Merge remote-tracking branch 'upstream/3.4' into merge-3.4

This commit is contained in:
Alexander Alekhin 2019-07-02 21:17:45 +00:00
commit 097d81363b
35 changed files with 467 additions and 540 deletions

View File

@ -5,19 +5,14 @@ if (WIN32 AND NOT ARM)
message(FATAL_ERROR "BUILD_TBB option supports Windows on ARM only!\nUse regular official TBB build instead of the BUILD_TBB option!")
endif()
set(tbb_filename "2018_U1.tar.gz")
set(tbb_subdir "tbb-2018_U1")
set(tbb_md5 "b2f2fa09adf44a22f4024049907f774b")
ocv_warnings_disable(CMAKE_CXX_FLAGS /wd4702
-Wshadow
-Wunused-parameter
-Wmissing-prototypes # MacOSX
)
ocv_update(OPENCV_TBB_RELEASE "2019_U8")
ocv_update(OPENCV_TBB_RELEASE_MD5 "7c371d0f62726154d2c568a85697a0ad")
ocv_update(OPENCV_TBB_FILENAME "${OPENCV_TBB_RELEASE}.tar.gz")
ocv_update(OPENCV_TBB_SUBDIR "tbb-${OPENCV_TBB_RELEASE}")
set(tbb_src_dir "${OpenCV_BINARY_DIR}/3rdparty/tbb")
ocv_download(FILENAME ${tbb_filename}
HASH ${tbb_md5}
ocv_download(FILENAME ${OPENCV_TBB_FILENAME}
HASH ${OPENCV_TBB_RELEASE_MD5}
URL
"${OPENCV_TBB_URL}"
"$ENV{OPENCV_TBB_URL}"
@ -29,7 +24,7 @@ ocv_download(FILENAME ${tbb_filename}
if(NOT res)
return()
endif()
set(tbb_src_dir "${tbb_src_dir}/${tbb_subdir}")
set(tbb_src_dir "${tbb_src_dir}/${OPENCV_TBB_SUBDIR}")
ocv_include_directories("${tbb_src_dir}/include"
"${tbb_src_dir}/src/"
@ -82,19 +77,20 @@ endif()
if(ANDROID_COMPILER_IS_CLANG)
add_definitions(-D__TBB_GCC_BUILTIN_ATOMICS_PRESENT=1)
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wmissing-prototypes)
endif()
ocv_warnings_disable(CMAKE_CXX_FLAGS
/wd4702
-Wshadow
-Wunused-parameter
-Wclass-memaccess # TBB 2018 under GCC 8+
-Wimplicit-fallthrough # TBB 2018 under GCC 7+
-Wmissing-prototypes # MacOSX, Android/Clang
-Wundef -Wmissing-declarations # TBB 2019
)
set(TBB_SOURCE_FILES ${lib_srcs} ${lib_hdrs})
if (ARM AND NOT WIN32)
if (NOT ANDROID)
set(TBB_SOURCE_FILES ${TBB_SOURCE_FILES} "${CMAKE_CURRENT_SOURCE_DIR}/arm_linux_stub.cpp")
endif()
set(TBB_SOURCE_FILES ${TBB_SOURCE_FILES} "${CMAKE_CURRENT_SOURCE_DIR}/android_additional.h")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -include \"${CMAKE_CURRENT_SOURCE_DIR}/android_additional.h\"")
endif()
set(tbb_version_file "version_string.ver")
configure_file("${CMAKE_CURRENT_SOURCE_DIR}/${tbb_version_file}.cmakein" "${CMAKE_CURRENT_BINARY_DIR}/${tbb_version_file}" @ONLY)
list(APPEND TBB_SOURCE_FILES "${CMAKE_CURRENT_BINARY_DIR}/${tbb_version_file}")
@ -122,8 +118,6 @@ else()
target_link_libraries(tbb c m dl)
endif()
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wundef -Wmissing-declarations)
# filter out flags that are not handled well by the TBB code
foreach(var CMAKE_CXX_FLAGS CMAKE_CXX_FLAGS_RELEASE CMAKE_CXX_FLAGS_DEBUG)
string(REPLACE "-Werror=non-virtual-dtor" "" ${var} "${${var}}")

View File

@ -1,41 +0,0 @@
#include <cstdio>
static inline int getPossibleCPUs()
{
FILE* cpuPossible = fopen("/sys/devices/system/cpu/possible", "r");
if(!cpuPossible)
return 1;
char buf[2000]; //big enough for 1000 CPUs in worst possible configuration
char* pbuf = fgets(buf, sizeof(buf), cpuPossible);
fclose(cpuPossible);
if(!pbuf)
return 1;
//parse string of form "0-1,3,5-7,10,13-15"
int cpusAvailable = 0;
while(*pbuf)
{
const char* pos = pbuf;
bool range = false;
while(*pbuf && *pbuf != ',')
{
if(*pbuf == '-') range = true;
++pbuf;
}
if(*pbuf) *pbuf++ = 0;
if(!range)
++cpusAvailable;
else
{
int rstart = 0, rend = 0;
sscanf(pos, "%d-%d", &rstart, &rend);
cpusAvailable += rend - rstart + 1;
}
}
return cpusAvailable ? cpusAvailable : 1;
}
#define __TBB_HardwareConcurrency() getPossibleCPUs()

View File

@ -1,11 +0,0 @@
#include "tbb/tbb_misc.h"
namespace tbb {
namespace internal {
void affinity_helper::protect_affinity_mask(bool) {}
affinity_helper::~affinity_helper() {}
void destroy_process_mask() {}
}
}

View File

@ -329,7 +329,7 @@ elseif(ARM OR AARCH64)
ocv_update(CPU_VFPV3_FLAGS_ON "-mfpu=vfpv3")
ocv_update(CPU_NEON_FLAGS_ON "-mfpu=neon")
ocv_update(CPU_NEON_FLAGS_CONFLICT "-mfpu=[^ ]*")
ocv_update(CPU_FP16_FLAGS_ON "-mfpu=neon-fp16")
ocv_update(CPU_FP16_FLAGS_ON "-mfpu=neon-fp16 -mfp16-format=ieee")
ocv_update(CPU_FP16_FLAGS_CONFLICT "-mfpu=[^ ]*")
endif()
ocv_update(CPU_FP16_IMPLIES "NEON")
@ -617,9 +617,6 @@ macro(ocv_compiler_optimization_options)
if(ENABLE_POWERPC)
add_extra_compiler_option("-mcpu=G3 -mtune=G5")
endif()
if(ARM)
add_extra_compiler_option("-mfp16-format=ieee")
endif(ARM)
endmacro()
macro(ocv_compiler_optimization_options_finalize)

View File

@ -398,3 +398,23 @@ macro(ocv_add_modules_compiler_options)
add_definitions(-DOPENCV_ENABLE_MEMORY_SANITIZER=1)
endif()
endmacro()
# adjust -Wl,-rpath-link
if(CMAKE_SKIP_RPATH)
if((NOT CMAKE_CROSSCOMPILING OR OPENCV_ENABLE_LINKER_RPATH_LINK_ORIGIN) AND NOT OPENCV_SKIP_LINKER_RPATH_LINK_ORIGIN)
if(DEFINED CMAKE_SHARED_LIBRARY_RPATH_ORIGIN_TOKEN)
list(APPEND CMAKE_PLATFORM_RUNTIME_PATH "${CMAKE_SHARED_LIBRARY_RPATH_ORIGIN_TOKEN}")
else()
list(APPEND CMAKE_PLATFORM_RUNTIME_PATH "\$ORIGIN")
endif()
elseif(NOT OPENCV_SKIP_LINKER_RPATH_LINK_BINARY_LIB)
list(APPEND CMAKE_PLATFORM_RUNTIME_PATH "${LIBRARY_OUTPUT_PATH}")
endif()
endif()
if(OPENCV_EXTRA_RPATH_LINK_PATH)
string(REPLACE ":" ";" OPENCV_EXTRA_RPATH_LINK_PATH_ "${OPENCV_EXTRA_RPATH_LINK_PATH}")
list(APPEND CMAKE_PLATFORM_RUNTIME_PATH ${OPENCV_EXTRA_RPATH_LINK_PATH_})
if(NOT CMAKE_EXECUTABLE_RPATH_LINK_CXX_FLAG)
message(WARNING "OPENCV_EXTRA_RPATH_LINK_PATH may not work properly because CMAKE_EXECUTABLE_RPATH_LINK_CXX_FLAG is not defined (not supported)")
endif()
endif()

