAM(1);
type = GET_PARAM(2);
anchor = GET_PARAM(3);
iterations = GET_PARAM(4);
useRoi = GET_PARAM(5);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobp/aloe-L.png");
ASSERT_FALSE(img.empty());
kernel = cv::Mat::ones(3, 3, CV_8U);
}
};
TEST_P(Dilate, Gray)
TEST_P(Dilate, Accuracy)
{
cv::Mat img_gray;
cv::cvtColor(img, img_gray, CV_BGR2GRAY);
cv::Mat src = randomMat(size, type);
cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
cv::gpu::GpuMat dst;
cv::gpu::dilate(loadMat(img_gray, useRoi), dst, kernel, anchor, iterations);
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::dilate(loadMat(src, useRoi), dst, kernel, anchor, iterations);
cv::Mat dst_gold;
cv::dilate(img_gray, dst_gold, kernel, anchor, iterations);
cv::Size ksize = cv::Size(kernel.cols + iterations * (kernel.cols - 1), kernel.rows + iterations * (kernel.rows - 1));
EXPECT_MAT_NEAR(getInnerROI(dst_gold, ksize), getInnerROI(dst, ksize), 0.0);
}
TEST_P(Dilate, Color)
{
cv::Mat img_rgba;
cv::cvtColor(img, img_rgba, CV_BGR2BGRA);
cv::gpu::GpuMat dst;
cv::gpu::dilate(loadMat(img_rgba, useRoi), dst, kernel, anchor, iterations);
cv::Mat dst_gold;
cv::dilate(img_rgba, dst_gold, kernel, anchor, iterations);
cv::dilate(src, dst_gold, kernel, anchor, iterations);
cv::Size ksize = cv::Size(kernel.cols + iterations * (kernel.cols - 1), kernel.rows + iterations * (kernel.rows - 1));
@ -560,6 +432,8 @@ TEST_P(Dilate, Color)
INSTANTIATE_TEST_CASE_P(GPU_Filter, Dilate, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
testing::Values(Iterations(1), Iterations(2), Iterations(3)),
WHOLE_SUBMAT));
@ -570,60 +444,40 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, Dilate, testing::Combine(
CV_ENUM(MorphOp, cv::MORPH_OPEN, cv::MORPH_CLOSE, cv::MORPH_GRADIENT, cv::MORPH_TOPHAT, cv::MORPH_BLACKHAT)
#define ALL_MORPH_OPS testing::Values(MorphOp(cv::MORPH_OPEN), MorphOp(cv::MORPH_CLOSE), MorphOp(cv::MORPH_GRADIENT), MorphOp(cv::MORPH_TOPHAT), MorphOp(cv::MORPH_BLACKHAT))
PARAM_TEST_CASE(MorphEx, cv::gpu::DeviceInfo, MorphOp, Anchor, Iterations, UseRoi)
PARAM_TEST_CASE(MorphEx, cv::gpu::DeviceInfo, cv::Size, MatType, MorphOp, Anchor, Iterations, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
int morphOp;
cv::Point anchor;
int iterations;
bool useRoi;
cv::Mat img;
cv::Mat kernel;
virtual void SetUp()
{
devInfo = GET_PARAM(0);
morphOp = GET_PARAM(1);
anchor = GET_PARAM(2);
iterations = GET_PARAM(3);
useRoi = GET_PARAM(4);
size = GET_PARAM(1);
type = GET_PARAM(2);
morphOp = GET_PARAM(3);
anchor = GET_PARAM(4);
iterations = GET_PARAM(5);
useRoi = GET_PARAM(6);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobp/aloe-L.png");
ASSERT_FALSE(img.empty());
kernel = cv::Mat::ones(3, 3, CV_8U);
}
};
TEST_P(MorphEx, Gray)
TEST_P(MorphEx, Accuracy)
{
cv::Mat img_gray;
cv::cvtColor(img, img_gray, CV_BGR2GRAY);
cv::Mat src = randomMat(size, type);
cv::Mat kernel = cv::Mat::ones(3, 3, CV_8U);
cv::gpu::GpuMat dst;
cv::gpu::morphologyEx(loadMat(img_gray, useRoi), dst, morphOp, kernel, anchor, iterations);
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::morphologyEx(loadMat(src, useRoi), dst, morphOp, kernel, anchor, iterations);
cv::Mat dst_gold;
cv::morphologyEx(img_gray, dst_gold, morphOp, kernel, anchor, iterations);
cv::Size border = cv::Size(kernel.cols + (iterations + 1) * kernel.cols + 2, kernel.rows + (iterations + 1) * kernel.rows + 2);
EXPECT_MAT_NEAR(getInnerROI(dst_gold, border), getInnerROI(dst, border), 0.0);
}
TEST_P(MorphEx, Color)
{
cv::Mat img_rgba;
