mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Merge pull request #27338 from omahs:patch-1
Fix typos #27338 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
dc610867e1
commit
0bc95d9256
@ -113,7 +113,7 @@ int main( int argc, const char** argv )
|
||||
int timing = 1;
|
||||
|
||||
// Value for cols of storing elements
|
||||
int cols_prefered = 5;
|
||||
int cols_preferred = 5;
|
||||
|
||||
// Open the XML model
|
||||
FileStorage fs;
|
||||
@ -218,7 +218,7 @@ int main( int argc, const char** argv )
|
||||
for(int sid = 0; sid < (int)stage_features.size(); sid ++){
|
||||
if(draw_planes){
|
||||
int features_nmbr = (int)stage_features[sid].size();
|
||||
int cols = cols_prefered;
|
||||
int cols = cols_preferred;
|
||||
int rows = features_nmbr / cols;
|
||||
if( (features_nmbr % cols) > 0){
|
||||
rows++;
|
||||
@ -257,7 +257,7 @@ int main( int argc, const char** argv )
|
||||
result_video.write(temp_window);
|
||||
// Copy the feature image if needed
|
||||
if(draw_planes){
|
||||
single_feature.copyTo(image_plane(Rect(0 + (fid%cols_prefered)*single_feature.cols, 0 + (fid/cols_prefered) * single_feature.rows, single_feature.cols, single_feature.rows)));
|
||||
single_feature.copyTo(image_plane(Rect(0 + (fid%cols_preferred)*single_feature.cols, 0 + (fid/cols_preferred) * single_feature.rows, single_feature.cols, single_feature.rows)));
|
||||
}
|
||||
putText(temp_metadata, meta1.str(), Point(15,15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255));
|
||||
putText(temp_metadata, meta2.str(), Point(15,40), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255));
|
||||
@ -291,7 +291,7 @@ int main( int argc, const char** argv )
|
||||
for(int sid = 0; sid < (int)stage_features.size(); sid ++){
|
||||
if(draw_planes){
|
||||
int features_nmbr = (int)stage_features[sid].size();
|
||||
int cols = cols_prefered;
|
||||
int cols = cols_preferred;
|
||||
int rows = features_nmbr / cols;
|
||||
if( (features_nmbr % cols) > 0){
|
||||
rows++;
|
||||
@ -353,7 +353,7 @@ int main( int argc, const char** argv )
|
||||
// Bottom right
|
||||
rectangle(single_feature, Rect(resized_inner.x + 2*resized_inner.width, resized_inner.y + 2*resized_inner.height, resized_inner.width, resized_inner.height), Scalar(255), 1);
|
||||
|
||||
single_feature.copyTo(image_plane(Rect(0 + (fid%cols_prefered)*single_feature.cols, 0 + (fid/cols_prefered) * single_feature.rows, single_feature.cols, single_feature.rows)));
|
||||
single_feature.copyTo(image_plane(Rect(0 + (fid%cols_preferred)*single_feature.cols, 0 + (fid/cols_preferred) * single_feature.rows, single_feature.cols, single_feature.rows)));
|
||||
}
|
||||
|
||||
putText(temp_metadata, meta1.str(), Point(15,15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(255));
|
||||
|
@ -41,7 +41,7 @@ Assuming that we have successfully trained YOLOX model, the subsequent step invo
|
||||
running this model with OpenCV. There are several critical considerations to address before
|
||||
proceeding with this process. Let's delve into these aspects.
|
||||
|
||||
### YOLO's Pre-proccessing & Output
|
||||
### YOLO's Pre-processing & Output
|
||||
|
||||
Understanding the nature of inputs and outputs associated with YOLO family detectors is pivotal.
|
||||
These detectors, akin to most Deep Neural Networks (DNN), typically exhibit variation in input
|
||||
|
@ -1040,7 +1040,7 @@ namespace CAROTENE_NS {
|
||||
s32 maxVal, size_t * maxLocPtr, s32 & maxLocCount, s32 maxLocCapacity);
|
||||
|
||||
/*
|
||||
Among each pixel `p` within `src` find min and max values and its first occurences
|
||||
Among each pixel `p` within `src` find min and max values and its first occurrences
|
||||
*/
|
||||
void minMaxLoc(const Size2D &size,
|
||||
const s8 * srcBase, ptrdiff_t srcStride,
|
||||
|
@ -1535,7 +1535,7 @@ public:
|
||||
return prevPtr;
|
||||
}
|
||||
|
||||
/// vxSwapImageHandle() wrapper for the case when no new pointers provided and previous ones are not needed (retrive memory back)
|
||||
/// vxSwapImageHandle() wrapper for the case when no new pointers provided and previous ones are not needed (retrieve memory back)
|
||||
void swapHandle()
|
||||
{ IVX_CHECK_STATUS( vxSwapImageHandle(ref, 0, 0, 0) ); }
|
||||
|
||||
|
@ -17,7 +17,7 @@ class Error : public Algorithm {
|
||||
public:
|
||||
// set model to use getError() function
|
||||
virtual void setModelParameters (const Mat &model) = 0;
|
||||
// returns error of point wih @point_idx w.r.t. model
|
||||
// returns error of point with @point_idx w.r.t. model
|
||||
virtual float getError (int point_idx) const = 0;
|
||||
virtual const std::vector<float> &getErrors (const Mat &model) = 0;
|
||||
};
|
||||
|
@ -640,7 +640,7 @@ TEST_F(fisheyeTest, CalibrationWithFixedFocalLength)
|
||||
cv::fisheye::calibrate(objectPoints, imagePoints, imageSize, theK, theD,
|
||||
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
|
||||
|
||||
// ensure that CALIB_FIX_FOCAL_LENGTH works and focal lenght has not changed
|
||||
// ensure that CALIB_FIX_FOCAL_LENGTH works and focal length has not changed
|
||||
EXPECT_EQ(theK(0,0), K(0,0));
|
||||
EXPECT_EQ(theK(1,1), K(1,1));
|
||||
|
||||
|
@ -405,7 +405,7 @@ public:
|
||||
//swap axis 0 and 1 input x
|
||||
cv::Mat tmp;
|
||||
// Since python input is 4 dimentional and C++ input 3 dimentinal
|
||||
// we need to proccess each differently
|
||||
// we need to process each differently
|
||||
if (input[0].dims == 4){
|
||||
// here !!!