View File

@ -68,7 +68,11 @@ configure_file("${OpenCV_SOURCE_DIR}/cmake/templates/OpenCVConfig-version.cmake.
# Part 2/3: ${BIN_DIR}/unix-install/OpenCVConfig.cmake -> For use *with* "make install"
# -------------------------------------------------------------------------------------------
file(RELATIVE_PATH OpenCV_INSTALL_PATH_RELATIVE_CONFIGCMAKE "${CMAKE_INSTALL_PREFIX}/${OPENCV_CONFIG_INSTALL_PATH}/" ${CMAKE_INSTALL_PREFIX})
set(OpenCV_INCLUDE_DIRS_CONFIGCMAKE "\"\${OpenCV_INSTALL_PATH}/${OPENCV_INCLUDE_INSTALL_PATH}\"")
if (IS_ABSOLUTE ${OPENCV_INCLUDE_INSTALL_PATH})
set(OpenCV_INCLUDE_DIRS_CONFIGCMAKE "\"${OPENCV_INCLUDE_INSTALL_PATH}\"")
else()
set(OpenCV_INCLUDE_DIRS_CONFIGCMAKE "\"\${OpenCV_INSTALL_PATH}/${OPENCV_INCLUDE_INSTALL_PATH}\"")
endif()
if(USE_IPPICV)
file(RELATIVE_PATH IPPICV_INSTALL_PATH_RELATIVE_CONFIGCMAKE "${CMAKE_INSTALL_PREFIX}" "${IPPICV_INSTALL_PATH}")

View File

@ -106,7 +106,21 @@ set(OpenCV_SHARED @BUILD_SHARED_LIBS@)
set(OpenCV_USE_MANGLED_PATHS @OpenCV_USE_MANGLED_PATHS_CONFIGCMAKE@)
set(OpenCV_LIB_COMPONENTS @OPENCV_MODULES_CONFIGCMAKE@)
set(OpenCV_INCLUDE_DIRS @OpenCV_INCLUDE_DIRS_CONFIGCMAKE@)
set(__OpenCV_INCLUDE_DIRS @OpenCV_INCLUDE_DIRS_CONFIGCMAKE@)
set(OpenCV_INCLUDE_DIRS "")
foreach(d ${__OpenCV_INCLUDE_DIRS})
get_filename_component(__d "${d}" REALPATH)
if(NOT EXISTS "${__d}")
if(NOT OpenCV_FIND_QUIETLY)
message(WARNING "OpenCV: Include directory doesn't exist: '${d}'. OpenCV installation may be broken. Skip...")
endif()
else()
list(APPEND OpenCV_INCLUDE_DIRS "${__d}")
endif()
endforeach()
unset(__d)
if(NOT TARGET opencv_core)
include(${CMAKE_CURRENT_LIST_DIR}/OpenCVModules${OpenCV_MODULES_SUFFIX}.cmake)

View File

@ -99,55 +99,60 @@ public:
return nz;
}
bool getSubset( const Mat& m1, const Mat& m2,
Mat& ms1, Mat& ms2, RNG& rng,
int maxAttempts=1000 ) const
bool getSubset( const Mat& m1, const Mat& m2, Mat& ms1, Mat& ms2, RNG& rng, int maxAttempts=1000 ) const
{
cv::AutoBuffer<int> _idx(modelPoints);
int* idx = _idx.data();
int i = 0, j, k, iters = 0;
int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
int esz1 = (int)m1.elemSize1()*d1, esz2 = (int)m2.elemSize1()*d2;
int count = m1.checkVector(d1), count2 = m2.checkVector(d2);
const int *m1ptr = m1.ptr<int>(), *m2ptr = m2.ptr<int>();
const int d1 = m1.channels() > 1 ? m1.channels() : m1.cols;
const int d2 = m2.channels() > 1 ? m2.channels() : m2.cols;
int esz1 = (int)m1.elemSize1() * d1;
int esz2 = (int)m2.elemSize1() * d2;
CV_Assert((esz1 % sizeof(int)) == 0 && (esz2 % sizeof(int)) == 0);
esz1 /= sizeof(int);
esz2 /= sizeof(int);
const int count = m1.checkVector(d1);
const int count2 = m2.checkVector(d2);
CV_Assert(count >= modelPoints && count == count2);
const int *m1ptr = m1.ptr<int>();
const int *m2ptr = m2.ptr<int>();
ms1.create(modelPoints, 1, CV_MAKETYPE(m1.depth(), d1));
ms2.create(modelPoints, 1, CV_MAKETYPE(m2.depth(), d2));
int *ms1ptr = ms1.ptr<int>(), *ms2ptr = ms2.ptr<int>();
int *ms1ptr = ms1.ptr<int>();
int *ms2ptr = ms2.ptr<int>();
CV_Assert( count >= modelPoints && count == count2 );
CV_Assert( (esz1 % sizeof(int)) == 0 && (esz2 % sizeof(int)) == 0 );
esz1 /= sizeof(int);
esz2 /= sizeof(int);
for(; iters < maxAttempts; iters++)
for( int iters = 0; iters < maxAttempts; ++iters )
{
for( i = 0; i < modelPoints && iters < maxAttempts; )
int i;
for( i = 0; i < modelPoints; ++i )
{
int idx_i = 0;
for(;;)
{
idx_i = idx[i] = rng.uniform(0, count);
for( j = 0; j < i; j++ )
if( idx_i == idx[j] )
break;
if( j == i )
break;
}
for( k = 0; k < esz1; k++ )
int idx_i;
for ( idx_i = rng.uniform(0, count);
std::find(idx, idx + i, idx_i) != idx + i;
idx_i = rng.uniform(0, count) )
{}
idx[i] = idx_i;
for( int k = 0; k < esz1; ++k )
ms1ptr[i*esz1 + k] = m1ptr[idx_i*esz1 + k];
for( k = 0; k < esz2; k++ )
for( int k = 0; k < esz2; ++k )
ms2ptr[i*esz2 + k] = m2ptr[idx_i*esz2 + k];
i++;
}
if( i == modelPoints && !cb->checkSubset(ms1, ms2, i) )
continue;
break;
if( cb->checkSubset(ms1, ms2, i) )
return true;
}
return i == modelPoints && iters < maxAttempts;
return false;
}
bool run(InputArray _m1, InputArray _m2, OutputArray _model, OutputArray _mask) const CV_OVERRIDE

View File

@ -534,12 +534,12 @@ static void findStereoCorrespondenceBM_SIMD( const Mat& left, const Mat& right,
v_expand(sad8, sad4_l, sad4_h);
mask4 = thresh4 > sad4_l;
mask4 = mask4 & ((d1 > d4) | (d4 > d2));
if( v_signmask(mask4) )
if( v_check_any(mask4) )
break;
d4 += dd_4;
mask4 = thresh4 > sad4_h;
mask4 = mask4 & ((d1 > d4) | (d4 > d2));
if( v_signmask(mask4) )
if( v_check_any(mask4) )
break;
d4 += dd_4;
}

View File

@ -2013,14 +2013,14 @@ void SGBM3WayMainLoop::operator () (const Range& range) const
mask = cost1 < thresh_reg;
mask = mask & ( (cur_d<d1) | (cur_d>d2) );
if( v_signmask(mask) )
if( v_check_any(mask) )
break;
cur_d = cur_d+eight_reg;
mask = cost2 < thresh_reg;
mask = mask & ( (cur_d<d1) | (cur_d>d2) );
if( v_signmask(mask) )
if( v_check_any(mask) )
break;
cur_d = cur_d+eight_reg;

View File

@ -301,8 +301,8 @@ CV_EXPORTS CV_NORETURN void error(int _code, const String& _err, const char* _fu
// In practice, some macro are not processed correctly (noreturn is not detected).
// We need to use simplified definition for them.
#define CV_Error(...) do { abort(); } while (0)
#define CV_Error_( code, args ) do { cv::format args; abort(); } while (0)
#define CV_Error(code, msg) do { (void)(code); (void)(msg); abort(); } while (0)
#define CV_Error_(code, args) do { (void)(code); (void)(cv::format args); abort(); } while (0)
#define CV_Assert( expr ) do { if (!(expr)) abort(); } while (0)
#else // CV_STATIC_ANALYSIS

