mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
python: cv.Mat wrapper over numpy.ndarray
This commit is contained in:
parent
3c89a28a06
commit
0c10ae1861
@ -60,6 +60,14 @@ of C++.
|
||||
|
||||
So this is the basic version of how OpenCV-Python bindings are generated.
|
||||
|
||||
@note There is no 1:1 mapping of numpy.ndarray on cv::Mat. For example, cv::Mat has channels field,
|
||||
which is emulated as last dimension of numpy.ndarray and implicitly converted.
|
||||
However, such implicit conversion has problem with passing of 3D numpy arrays into C++ code
|
||||
(the last dimension is implicitly reinterpreted as number of channels).
|
||||
Refer to the [issue](https://github.com/opencv/opencv/issues/19091) for workarounds if you need to process 3D arrays or ND-arrays with channels.
|
||||
OpenCV 4.5.4+ has `cv.Mat` wrapper derived from `numpy.ndarray` to explicitly handle the channels behavior.
|
||||
|
||||
|
||||
How to extend new modules to Python?
|
||||
------------------------------------
|
||||
|
||||
|
33
modules/core/misc/python/package/mat_wrapper/__init__.py
Normal file
33
modules/core/misc/python/package/mat_wrapper/__init__.py
Normal file
@ -0,0 +1,33 @@
|
||||
__all__ = []
|
||||
|
||||
import sys
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
# NumPy documentation: https://numpy.org/doc/stable/user/basics.subclassing.html
|
||||
|
||||
class Mat(np.ndarray):
|
||||
'''
|
||||
cv.Mat wrapper for numpy array.
|
||||
|
||||
Stores extra metadata information how to interpret and process of numpy array for underlying C++ code.
|
||||
'''
|
||||
|
||||
def __new__(cls, arr, **kwargs):
|
||||
obj = arr.view(Mat)
|
||||
return obj
|
||||
|
||||
def __init__(self, arr, **kwargs):
|
||||
self.wrap_channels = kwargs.pop('wrap_channels', getattr(arr, 'wrap_channels', False))
|
||||
if len(kwargs) > 0:
|
||||
raise TypeError('Unknown parameters: {}'.format(repr(kwargs)))
|
||||
|
||||
def __array_finalize__(self, obj):
|
||||
if obj is None:
|
||||
return
|
||||
self.wrap_channels = getattr(obj, 'wrap_channels', None)
|
||||
|
||||
|
||||
Mat.__module__ = cv.__name__
|
||||
cv.Mat = Mat
|
||||
cv._registerMatType(Mat)
|
@ -49,6 +49,8 @@
|
||||
|
||||
static PyObject* opencv_error = NULL;
|
||||
|
||||
static PyTypeObject* pyopencv_Mat_TypePtr = nullptr;
|
||||
|
||||
class ArgInfo
|
||||
{
|
||||
public:
|
||||
@ -638,10 +640,20 @@ static bool isBool(PyObject* obj) CV_NOEXCEPT
|
||||
return PyArray_IsScalar(obj, Bool) || PyBool_Check(obj);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
static std::string pycv_dumpArray(const T* arr, int n)
|
||||
{
|
||||
std::ostringstream out;
|
||||
out << "[";
|
||||
for (int i = 0; i < n; ++i)
|
||||
out << " " << arr[i];
|
||||
out << " ]";
|
||||
return out.str();
|
||||
}
|
||||
|
||||
// special case, when the converter needs full ArgInfo structure
|
||||
static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
|
||||
{
|
||||
bool allowND = true;
|
||||
if(!o || o == Py_None)
|
||||
{
|
||||
if( !m.data )
|
||||
@ -727,12 +739,29 @@ static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
|
||||
return false;
|
||||
}
|
||||
|
||||
int size[CV_MAX_DIM+1];
|
||||
size_t step[CV_MAX_DIM+1];
|
||||
size_t elemsize = CV_ELEM_SIZE1(type);
|
||||
const npy_intp* _sizes = PyArray_DIMS(oarr);
|
||||