cv::cvtColor(img, img_rgba, CV_BGR2BGRA);
cv::gpu::GpuMat dst;
cv::gpu::morphologyEx(loadMat(img_rgba, useRoi), dst, morphOp, kernel, anchor, iterations);
cv::Mat dst_gold;
cv::morphologyEx(img_rgba, dst_gold, morphOp, kernel, anchor, iterations);
cv::morphologyEx(src, dst_gold, morphOp, kernel, anchor, iterations);
cv::Size border = cv::Size(kernel.cols + (iterations + 1) * kernel.cols + 2, kernel.rows + (iterations + 1) * kernel.rows + 2);
@ -632,6 +486,8 @@ TEST_P(MorphEx, Color)
INSTANTIATE_TEST_CASE_P(GPU_Filter, MorphEx, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4)),
ALL_MORPH_OPS,
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
testing::Values(Iterations(1), Iterations(2), Iterations(3)),
@ -640,9 +496,11 @@ INSTANTIATE_TEST_CASE_P(GPU_Filter, MorphEx, testing::Combine(
/////////////////////////////////////////////////////////////////////////////////////////////////
// Filter2D
PARAM_TEST_CASE(Filter2D, cv::gpu::DeviceInfo, KSize, Anchor, UseRoi)
PARAM_TEST_CASE(Filter2D, cv::gpu::DeviceInfo, cv::Size, MatType, KSize, Anchor, UseRoi)
{
cv::gpu::DeviceInfo devInfo;
cv::Size size;
int type;
cv::Size ksize;
cv::Point anchor;
bool useRoi;
@ -653,64 +511,37 @@ PARAM_TEST_CASE(Filter2D, cv::gpu::DeviceInfo, KSize, Anchor, UseRoi)
virtual void SetUp()
{
devInfo = GET_PARAM(0);
ksize = GET_PARAM(1);
anchor = GET_PARAM(2);
useRoi = GET_PARAM(3);
size = GET_PARAM(1);
type = GET_PARAM(2);
ksize = GET_PARAM(3);
anchor = GET_PARAM(4);
useRoi = GET_PARAM(5);
cv::gpu::setDevice(devInfo.deviceID());
img = readImage("stereobp/aloe-L.png");
ASSERT_FALSE(img.empty());
kernel = cv::Mat::ones(ksize.height, ksize.width, CV_32FC1);
}
};
TEST_P(Filter2D, Gray)
TEST_P(Filter2D, Accuracy)
{
cv::Mat img_gray;
cv::cvtColor(img, img_gray, CV_BGR2GRAY);
cv::Mat src = randomMat(size, type);
cv::Mat kernel = cv::Mat::ones(ksize.height, ksize.width, CV_32FC1);
cv::gpu::GpuMat dst;
cv::gpu::filter2D(loadMat(img_gray, useRoi), dst, -1, kernel, anchor);
cv::Mat dst_gold;
cv::filter2D(img_gray, dst_gold, -1, kernel, anchor, 0, cv::BORDER_CONSTANT);
EXPECT_MAT_NEAR(getInnerROI(dst_gold, ksize), getInnerROI(dst, ksize), 0.0);
}
TEST_P(Filter2D, Color)
{
cv::Mat img_rgba;
cv::cvtColor(img, img_rgba, CV_BGR2BGRA);
cv::gpu::GpuMat dst;
cv::gpu::filter2D(loadMat(img_rgba, useRoi), dst, -1, kernel, anchor);
cv::Mat dst_gold;
cv::filter2D(img_rgba, dst_gold, -1, kernel, anchor, 0, cv::BORDER_CONSTANT);
EXPECT_MAT_NEAR(getInnerROI(dst_gold, ksize), getInnerROI(dst, ksize), 0.0);
}
TEST_P(Filter2D, Gray_32FC1)
{
cv::Mat src;
cv::cvtColor(img, src, CV_BGR2GRAY);
src.convertTo(src, CV_32F, 1.0 / 255.0);
cv::gpu::GpuMat dst;
cv::gpu::GpuMat dst = createMat(size, type, useRoi);
cv::gpu::filter2D(loadMat(src, useRoi), dst, -1, kernel, anchor);
cv::Mat dst_gold;
cv::filter2D(src, dst_gold, -1, kernel, anchor);
cv::filter2D(src, dst_gold, -1, kernel, anchor, 0, type == CV_32FC1 ? cv::BORDER_DEFAULT : cv::BORDER_CONSTANT);
EXPECT_MAT_NEAR(dst_gold, dst, 1e-3);
if (type == CV_32FC1)
EXPECT_MAT_NEAR(dst_gold, dst, 1e-1);
else
EXPECT_MAT_NEAR(getInnerROI(dst_gold, ksize), getInnerROI(dst, ksize), 0.0);
}
INSTANTIATE_TEST_CASE_P(GPU_Filter, Filter2D, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
testing::Values(MatType(CV_8UC1), MatType(CV_8UC4), MatType(CV_32FC1)),
testing::Values(KSize(3, 3), KSize(5, 5), KSize(7, 7), KSize(11, 11), KSize(13, 13), KSize(15, 15)),
testing::Values(Anchor(cv::Point(-1, -1)), Anchor(cv::Point(0, 0)), Anchor(cv::Point(2, 2))),
WHOLE_SUBMAT));