View File

@ -55,6 +55,34 @@
#define OPENCV_HAL_NOP(a) (a)
#define OPENCV_HAL_1ST(a, b) (a)
namespace {
inline unsigned int trailingZeros32(unsigned int value) {
#if defined(_MSC_VER)
#if (_MSC_VER < 1700) || defined(_M_ARM)
unsigned long index = 0;
_BitScanForward(&index, value);
return (unsigned int)index;
#elif defined(__clang__)
// clang-cl doesn't export _tzcnt_u32 for non BMI systems
return value ? __builtin_ctz(value) : 32;
#else
return _tzcnt_u32(value);
#endif
#elif defined(__GNUC__) || defined(__GNUG__)
return __builtin_ctz(value);
#elif defined(__ICC) || defined(__INTEL_COMPILER)
return _bit_scan_forward(value);
#elif defined(__clang__)
return llvm.cttz.i32(value, true);
#else
static const int MultiplyDeBruijnBitPosition[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 };
return MultiplyDeBruijnBitPosition[((uint32_t)((value & -value) * 0x077CB531U)) >> 27];
#endif
}
}
// unlike HAL API, which is in cv::hal,
// we put intrinsics into cv namespace to make its
// access from within opencv code more accessible
@ -419,32 +447,6 @@ namespace CV__SIMD_NAMESPACE {
using namespace CV__SIMD_NAMESPACE;
#endif
inline unsigned int trailingZeros32(unsigned int value) {
#if defined(_MSC_VER)
#if (_MSC_VER < 1700) || defined(_M_ARM)
unsigned long index = 0;
_BitScanForward(&index, value);
return (unsigned int)index;
#elif defined(__clang__)
// clang-cl doesn't export _tzcnt_u32 for non BMI systems
return value ? __builtin_ctz(value) : 32;
#else
return _tzcnt_u32(value);
#endif
#elif defined(__GNUC__) || defined(__GNUG__)
return __builtin_ctz(value);
#elif defined(__ICC) || defined(__INTEL_COMPILER)
return _bit_scan_forward(value);
#elif defined(__clang__)
return llvm.cttz.i32(value, true);
#else
static const int MultiplyDeBruijnBitPosition[32] = {
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9 };
return MultiplyDeBruijnBitPosition[((uint32_t)((value & -value) * 0x077CB531U)) >> 27];
#endif
}
#ifndef CV_DOXYGEN
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
#endif

View File

@ -1244,6 +1244,17 @@ inline int v_signmask(const v_float32x8& a)
inline int v_signmask(const v_float64x4& a)
{ return _mm256_movemask_pd(a.val); }
inline int v_scan_forward(const v_int8x32& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))); }
inline int v_scan_forward(const v_uint8x32& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))); }
inline int v_scan_forward(const v_int16x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 2; }
inline int v_scan_forward(const v_uint16x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 2; }
inline int v_scan_forward(const v_int32x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_uint32x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_float32x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_int64x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
inline int v_scan_forward(const v_uint64x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
inline int v_scan_forward(const v_float64x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
/** Checks **/
#define OPENCV_HAL_IMPL_AVX_CHECK(_Tpvec, and_op, allmask) \
inline bool v_check_all(const _Tpvec& a) \

View File

@ -2719,7 +2719,7 @@ OPENCV_HAL_IMPL_AVX512_LOADSTORE_INTERLEAVE(v_float64x8, double, f64, v_uint64x8
////////// Mask and checks /////////
/** Mask **/
inline int64 v_signmask(const v_int8x64& a) { return (int64)_mm512_cmp_epi8_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
inline int64 v_signmask(const v_int8x64& a) { return (int64)_mm512_movepi8_mask(a.val); }
inline int v_signmask(const v_int16x32& a) { return (int)_mm512_cmp_epi16_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
inline int v_signmask(const v_int32x16& a) { return (int)_mm512_cmp_epi32_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
inline int v_signmask(const v_int64x8& a) { return (int)_mm512_cmp_epi64_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
@ -2733,7 +2733,7 @@ inline int v_signmask(const v_float64x8& a) { return v_signmask(v_reinterpret_as
/** Checks **/
inline bool v_check_all(const v_int8x64& a) { return !(bool)_mm512_cmp_epi8_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_NLT); }
inline bool v_check_any(const v_int8x64& a) { return (bool)_mm512_cmp_epi8_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
inline bool v_check_any(const v_int8x64& a) { return (bool)_mm512_movepi8_mask(a.val); }
inline bool v_check_all(const v_int16x32& a) { return !(bool)_mm512_cmp_epi16_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_NLT); }
inline bool v_check_any(const v_int16x32& a) { return (bool)_mm512_cmp_epi16_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_LT); }
inline bool v_check_all(const v_int32x16& a) { return !(bool)_mm512_cmp_epi32_mask(a.val, _mm512_setzero_si512(), _MM_CMPINT_NLT); }
@ -2754,6 +2754,22 @@ inline bool v_check_any(const v_uint16x32& a) { return v_check_any(v_reinterpret
inline bool v_check_any(const v_uint32x16& a) { return v_check_any(v_reinterpret_as_s32(a)); }
inline bool v_check_any(const v_uint64x8& a) { return v_check_any(v_reinterpret_as_s64(a)); }
inline int v_scan_forward(const v_int8x64& a)
{
int64 mask = _mm512_movepi8_mask(a.val);
int mask32 = (int)mask;
return mask != 0 ? mask32 != 0 ? trailingZeros32(mask32) : 32 + trailingZeros32((int)(mask >> 32)) : 0;
}
inline int v_scan_forward(const v_uint8x64& a) { return v_scan_forward(v_reinterpret_as_s8(a)); }
inline int v_scan_forward(const v_int16x32& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))); }
inline int v_scan_forward(const v_uint16x32& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))); }
inline int v_scan_forward(const v_int32x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 2; }
inline int v_scan_forward(const v_uint32x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 2; }
inline int v_scan_forward(const v_float32x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 2; }
inline int v_scan_forward(const v_int64x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 4; }
inline int v_scan_forward(const v_uint64x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 4; }
inline int v_scan_forward(const v_float64x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s16(a))) / 4; }
inline void v512_cleanup() { _mm256_zeroall(); }
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END

View File

@ -1072,6 +1072,7 @@ template<typename _Tp, int n> inline typename V_TypeTraits< typename V_TypeTrait
}
/** @brief Get negative values mask
@deprecated v_signmask depends on a lane count heavily and therefore isn't universal enough
Returned value is a bit mask with bits set to 1 on places corresponding to negative packed values indexes.
Example:
@ -1088,6 +1089,23 @@ template<typename _Tp, int n> inline int v_signmask(const v_reg<_Tp, n>& a)
return mask;
}
/** @brief Get first negative lane index
Returned value is an index of first negative lane (undefined for input of all positive values)
Example:
@code{.cpp}
v_int32x4 r; // set to {0, 0, -1, -1}
int idx = v_heading_zeros(r); // idx = 2
@endcode
*/
template <typename _Tp, int n> inline int v_scan_forward(const v_reg<_Tp, n>& a)
{
for (int i = 0; i < n; i++)
if(V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) < 0)
return i;
return 0;
}
/** @brief Check if all packed values are less than zero
Unsigned values will be casted to signed: `uchar 254 => char -2`.

View File

@ -1096,17 +1096,32 @@ inline int v_signmask(const v_int32x4& a)
{ return v_signmask(v_reinterpret_as_u32(a)); }
inline int v_signmask(const v_float32x4& a)
{ return v_signmask(v_reinterpret_as_u32(a)); }
#if CV_SIMD128_64F
inline int v_signmask(const v_uint64x2& a)
{
int64x1_t m0 = vdup_n_s64(0);
uint64x2_t v0 = vshlq_u64(vshrq_n_u64(a.val, 63), vcombine_s64(m0, m0));
return (int)vgetq_lane_u64(v0, 0) + ((int)vgetq_lane_u64(v0, 1) << 1);
}
inline int v_signmask(const v_int64x2& a)
{ return v_signmask(v_reinterpret_as_u64(a)); }
#if CV_SIMD128_64F
inline int v_signmask(const v_float64x2& a)
{ return v_signmask(v_reinterpret_as_u64(a)); }
#endif
inline int v_scan_forward(const v_int8x16& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint8x16& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int16x8& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint16x8& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_float32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int64x2& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint64x2& a) { return trailingZeros32(v_signmask(a)); }
#if CV_SIMD128_64F
inline int v_scan_forward(const v_float64x2& a) { return trailingZeros32(v_signmask(a)); }
#endif
#define OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(_Tpvec, suffix, shift) \
inline bool v_check_all(const v_##_Tpvec& a) \
{ \

View File

@ -1617,6 +1617,17 @@ OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_int32x4, epi8, v_packq_epi32, OPENCV_HAL_AND,
OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_float32x4, ps, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 15, 15)
OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_float64x2, pd, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 3, 3)
inline int v_scan_forward(const v_int8x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))); }
inline int v_scan_forward(const v_uint8x16& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))); }
inline int v_scan_forward(const v_int16x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 2; }
inline int v_scan_forward(const v_uint16x8& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 2; }
inline int v_scan_forward(const v_int32x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_uint32x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_float32x4& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 4; }
inline int v_scan_forward(const v_int64x2& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
inline int v_scan_forward(const v_uint64x2& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
inline int v_scan_forward(const v_float64x2& a) { return trailingZeros32(v_signmask(v_reinterpret_as_s8(a))) / 8; }
#if CV_SSE4_1
#define OPENCV_HAL_IMPL_SSE_SELECT(_Tpvec, cast_ret, cast, suffix) \
inline _Tpvec v_select(const _Tpvec& mask, const _Tpvec& a, const _Tpvec& b) \