const npy_intp* _strides = PyArray_STRIDES(oarr);
|
||||
|
||||
CV_LOG_DEBUG(NULL, "Incoming ndarray '" << info.name << "': ndims=" << ndims << " _sizes=" << pycv_dumpArray(_sizes, ndims) << " _strides=" << pycv_dumpArray(_strides, ndims));
|
||||
|
||||
bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;
|
||||
if (pyopencv_Mat_TypePtr && PyObject_TypeCheck(o, pyopencv_Mat_TypePtr))
|
||||
{
|
||||
bool wrapChannels = false;
|
||||
PyObject* pyobj_wrap_channels = PyObject_GetAttrString(o, "wrap_channels");
|
||||
if (pyobj_wrap_channels)
|
||||
{
|
||||
if (!pyopencv_to_safe(pyobj_wrap_channels, wrapChannels, ArgInfo("cv.Mat.wrap_channels", 0)))
|
||||
{
|
||||
// TODO extra message
|
||||
Py_DECREF(pyobj_wrap_channels);
|
||||
return false;
|
||||
}
|
||||
Py_DECREF(pyobj_wrap_channels);
|
||||
}
|
||||
ismultichannel = wrapChannels && ndims >= 1;
|
||||
}
|
||||
|
||||
for( int i = ndims-1; i >= 0 && !needcopy; i-- )
|
||||
{
|
||||
@ -746,14 +775,26 @@ static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
|
||||
needcopy = true;
|
||||
}
|
||||
|
||||
if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] )
|
||||
needcopy = true;
|
||||
if (ismultichannel)
|
||||
{
|
||||
int channels = ndims >= 1 ? (int)_sizes[ndims - 1] : 1;
|
||||
if (channels > CV_CN_MAX)
|
||||
{
|
||||
failmsg("%s unable to wrap channels, too high (%d > CV_CN_MAX=%d)", info.name, (int)channels, (int)CV_CN_MAX);
|
||||
return false;
|
||||
}
|
||||
ndims--;
|
||||
type |= CV_MAKETYPE(0, channels);
|
||||
|
||||
if (ndims >= 1 && _strides[ndims - 1] != (npy_intp)elemsize*_sizes[ndims])
|
||||
needcopy = true;
|
||||
}
|
||||
|
||||
if (needcopy)
|
||||
{
|
||||
if (info.outputarg)
|
||||
{
|
||||
failmsg("Layout of the output array %s is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)", info.name);
|
||||
failmsg("Layout of the output array %s is incompatible with cv::Mat", info.name);
|
||||
return false;
|
||||
}
|
||||
|
||||
@ -769,6 +810,9 @@ static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
|
||||
_strides = PyArray_STRIDES(oarr);
|
||||
}
|
||||
|
||||
int size[CV_MAX_DIM+1] = {};
|
||||
size_t step[CV_MAX_DIM+1] = {};
|
||||
|
||||
// Normalize strides in case NPY_RELAXED_STRIDES is set
|
||||
size_t default_step = elemsize;
|
||||
for ( int i = ndims - 1; i >= 0; --i )
|
||||
@ -787,23 +831,16 @@ static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
|
||||
}
|
||||
|
||||
// handle degenerate case
|
||||
// FIXIT: Don't force 1D for Scalars
|
||||
if( ndims == 0) {
|
||||
size[ndims] = 1;
|
||||
step[ndims] = elemsize;
|
||||
ndims++;
|
||||
}
|
||||
|
||||
if( ismultichannel )
|
||||
{
|
||||
ndims--;
|
||||
type |= CV_MAKETYPE(0, size[2]);
|
||||
}
|
||||
|
||||
if( ndims > 2 && !allowND )
|
||||
{
|
||||
failmsg("%s has more than 2 dimensions", info.name);
|
||||
return false;
|
||||
}
|
||||
#if 1
|
||||
CV_LOG_DEBUG(NULL, "Construct Mat: ndims=" << ndims << " size=" << pycv_dumpArray(size, ndims) << " step=" << pycv_dumpArray(step, ndims) << " type=" << cv::typeToString(type));
|
||||
#endif
|
||||
|
||||
m = Mat(ndims, size, type, PyArray_DATA(oarr), step);
|
||||
m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
|
||||
@ -2183,7 +2220,24 @@ static int convert_to_char(PyObject *o, char *dst, const ArgInfo& info)
|
||||
#include "pyopencv_generated_types_content.h"