|
||||
CV_Assert(input[0].size[3] == 1);
|
||||
|
@ -2645,7 +2645,7 @@ void TFImporter::parsePReLU(tensorflow::GraphDef& net, const tensorflow::NodeDef
|
||||
layerParams.blobs.resize(1);
|
||||
|
||||
if (scales.dims == 3) {
|
||||
// Considering scales from Keras wih HWC layout;
|
||||
// Considering scales from Keras with HWC layout;
|
||||
transposeND(scales, {2, 0, 1}, layerParams.blobs[0]);
|
||||
} else {
|
||||
layerParams.blobs[0] = scales;
|
||||
|
@ -146,7 +146,7 @@ public:
|
||||
return (ptr_ - other.ptr_) / step_;
|
||||
}
|
||||
|
||||
/* Comparision */
|
||||
/* Comparison */
|
||||
bool operator==(const ChannelsIterator<Traits>& other) const CV_NOEXCEPT
|
||||
{
|
||||
return ptr_ == other.ptr_;
|
||||
|
@ -789,7 +789,7 @@ TEST(Drawing, fillpoly_fully)
|
||||
cv::Mat labelImage(binary.size(), CV_32S);
|
||||
cv::Mat labelCentroids;
|
||||
int labels = cv::connectedComponents(binary, labelImage, 4);
|
||||
EXPECT_EQ(2, labels) << "artifacts occured";
|
||||
EXPECT_EQ(2, labels) << "artifacts occurred";
|
||||
}
|
||||
|
||||
// check if filling went over border
|
||||
@ -878,7 +878,7 @@ PARAM_TEST_CASE(FillPolyFully, unsigned, unsigned, int, int, Point, cv::LineType
|
||||
cv::Mat labelImage(binary.size(), CV_32S);
|
||||
cv::Mat labelCentroids;
|
||||
int labels = cv::connectedComponents(binary, labelImage, 4);
|
||||
EXPECT_EQ(2, labels) << "artifacts occured";
|
||||
EXPECT_EQ(2, labels) << "artifacts occurred";
|
||||
}
|
||||
|
||||
void check_filling_over_border(cv::Mat& img, const std::vector<cv::Point>& polygonPoints)
|
||||
|
@ -256,7 +256,7 @@ public:
|
||||
|
||||
@param filename The input file name
|
||||
@param headerLineCount The number of lines in the beginning to skip; besides the header, the
|
||||
function also skips empty lines and lines staring with `#`
|
||||
function also skips empty lines and lines starting with `#`
|
||||
@param responseStartIdx Index of the first output variable. If -1, the function considers the
|
||||
last variable as the response
|
||||
@param responseEndIdx Index of the last output variable + 1. If -1, then there is single
|
||||
|
@ -256,7 +256,7 @@ CvGBTrees::train( const CvMat* _train_data, int _tflag,
|
||||
// inside gbt learning process only regression decision trees are built
|
||||
data->is_classifier = false;
|
||||
|
||||
// preproccessing sample indices
|
||||
// preprocessing sample indices
|
||||
if (_sample_idx)
|
||||
{
|
||||
int sample_idx_len = get_len(_sample_idx);
|
||||
|
@ -1162,7 +1162,7 @@ bool GStreamerCapture::retrieveFrame(int index, OutputArray dst)
|
||||
}
|
||||
}
|
||||
|
||||
CV_LOG_ERROR(NULL, "GStreamer(retrive): unrecognized index=" << index);
|
||||
CV_LOG_ERROR(NULL, "GStreamer(retrieve): unrecognized index=" << index);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -440,7 +440,7 @@ struct CvCaptureCAM_V4L CV_FINAL : public IVideoCapture
|
||||
bool convertableToRgb() const;
|
||||
void convertToRgb(const Buffer ¤tBuffer);
|
||||
|
||||
bool havePendingFrame; // true if next .grab() should be noop, .retrive() resets this flag
|
||||
bool havePendingFrame; // true if next .grab() should be noop, .retrieve() resets this flag
|
||||
};
|
||||
|
||||
/*********************** Implementations ***************************************/
|
||||
|
Loading…
Reference in New Issue
Block a user