View File

@ -891,6 +891,17 @@ inline int v_signmask(const v_uint64x2& a)
inline int v_signmask(const v_float64x2& a)
{ return v_signmask(v_reinterpret_as_s64(a)); }
inline int v_scan_forward(const v_int8x16& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint8x16& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int16x8& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint16x8& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_float32x4& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_int64x2& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_uint64x2& a) { return trailingZeros32(v_signmask(a)); }
inline int v_scan_forward(const v_float64x2& a) { return trailingZeros32(v_signmask(a)); }
template<typename _Tpvec>
inline bool v_check_all(const _Tpvec& a)
{ return vec_all_lt(a.val, _Tpvec().val); }

View File

@ -385,6 +385,10 @@ public:
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
#ifdef CV_CXX11
Vec<_Tp, cn>& operator=(const Vec<_Tp, cn>& rhs) = default;
#endif
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp);
template<typename _T2> Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp);

View File

@ -383,7 +383,8 @@ TEST_P(DNNTestNetwork, DenseNet_121)
l1 = 0.1; lInf = 0.6;
}
processNet("dnn/DenseNet_121.caffemodel", "dnn/DenseNet_121.prototxt", Size(224, 224), "", "", l1, lInf);
expectNoFallbacksFromIE(net);
if (target != DNN_TARGET_MYRIAD || getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
expectNoFallbacksFromIE(net);
}
TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16)

View File

@ -286,19 +286,22 @@ TEST_P(Reproducibility_MobileNet_SSD, Accuracy)
zerosOut = zerosOut.reshape(1, zerosOut.total() / 7);
const int numDetections = zerosOut.rows;
ASSERT_NE(numDetections, 0);
for (int i = 0; i < numDetections; ++i)
// TODO: fix it
if (targetId != DNN_TARGET_MYRIAD ||
getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
{
float confidence = zerosOut.ptr<float>(i)[2];
ASSERT_EQ(confidence, 0);
ASSERT_NE(numDetections, 0);
for (int i = 0; i < numDetections; ++i)
{
float confidence = zerosOut.ptr<float>(i)[2];
ASSERT_EQ(confidence, 0);
}
}
// There is something wrong with Reshape layer in Myriad plugin and
// regression with DLIE/OCL_FP16 target.
// There is something wrong with Reshape layer in Myriad plugin.
if (backendId == DNN_BACKEND_INFERENCE_ENGINE)
{
if ((targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2) ||
targetId == DNN_TARGET_OPENCL_FP16)
if (targetId == DNN_TARGET_MYRIAD || targetId == DNN_TARGET_OPENCL_FP16)
return;
}
@ -465,7 +468,7 @@ TEST_P(Test_Caffe_nets, Colorization)
double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 5.3 : 3e-3;
if (target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
{
l1 = 0.6; lInf = 15;
l1 = 0.5; lInf = 11;
}
normAssert(out, ref, "", l1, lInf);
expectNoFallbacksFromIE(net);
@ -500,7 +503,8 @@ TEST_P(Test_Caffe_nets, DenseNet_121)
l1 = 0.11; lInf = 0.5;
}
normAssert(out, ref, "", l1, lInf);
expectNoFallbacksFromIE(net);
if (target != DNN_TARGET_MYRIAD || getInferenceEngineVPUType() != CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
expectNoFallbacksFromIE(net);
}
TEST(Test_Caffe, multiple_inputs)

View File

@ -141,8 +141,6 @@ TEST_P(Test_Caffe_layers, Convolution)
TEST_P(Test_Caffe_layers, DeConvolution)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_CPU)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); // TODO IE_CPU
testLayerUsingCaffeModels("layer_deconvolution", true, false);
}
@ -246,15 +244,8 @@ TEST_P(Test_Caffe_layers, Concat)
TEST_P(Test_Caffe_layers, Fused_Concat)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE) // Test is disabled for DLIE due negative_slope parameter
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1);
#endif
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16))
applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16);
#endif
checkBackend();
@ -319,26 +310,6 @@ TEST_P(Test_Caffe_layers, layer_prelu_fc)
testLayerUsingCaffeModels("layer_prelu_fc", true, false, l1, lInf);
}
//template<typename XMat>
//static void test_Layer_Concat()
//{
// Matx21f a(1.f, 1.f), b(2.f, 2.f), c(3.f, 3.f);
// std::vector<Blob> res(1), src = { Blob(XMat(a)), Blob(XMat(b)), Blob(XMat(c)) };
// Blob ref(XMat(Matx23f(1.f, 2.f, 3.f, 1.f, 2.f, 3.f)));
//
// runLayer(ConcatLayer::create(1), src, res);
// normAssert(ref, res[0]);
//}
//TEST(Layer_Concat, Accuracy)
//{
// test_Layer_Concat<Mat>());
//}
//OCL_TEST(Layer_Concat, Accuracy)
//{
// OCL_ON(test_Layer_Concat<Mat>());
// );
//}
TEST_P(Test_Caffe_layers, Reshape_Split_Slice)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
@ -774,9 +745,8 @@ TEST_P(Test_Caffe_layers, Average_pooling_kernel_area)
// Test PriorBoxLayer in case of no aspect ratios (just squared proposals).
TEST_P(Test_Caffe_layers, PriorBox_squares)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD);
LayerParams lp;
lp.name = "testPriorBox";
lp.type = "PriorBox";

View File

@ -225,7 +225,7 @@ TEST_P(Test_ONNX_layers, Multiplication)
TEST_P(Test_ONNX_layers, Constant)
{
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000)
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_2018R5);

View File

@ -151,12 +151,6 @@ TEST_P(Test_TensorFlow_layers, padding)
TEST_P(Test_TensorFlow_layers, padding_same)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
// Reference output values are in range [0.0006, 2.798]
runTensorFlowNet("padding_same");
}
@ -432,14 +426,6 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD)
{
checkBackend();
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
std::string proto = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt");
std::string model = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", false);
@ -456,7 +442,17 @@ TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD)
Mat ref = blobFromNPY(findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco_2017_11_17.detection_out.npy"));
float scoreDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7e-3 : 1.5e-5;
float iouDiff = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.012 : 1e-3;
normAssertDetections(ref, out, "", 0.3, scoreDiff, iouDiff);
float detectionConfThresh = (target == DNN_TARGET_MYRIAD) ? 0.35 : 0.3;
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
scoreDiff = 0.061;
iouDiff = 0.12;
detectionConfThresh = 0.36;
#endif
normAssertDetections(ref, out, "", detectionConfThresh, scoreDiff, iouDiff);
expectNoFallbacksFromIE(net);
}
@ -648,15 +644,8 @@ TEST_P(Test_TensorFlow_layers, fp16_weights)
TEST_P(Test_TensorFlow_layers, fp16_padding_same)
{
#if defined(INF_ENGINE_RELEASE)
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD
&& getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X
)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X);
#endif
// Reference output values are in range [-3.504, -0.002]
runTensorFlowNet("fp16_padding_same", false, 6e-4, 4e-3);
runTensorFlowNet("fp16_padding_same", false, 7e-4, 4e-3);
}
TEST_P(Test_TensorFlow_layers, defun)

View File

@ -338,7 +338,7 @@ void SimpleBlobDetectorImpl::detect(InputArray image, std::vector<cv::KeyPoint>&
centers[j].push_back(curCenters[i]);
size_t k = centers[j].size() - 1;
while( k > 0 && centers[j][k].radius < centers[j][k-1].radius )
while( k > 0 && curCenters[i].radius < centers[j][k-1].radius )
{
centers[j][k] = centers[j][k-1];
k--;

View File

@ -132,10 +132,9 @@ void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bo
m1 = m1 | ((x3 < v1) & (x0 < v1));
m0 = m0 | m1;
int mask = v_signmask(m0);
if( mask == 0 )
if( !v_check_any(m0) )
continue;
if( (mask & 255) == 0 )
if( !v_check_any(v_combine_low(m0, m0)) )
{
j -= 8;
ptr -= 8;
@ -159,16 +158,36 @@ void FAST_t(InputArray _img, std::vector<KeyPoint>& keypoints, int threshold, bo
max1 = v_max(max1, v_reinterpret_as_u8(c1));
}
max0 = v_max(max0, max1);
int m = v_signmask(K16 < max0);
max0 = K16 < v_max(max0, max1);
int m = -v_reduce_sum(v_reinterpret_as_s8(max0));
uchar mflag[16];
v_store(mflag, max0);
for( k = 0; m > 0 && k < 16; k++, m >>= 1 )
for( k = 0; m > 0 && k < 16; k++ )
{
if(m & 1)
if(mflag[k])
{
--m;
cornerpos[ncorners++] = j+k;
if(nonmax_suppression)
curr[j+k] = (uchar)cornerScore<patternSize>(ptr+k, pixel, threshold);
{
short d[25];
for (int _k = 0; _k < 25; _k++)
d[_k] = (short)(ptr[k] - ptr[k + pixel[_k]]);
v_int16x8 a0, b0, a1, b1;
a0 = b0 = a1 = b1 = v_load(d + 8);
for(int shift = 0; shift < 8; ++shift)
{
v_int16x8 v_nms = v_load(d + shift);
a0 = v_min(a0, v_nms);
b0 = v_max(b0, v_nms);
v_nms = v_load(d + 9 + shift);
a1 = v_min(a1, v_nms);
b1 = v_max(b1, v_nms);
}
curr[j + k] = (uchar)(v_reduce_max(v_max(v_max(a0, a1), v_setzero_s16() - v_min(b0, b1))) - 1);
}
}
}
}

View File

@ -47,10 +47,6 @@
#include "opencv2/core/openvx/ovx_defs.hpp"
#if CV_SIMD128
#define CV_MALLOC_SIMD128 16
#endif
namespace cv
{
@ -296,18 +292,11 @@ static bool ocl_Canny(InputArray _src, const UMat& dx_, const UMat& dy_, OutputA
#define CANNY_PUSH(map, stack) *map = 2, stack.push_back(map)
#define CANNY_CHECK_SIMD(m, high, map, stack) \
if (m > high) \
CANNY_PUSH(map, stack); \
else \
*map = 0
#define CANNY_CHECK(m, high, map, stack) \
if (m > high) \
CANNY_PUSH(map, stack); \
else \
*map = 0; \
continue
*map = 0
class parallelCanny : public ParallelLoopBody
{
@ -317,9 +306,14 @@ public:
src(_src), src2(_src), map(_map), _borderPeaksParallel(borderPeaksParallel),
low(_low), high(_high), aperture_size(_aperture_size), L2gradient(_L2gradient)
{
#if CV_SIMD128
#if CV_SIMD
for(int i = 0; i < v_int8::nlanes; ++i)
{
smask[i] = 0;
smask[i + v_int8::nlanes] = (schar)-1;
}
if (true)
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_MALLOC_SIMD128 + 1), CV_MALLOC_SIMD128), CV_8UC1);
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_SIMD_WIDTH + 1), CV_SIMD_WIDTH), CV_8UC1);
else
#endif
_map.create(src.rows + 2, src.cols + 2, CV_8UC1);
@ -336,9 +330,14 @@ public:
src(_dx), src2(_dy), map(_map), _borderPeaksParallel(borderPeaksParallel),
low(_low), high(_high), aperture_size(0), L2gradient(_L2gradient)
{
#if CV_SIMD128
#if CV_SIMD
for(int i = 0; i < v_int8::nlanes; ++i)
{
smask[i] = 0;
smask[i + v_int8::nlanes] = (schar)-1;
}
if (true)
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_MALLOC_SIMD128 + 1), CV_MALLOC_SIMD128), CV_8UC1);
_map.create(src.rows + 2, (int)alignSize((size_t)(src.cols + CV_SIMD_WIDTH + 1), CV_SIMD_WIDTH), CV_8UC1);
else
#endif
_map.create(src.rows + 2, src.cols + 2, CV_8UC1);
@ -397,11 +396,11 @@ public:
}
// _mag_p: previous row, _mag_a: actual row, _mag_n: next row
#if CV_SIMD128
AutoBuffer<int> buffer(3 * (mapstep * cn + CV_MALLOC_SIMD128));
_mag_p = alignPtr(buffer.data() + 1, CV_MALLOC_SIMD128);
_mag_a = alignPtr(_mag_p + mapstep * cn, CV_MALLOC_SIMD128);
_mag_n = alignPtr(_mag_a + mapstep * cn, CV_MALLOC_SIMD128);
#if CV_SIMD
AutoBuffer<int> buffer(3 * (mapstep * cn + CV_SIMD_WIDTH));
_mag_p = alignPtr(buffer.data() + 1, CV_SIMD_WIDTH);
_mag_a = alignPtr(_mag_p + mapstep * cn, CV_SIMD_WIDTH);
_mag_n = alignPtr(_mag_a + mapstep * cn, CV_SIMD_WIDTH);
#else
AutoBuffer<int> buffer(3 * (mapstep * cn));
_mag_p = buffer.data() + 1;
@ -437,21 +436,19 @@ public:
if (L2gradient)
{
int j = 0, width = src.cols * cn;
#if CV_SIMD128
#if CV_SIMD
for ( ; j <= width - v_int16::nlanes; j += v_int16::nlanes)
{
for ( ; j <= width - 8; j += 8)
{
v_int16x8 v_dx = v_load((const short*)(_dx + j));
v_int16x8 v_dy = v_load((const short*)(_dy + j));
v_int16 v_dx = vx_load((const short*)(_dx + j));
v_int16 v_dy = vx_load((const short*)(_dy + j));
v_int32x4 v_dxp_low, v_dxp_high;
v_int32x4 v_dyp_low, v_dyp_high;
v_expand(v_dx, v_dxp_low, v_dxp_high);
v_expand(v_dy, v_dyp_low, v_dyp_high);
v_int32 v_dxp_low, v_dxp_high;
v_int32 v_dyp_low, v_dyp_high;
v_expand(v_dx, v_dxp_low, v_dxp_high);
v_expand(v_dy, v_dyp_low, v_dyp_high);
v_store_aligned((int *)(_mag_n + j), v_dxp_low*v_dxp_low+v_dyp_low*v_dyp_low);
v_store_aligned((int *)(_mag_n + j + 4), v_dxp_high*v_dxp_high+v_dyp_high*v_dyp_high);
}
v_store_aligned((int *)(_mag_n + j), v_dxp_low*v_dxp_low+v_dyp_low*v_dyp_low);
v_store_aligned((int *)(_mag_n + j + v_int32::nlanes), v_dxp_high*v_dxp_high+v_dyp_high*v_dyp_high);
}
#endif
for ( ; j < width; ++j)
@ -460,23 +457,21 @@ public:
else
{
int j = 0, width = src.cols * cn;
#if CV_SIMD128
#if CV_SIMD
for(; j <= width - v_int16::nlanes; j += v_int16::nlanes)
{
for(; j <= width - 8; j += 8)
{
v_int16x8 v_dx = v_load((const short *)(_dx + j));
v_int16x8 v_dy = v_load((const short *)(_dy + j));
v_int16 v_dx = vx_load((const short *)(_dx + j));
v_int16 v_dy = vx_load((const short *)(_dy + j));
v_dx = v_reinterpret_as_s16(v_abs(v_dx));
v_dy = v_reinterpret_as_s16(v_abs(v_dy));
v_dx = v_reinterpret_as_s16(v_abs(v_dx));
v_dy = v_reinterpret_as_s16(v_abs(v_dy));
v_int32x4 v_dx_ml, v_dy_ml, v_dx_mh, v_dy_mh;
v_expand(v_dx, v_dx_ml, v_dx_mh);
v_expand(v_dy, v_dy_ml, v_dy_mh);
v_int32 v_dx_ml, v_dy_ml, v_dx_mh, v_dy_mh;
v_expand(v_dx, v_dx_ml, v_dx_mh);
v_expand(v_dy, v_dy_ml, v_dy_mh);
v_store_aligned((int *)(_mag_n + j), v_dx_ml + v_dy_ml);
v_store_aligned((int *)(_mag_n + j + 4), v_dx_mh + v_dy_mh);
}
v_store_aligned((int *)(_mag_n + j), v_dx_ml + v_dy_ml);
v_store_aligned((int *)(_mag_n + j + v_int32::nlanes), v_dx_mh + v_dy_mh);
}
#endif
for ( ; j < width; ++j)
@ -520,9 +515,9 @@ public:
// From here actual src row is (i - 1)
// Set left and right border to 1
#if CV_SIMD128
#if CV_SIMD
if (true)
_pmap = map.ptr<uchar>(i) + CV_MALLOC_SIMD128;
_pmap = map.ptr<uchar>(i) + CV_SIMD_WIDTH;
else
#endif
_pmap = map.ptr<uchar>(i) + 1;
@ -542,167 +537,60 @@ public:
const int TG22 = 13573;
int j = 0;
#if CV_SIMD128
#if CV_SIMD
{
const v_int32x4 v_low = v_setall_s32(low);
const v_int8x16 v_one = v_setall_s8(1);
const v_int32 v_low = vx_setall_s32(low);
const v_int8 v_one = vx_setall_s8(1);
for (; j <= src.cols - 32; j += 32)
for (; j <= src.cols - v_int8::nlanes; j += v_int8::nlanes)
{
v_int32x4 v_m1 = v_load_aligned((const int*)(_mag_a + j));
v_int32x4 v_m2 = v_load_aligned((const int*)(_mag_a + j + 4));
v_int32x4 v_m3 = v_load_aligned((const int*)(_mag_a + j + 8));
v_int32x4 v_m4 = v_load_aligned((const int*)(_mag_a + j + 12));
v_int32x4 v_cmp1 = v_m1 > v_low;
v_int32x4 v_cmp2 = v_m2 > v_low;
v_int32x4 v_cmp3 = v_m3 > v_low;
v_int32x4 v_cmp4 = v_m4 > v_low;
v_m1 = v_load_aligned((const int*)(_mag_a + j + 16));
v_m2 = v_load_aligned((const int*)(_mag_a + j + 20));
v_m3 = v_load_aligned((const int*)(_mag_a + j + 24));
v_m4 = v_load_aligned((const int*)(_mag_a + j + 28));
v_store_aligned((signed char*)(_pmap + j), v_one);
v_store_aligned((signed char*)(_pmap + j + 16), v_one);
v_int16x8 v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_int16x8 v_cmp81 = v_pack(v_cmp3, v_cmp4);
v_cmp1 = v_m1 > v_low;
v_cmp2 = v_m2 > v_low;
v_cmp3 = v_m3 > v_low;
v_cmp4 = v_m4 > v_low;
v_int8x16 v_cmp = v_pack(v_cmp80, v_cmp81);
v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_cmp81 = v_pack(v_cmp3, v_cmp4);
unsigned int mask = v_signmask(v_cmp);
v_cmp = v_pack(v_cmp80, v_cmp81);
mask |= v_signmask(v_cmp) << 16;
if (mask)
v_int8 v_cmp = v_pack(v_pack(vx_load_aligned((const int*)(_mag_a + j )) > v_low,
vx_load_aligned((const int*)(_mag_a + j + v_int32::nlanes)) > v_low),
v_pack(vx_load_aligned((const int*)(_mag_a + j + 2*v_int32::nlanes)) > v_low,
vx_load_aligned((const int*)(_mag_a + j + 3*v_int32::nlanes)) > v_low));
while (v_check_any(v_cmp))
{
int k = j;
int l = v_scan_forward(v_cmp);
v_cmp &= vx_load(smask + v_int8::nlanes - 1 - l);
int k = j + l;
do
int m = _mag_a[k];
short xs = _dx[k];
short ys = _dy[k];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int tg22x = x * TG22;
if (y < tg22x)
{
int l = trailingZeros32(mask);
k += l;
mask >>= l;
int m = _mag_a[k];
short xs = _dx[k];
short ys = _dy[k];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int tg22x = x * TG22;
if (y < tg22x)
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1])
{
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1])
CANNY_CHECK(m, high, (_pmap+k), stack);
}
}
else
{
int tg67x = tg22x + (x << 16);
if (y > tg67x)
{
if (m > _mag_p[k] && m >= _mag_n[k])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
CANNY_CHECK(m, high, (_pmap+k), stack);
}
}
else
{
int tg67x = tg22x + (x << 16);
if (y > tg67x)
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[k - s] && m > _mag_n[k + s])
{
if (m > _mag_p[k] && m >= _mag_n[k])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[k - s] && m > _mag_n[k + s])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
CANNY_CHECK(m, high, (_pmap+k), stack);
}
}
++k;
} while((mask >>= 1));
}
}
}
if (j <= src.cols - 16)
{
v_int32x4 v_m1 = v_load_aligned((const int*)(_mag_a + j));
v_int32x4 v_m2 = v_load_aligned((const int*)(_mag_a + j + 4));
v_int32x4 v_m3 = v_load_aligned((const int*)(_mag_a + j + 8));
v_int32x4 v_m4 = v_load_aligned((const int*)(_mag_a + j + 12));
v_store_aligned((signed char*)(_pmap + j), v_one);
v_int32x4 v_cmp1 = v_m1 > v_low;
v_int32x4 v_cmp2 = v_m2 > v_low;
v_int32x4 v_cmp3 = v_m3 > v_low;
v_int32x4 v_cmp4 = v_m4 > v_low;
v_int16x8 v_cmp80 = v_pack(v_cmp1, v_cmp2);
v_int16x8 v_cmp81 = v_pack(v_cmp3, v_cmp4);
v_int8x16 v_cmp = v_pack(v_cmp80, v_cmp81);
unsigned int mask = v_signmask(v_cmp);
if (mask)
{
int k = j;
do
{
int l = trailingZeros32(mask);
k += l;
mask >>= l;
int m = _mag_a[k];
short xs = _dx[k];
short ys = _dy[k];
int x = (int)std::abs(xs);
int y = (int)std::abs(ys) << 15;
int tg22x = x * TG22;
if (y < tg22x)
{
if (m > _mag_a[k - 1] && m >= _mag_a[k + 1])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
else
{
int tg67x = tg22x + (x << 16);
if (y > tg67x)
{
if (m > _mag_p[k] && m >= _mag_n[k])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
else
{
int s = (xs ^ ys) < 0 ? -1 : 1;
if(m > _mag_p[k - s] && m > _mag_n[k + s])
{
CANNY_CHECK_SIMD(m, high, (_pmap+k), stack);
}
}
}
++k;
} while((mask >>= 1));
}
j += 16;
}
}
#endif
for (; j < src.cols; j++)
@ -723,6 +611,7 @@ public:
if (m > _mag_a[j - 1] && m >= _mag_a[j + 1])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
continue;
}
}
else
@ -733,6 +622,7 @@ public:
if (m > _mag_p[j] && m >= _mag_n[j])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
continue;
}
}
else
@ -741,6 +631,7 @@ public:
if(m > _mag_p[j - s] && m > _mag_n[j + s])
{
CANNY_CHECK(m, high, (_pmap+j), stack);
continue;
}
}
}
@ -802,6 +693,9 @@ private:
ptrdiff_t mapstep;
int cn;
mutable Mutex mutex;
#if CV_SIMD
schar smask[2*v_int8::nlanes];
#endif
};
class finalPass : public ParallelLoopBody
@ -824,31 +718,31 @@ public:
int j = 0;
uchar *pdst = dst.ptr<uchar>(i);
const uchar *pmap = map.ptr<uchar>(i + 1);
#if CV_SIMD128
#if CV_SIMD
if (true)
pmap += CV_MALLOC_SIMD128;
pmap += CV_SIMD_WIDTH;
else
#endif
pmap += 1;
#if CV_SIMD128
#if CV_SIMD
{
const v_uint8x16 v_zero = v_setzero_u8();
const v_uint8x16 v_ff = ~v_zero;
const v_uint8x16 v_two(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2);
const v_uint8 v_zero = vx_setzero_u8();
const v_uint8 v_ff = ~v_zero;
const v_uint8 v_two = vx_setall_u8(2);
for (; j <= dst.cols - 16; j += 16)
for (; j <= dst.cols - v_uint8::nlanes; j += v_uint8::nlanes)
{
v_uint8x16 v_pmap = v_load_aligned((const unsigned char*)(pmap + j));
v_uint8 v_pmap = vx_load_aligned((const unsigned char*)(pmap + j));
v_pmap = v_select(v_pmap == v_two, v_ff, v_zero);
v_store((pdst + j), v_pmap);
}
if (j <= dst.cols - 8)
if (j <= dst.cols - v_uint8::nlanes/2)
{
v_uint8x16 v_pmap = v_load_low((const unsigned char*)(pmap + j));
v_uint8 v_pmap = vx_load_low((const unsigned char*)(pmap + j));
v_pmap = v_select(v_pmap == v_two, v_ff, v_zero);
v_store_low((pdst + j), v_pmap);
j += 8;
j += v_uint8::nlanes/2;
}
}
#endif

View File

@ -2542,7 +2542,8 @@ namespace cv{
//Array used to store info and labeled pixel by each thread.
//Different threads affect different memory location of chunksSizeAndLabels
int *chunksSizeAndLabels = (int *)cv::fastMalloc(h * sizeof(int));
const int chunksSizeAndLabelsSize = h + 1;
int *chunksSizeAndLabels = (int *)cv::fastMalloc(chunksSizeAndLabelsSize * sizeof(int));
//Tree of labels
LabelT *P = (LabelT *)cv::fastMalloc(Plength * sizeof(LabelT));
@ -2561,6 +2562,7 @@ namespace cv{
LabelT nLabels = 1;
for (int i = 0; i < h; i = chunksSizeAndLabels[i]){
CV_Assert(i + 1 < chunksSizeAndLabelsSize);
flattenL(P, LabelT((i + 1) / 2) * LabelT((w + 1) / 2) + 1, chunksSizeAndLabels[i + 1], nLabels);
}

View File

@ -1061,19 +1061,13 @@ cvFindNextContour( CvContourScanner scanner )
}
else
{
#if CV_SIMD_WIDTH > 16
v_uint8 vx_prev = vx_setall_u8((uchar)prev);
while (x <= width - v_uint8::nlanes &&
v_check_all(vx_load((uchar*)(img + x)) == vx_prev))
x += v_uint8::nlanes;
#endif
v_uint8x16 v_prev = v_setall_u8((uchar)prev);
for (; x <= width - v_uint8x16::nlanes; x += v_uint8x16::nlanes)
v_uint8 v_prev = vx_setall_u8((uchar)prev);
for (; x <= width - v_uint8::nlanes; x += v_uint8::nlanes)
{
unsigned int mask = (unsigned int)v_signmask(v_load((uchar*)(img + x)) != v_prev);
if (mask)
v_uint8 vmask = (vx_load((uchar*)(img + x)) != v_prev);
if (v_check_any(vmask))
{
p = img[(x += cv::trailingZeros32(mask))];
p = img[(x += v_scan_forward(vmask))];
goto _next_contour;
}
}
@ -1334,19 +1328,13 @@ CvLinkedRunPoint;
inline int findStartContourPoint(uchar *src_data, CvSize img_size, int j)
{
#if CV_SIMD
#if CV_SIMD_WIDTH > 16
v_uint8 vx_zero = vx_setzero_u8();
while (j <= img_size.width - v_uint8::nlanes &&
v_check_all(vx_load((uchar*)(src_data + j)) == vx_zero))
j += v_uint8::nlanes;
#endif
v_uint8x16 v_zero = v_setzero_u8();
for (; j <= img_size.width - v_uint8x16::nlanes; j += v_uint8x16::nlanes)
v_uint8 v_zero = vx_setzero_u8();
for (; j <= img_size.width - v_uint8::nlanes; j += v_uint8::nlanes)
{
unsigned int mask = (unsigned int)v_signmask(v_load((uchar*)(src_data + j)) != v_zero);
if (mask)
v_uint8 vmask = (vx_load((uchar*)(src_data + j)) != v_zero);
if (v_check_any(vmask))
{
j += cv::trailingZeros32(mask);
j += v_scan_forward(vmask);
return j;
}
}
@ -1365,19 +1353,13 @@ inline int findEndContourPoint(uchar *src_data, CvSize img_size, int j)
}
else
{
#if CV_SIMD_WIDTH > 16
v_uint8 vx_zero = vx_setzero_u8();
while (j <= img_size.width - v_uint8::nlanes &&
v_check_all(vx_load((uchar*)(src_data + j)) != vx_zero))
j += v_uint8::nlanes;
#endif
v_uint8x16 v_zero = v_setzero_u8();
v_uint8 v_zero = vx_setzero_u8();
for (; j <= img_size.width - v_uint8::nlanes; j += v_uint8::nlanes)
{
unsigned int mask = (unsigned int)v_signmask(v_load((uchar*)(src_data + j)) == v_zero);
if (mask)
v_uint8 vmask = (vx_load((uchar*)(src_data + j)) == v_zero);
if (v_check_any(vmask))
{
j += cv::trailingZeros32(mask);
j += v_scan_forward(vmask);
return j;
}
}

View File

@ -1160,9 +1160,7 @@ static bool dftFilter2D(int stype, int dtype, int kernel_type,
corrDepth = ddepth == CV_64F ? CV_64F : CV_32F;
temp.create(Size(width, height), CV_MAKETYPE(corrDepth, dst_channels));
}
crossCorr(src, kernel, temp, src.size(),
CV_MAKETYPE(corrDepth, src_channels),
anchor, 0, borderType);
crossCorr(src, kernel, temp, anchor, 0, borderType);
add(temp, delta, temp);
if (temp.data != dst_data) {
temp.convertTo(dst, dst.type());
@ -1172,9 +1170,7 @@ static bool dftFilter2D(int stype, int dtype, int kernel_type,
temp = Mat(Size(width, height), dtype, dst_data, dst_step);
else
temp.create(Size(width, height), dtype);
crossCorr(src, kernel, temp, src.size(),
CV_MAKETYPE(ddepth, src_channels),
anchor, delta, borderType);
crossCorr(src, kernel, temp, anchor, delta, borderType);
if (temp.data != dst_data)
temp.copyTo(dst);
}

View File

@ -366,7 +366,6 @@ static inline Point normalizeAnchor( Point anchor, Size ksize )
void preprocess2DKernel( const Mat& kernel, std::vector<Point>& coords, std::vector<uchar>& coeffs );
void crossCorr( const Mat& src, const Mat& templ, Mat& dst,
Size corrsize, int ctype,
Point anchor=Point(0,0), double delta=0,
int borderType=BORDER_REFLECT_101 );

View File

@ -1139,32 +1139,23 @@ public:
for(; x < numCols; ++x )
{
#if CV_SIMD128
#if CV_SIMD
{
v_uint8x16 v_zero = v_setzero_u8();
v_uint8 v_zero = vx_setzero_u8();
for(; x <= numCols - 32; x += 32) {
v_uint8x16 v_edge1 = v_load(edgeData + x);
v_uint8x16 v_edge2 = v_load(edgeData + x + 16);
for(; x <= numCols - 2*v_uint8::nlanes; x += 2*v_uint8::nlanes) {
v_uint8 v_edge1 = (vx_load(edgeData + x ) != v_zero);
v_uint8 v_edge2 = (vx_load(edgeData + x + v_uint8::nlanes) != v_zero);
v_uint8x16 v_cmp1 = (v_edge1 == v_zero);
v_uint8x16 v_cmp2 = (v_edge2 == v_zero);
unsigned int mask1 = v_signmask(v_cmp1);
unsigned int mask2 = v_signmask(v_cmp2);
mask1 ^= 0x0000ffff;
mask2 ^= 0x0000ffff;
if(mask1)
if(v_check_any(v_edge1))
{
x += trailingZeros32(mask1);
x += v_scan_forward(v_edge1);
goto _next_step;
}
if(mask2)
if(v_check_any(v_edge2))
{
x += trailingZeros32(mask2 << 16);
x += v_uint8::nlanes + v_scan_forward(v_edge2);
goto _next_step;
}
}
@ -1175,7 +1166,7 @@ public:
if(x == numCols)
continue;
#if CV_SIMD128
#if CV_SIMD
_next_step:
#endif
float vx, vy;
@ -1506,36 +1497,35 @@ inline int HoughCircleEstimateRadiusInvoker<NZPointList>::filterCircles(const Po
int nzCount = 0;
const Point* nz_ = &nz[0];
int j = 0;
#if CV_SIMD128
#if CV_SIMD
{
const v_float32x4 v_minRadius2 = v_setall_f32(minRadius2);
const v_float32x4 v_maxRadius2 = v_setall_f32(maxRadius2);
const v_float32 v_minRadius2 = vx_setall_f32(minRadius2);
const v_float32 v_maxRadius2 = vx_setall_f32(maxRadius2);
v_float32x4 v_curCenterX = v_setall_f32(curCenter.x);
v_float32x4 v_curCenterY = v_setall_f32(curCenter.y);
v_float32 v_curCenterX = vx_setall_f32(curCenter.x);
v_float32 v_curCenterY = vx_setall_f32(curCenter.y);
float CV_DECL_ALIGNED(16) rbuf[4];
for(; j <= nzSz - 4; j += 4)
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) rbuf[v_float32::nlanes];
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) rmask[v_int32::nlanes];
for(; j <= nzSz - v_float32::nlanes; j += v_float32::nlanes)
{
v_float32x4 v_nzX, v_nzY;
v_float32 v_nzX, v_nzY;
v_load_deinterleave((const float*)&nz_[j], v_nzX, v_nzY); // FIXIT use proper datatype
v_float32x4 v_x = v_cvt_f32(v_reinterpret_as_s32(v_nzX));
v_float32x4 v_y = v_cvt_f32(v_reinterpret_as_s32(v_nzY));
v_float32 v_x = v_cvt_f32(v_reinterpret_as_s32(v_nzX));
v_float32 v_y = v_cvt_f32(v_reinterpret_as_s32(v_nzY));
v_float32x4 v_dx = v_x - v_curCenterX;
v_float32x4 v_dy = v_y - v_curCenterY;
v_float32 v_dx = v_x - v_curCenterX;
v_float32 v_dy = v_y - v_curCenterY;
v_float32x4 v_r2 = (v_dx * v_dx) + (v_dy * v_dy);
v_float32x4 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2);
unsigned int mask = v_signmask(vmask);
if (mask)
v_float32 v_r2 = (v_dx * v_dx) + (v_dy * v_dy);
v_float32 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2);
if (v_check_any(vmask))
{
v_store_aligned(rmask, v_reinterpret_as_s32(vmask));
v_store_aligned(rbuf, v_r2);
if (mask & 1) ddata[nzCount++] = rbuf[0];
if (mask & 2) ddata[nzCount++] = rbuf[1];
if (mask & 4) ddata[nzCount++] = rbuf[2];
if (mask & 8) ddata[nzCount++] = rbuf[3];
for (int i = 0; i < v_int32::nlanes; ++i)
if (rmask[i]) ddata[nzCount++] = rbuf[i];
}
}
}
@ -1566,12 +1556,13 @@ inline int HoughCircleEstimateRadiusInvoker<NZPointSet>::filterCircles(const Poi
const Range xOuter = Range(std::max(int(curCenter.x - rOuter), 0), std::min(int(curCenter.x + rOuter), positions.cols));
const Range yOuter = Range(std::max(int(curCenter.y - rOuter), 0), std::min(int(curCenter.y + rOuter), positions.rows));
#if CV_SIMD128
const int numSIMDPoints = 4;
const v_float32x4 v_minRadius2 = v_setall_f32(minRadius2);
const v_float32x4 v_maxRadius2 = v_setall_f32(maxRadius2);
const v_float32x4 v_curCenterX_0123 = v_setall_f32(curCenter.x) - v_float32x4(0.0f, 1.0f, 2.0f, 3.0f);
#if CV_SIMD
float v_seq[v_float32::nlanes];
for (int i = 0; i < v_float32::nlanes; ++i)
v_seq[i] = (float)i;
const v_float32 v_minRadius2 = vx_setall_f32(minRadius2);
const v_float32 v_maxRadius2 = vx_setall_f32(maxRadius2);
const v_float32 v_curCenterX_0123 = vx_setall_f32(curCenter.x) - vx_load(v_seq);
#endif
for (int y = yOuter.start; y < yOuter.end; y++)
@ -1581,29 +1572,28 @@ inline int HoughCircleEstimateRadiusInvoker<NZPointSet>::filterCircles(const Poi
float dy2 = dy * dy;
int x = xOuter.start;
#if CV_SIMD128
#if CV_SIMD
{
const v_float32x4 v_dy2 = v_setall_f32(dy2);
const v_uint32x4 v_zero_u32 = v_setall_u32(0);
float CV_DECL_ALIGNED(16) rbuf[4];
for (; x <= xOuter.end - 4; x += numSIMDPoints)
const v_float32 v_dy2 = vx_setall_f32(dy2);
const v_uint32 v_zero_u32 = vx_setall_u32(0);
float CV_DECL_ALIGNED(CV_SIMD_WIDTH) rbuf[v_float32::nlanes];
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) rmask[v_int32::nlanes];
for (; x <= xOuter.end - v_float32::nlanes; x += v_float32::nlanes)
{
v_uint32x4 v_mask = v_load_expand_q(ptr + x);
v_uint32 v_mask = vx_load_expand_q(ptr + x);
v_mask = v_mask != v_zero_u32;
v_float32x4 v_x = v_cvt_f32(v_setall_s32(x));
v_float32x4 v_dx = v_x - v_curCenterX_0123;
v_float32 v_x = v_cvt_f32(vx_setall_s32(x));
v_float32 v_dx = v_x - v_curCenterX_0123;
v_float32x4 v_r2 = (v_dx * v_dx) + v_dy2;
v_float32x4 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2) & v_reinterpret_as_f32(v_mask);
unsigned int mask = v_signmask(vmask);
if (mask)
v_float32 v_r2 = (v_dx * v_dx) + v_dy2;
v_float32 vmask = (v_minRadius2 <= v_r2) & (v_r2 <= v_maxRadius2) & v_reinterpret_as_f32(v_mask);
if (v_check_any(vmask))
{
v_store_aligned(rmask, v_reinterpret_as_s32(vmask));
v_store_aligned(rbuf, v_r2);
if (mask & 1) ddata[nzCount++] = rbuf[0];
if (mask & 2) ddata[nzCount++] = rbuf[1];
if (mask & 4) ddata[nzCount++] = rbuf[2];
if (mask & 8) ddata[nzCount++] = rbuf[3];
for (int i = 0; i < v_int32::nlanes; ++i)
if (rmask[i]) ddata[nzCount++] = rbuf[i];
}
}
}

View File

@ -564,7 +564,6 @@ static bool ocl_matchTemplate( InputArray _img, InputArray _templ, OutputArray _
#include "opencv2/core/hal/hal.hpp"
void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
Size corrsize, int ctype,
Point anchor, double delta, int borderType )
{
const double blockScale = 4.5;
@ -574,7 +573,7 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
Mat templ = _templ;
int depth = img.depth(), cn = img.channels();
int tdepth = templ.depth(), tcn = templ.channels();
int cdepth = CV_MAT_DEPTH(ctype), ccn = CV_MAT_CN(ctype);
int cdepth = corr.depth(), ccn = corr.channels();
CV_Assert( img.dims <= 2 && templ.dims <= 2 && corr.dims <= 2 );
@ -585,13 +584,11 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
}
CV_Assert( depth == tdepth || tdepth == CV_32F);
CV_Assert( corrsize.height <= img.rows + templ.rows - 1 &&
corrsize.width <= img.cols + templ.cols - 1 );
CV_Assert( corr.rows <= img.rows + templ.rows - 1 &&
corr.cols <= img.cols + templ.cols - 1 );
CV_Assert( ccn == 1 || delta == 0 );
corr.create(corrsize, ctype);
int maxDepth = depth > CV_8S ? CV_64F : std::max(std::max(CV_32F, tdepth), cdepth);
Size blocksize, dftsize;
@ -815,8 +812,8 @@ static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _
Mat mask2_templ = templ.mul(mask2);
Mat corr(corrSize, CV_32F);
crossCorr( img, mask2_templ, corr, corr.size(), corr.type(), Point(0,0), 0, 0 );
crossCorr( img2, mask, result, result.size(), result.type(), Point(0,0), 0, 0 );
crossCorr( img, mask2_templ, corr, Point(0,0), 0, 0 );
crossCorr( img2, mask, result, Point(0,0), 0, 0 );
result -= corr * 2;
result += templSum2;
@ -830,8 +827,8 @@ static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _
}
Mat corr(corrSize, CV_32F);
crossCorr( img2, mask2, corr, corr.size(), corr.type(), Point(0,0), 0, 0 );
crossCorr( img, mask_templ, result, result.size(), result.type(), Point(0,0), 0, 0 );
crossCorr( img2, mask2, corr, Point(0,0), 0, 0 );
crossCorr( img, mask_templ, result, Point(0,0), 0, 0 );
sqrt(corr, corr);
result = result.mul(1/corr);
@ -1125,7 +1122,7 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
CV_IPP_RUN_FAST(ipp_matchTemplate(img, templ, result, method))
crossCorr( img, templ, result, result.size(), result.type(), Point(0,0), 0, 0);
crossCorr( img, templ, result, Point(0,0), 0, 0);
common_matchTemplate(img, templ, result, method, cn);
}

View File

@ -136,4 +136,18 @@ void CV_ConnectedComponentsTest::run( int /* start_from */)
TEST(Imgproc_ConnectedComponents, regression) { CV_ConnectedComponentsTest test; test.safe_run(); }
TEST(Imgproc_ConnectedComponents, grana_buffer_overflow)
{
cv::Mat darkMask;
darkMask.create(31, 87, CV_8U);
darkMask = 0;
cv::Mat labels;
cv::Mat stats;
cv::Mat centroids;
int nbComponents = cv::connectedComponentsWithStats(darkMask, labels, stats, centroids, 8, CV_32S, cv::CCL_GRANA);
EXPECT_EQ(1, nbComponents);
}
}} // namespace

View File

@ -40,7 +40,7 @@ def main(argv):
# [laplacian]
# Apply Laplace function
dst = cv.Laplacian(src_gray, ddepth, kernel_size)
dst = cv.Laplacian(src_gray, ddepth, ksize=kernel_size)
# [laplacian]
# [convert]