|
||||
#include "pyopencv_generated_funcs.h"
|
||||
|
||||
static PyObject* pycvRegisterMatType(PyObject *self, PyObject *value)
|
||||
{
|
||||
CV_LOG_DEBUG(NULL, cv::format("pycvRegisterMatType %p %p\n", self, value));
|
||||
|
||||
if (0 == PyType_Check(value))
|
||||
{
|
||||
PyErr_SetString(PyExc_TypeError, "Type argument is expected");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
Py_INCREF(value);
|
||||
pyopencv_Mat_TypePtr = (PyTypeObject*)value;
|
||||
|
||||
Py_RETURN_NONE;
|
||||
}
|
||||
|
||||
static PyMethodDef special_methods[] = {
|
||||
{"_registerMatType", (PyCFunction)(pycvRegisterMatType), METH_O, "_registerMatType(cv.Mat) -> None (Internal)"},
|
||||
{"redirectError", CV_PY_FN_WITH_KW(pycvRedirectError), "redirectError(onError) -> None"},
|
||||
#ifdef HAVE_OPENCV_HIGHGUI
|
||||
{"createTrackbar", (PyCFunction)pycvCreateTrackbar, METH_VARARGS, "createTrackbar(trackbarName, windowName, value, count, onChange) -> None"},
|
||||
|
131
modules/python/test/test_mat.py
Normal file
131
modules/python/test/test_mat.py
Normal file
@ -0,0 +1,131 @@
|
||||
#!/usr/bin/env python
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
try:
|
||||
if sys.version_info[:2] < (3, 0):
|
||||
raise unittest.SkipTest('Python 2.x is not supported')
|
||||
|
||||
|
||||
class MatTest(NewOpenCVTests):
|
||||
|
||||
def test_mat_construct(self):
|
||||
data = np.random.random([10, 10, 3])
|
||||
|
||||
#print(np.ndarray.__dictoffset__) # 0
|
||||
#print(cv.Mat.__dictoffset__) # 88 (> 0)
|
||||
#print(cv.Mat) # <class cv2.Mat>
|
||||
#print(cv.Mat.__base__) # <class 'numpy.ndarray'>
|
||||
|
||||
mat_data0 = cv.Mat(data)
|
||||
assert isinstance(mat_data0, cv.Mat)
|
||||
assert isinstance(mat_data0, np.ndarray)
|
||||
self.assertEqual(mat_data0.wrap_channels, False)
|
||||
res0 = cv.utils.dumpInputArray(mat_data0)
|
||||
self.assertEqual(res0, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=300 dims(-1)=3 size(-1)=[10 10 3] type(-1)=CV_64FC1")
|
||||
|
||||
mat_data1 = cv.Mat(data, wrap_channels=True)
|
||||
assert isinstance(mat_data1, cv.Mat)
|
||||
assert isinstance(mat_data1, np.ndarray)
|
||||
self.assertEqual(mat_data1.wrap_channels, True)
|
||||
res1 = cv.utils.dumpInputArray(mat_data1)
|
||||
self.assertEqual(res1, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=100 dims(-1)=2 size(-1)=10x10 type(-1)=CV_64FC3")
|
||||
|
||||
mat_data2 = cv.Mat(mat_data1)
|
||||
assert isinstance(mat_data2, cv.Mat)
|
||||
assert isinstance(mat_data2, np.ndarray)
|
||||
self.assertEqual(mat_data2.wrap_channels, True) # fail if __array_finalize__ doesn't work
|
||||
res2 = cv.utils.dumpInputArray(mat_data2)
|
||||
self.assertEqual(res2, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=100 dims(-1)=2 size(-1)=10x10 type(-1)=CV_64FC3")
|
||||
|
||||
|
||||
def test_mat_construct_4d(self):
|
||||
data = np.random.random([5, 10, 10, 3])
|
||||
|
||||
mat_data0 = cv.Mat(data)
|
||||
assert isinstance(mat_data0, cv.Mat)
|
||||
assert isinstance(mat_data0, np.ndarray)
|
||||
self.assertEqual(mat_data0.wrap_channels, False)
|
||||
res0 = cv.utils.dumpInputArray(mat_data0)
|
||||
self.assertEqual(res0, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=1500 dims(-1)=4 size(-1)=[5 10 10 3] type(-1)=CV_64FC1")
|
||||
|
||||
mat_data1 = cv.Mat(data, wrap_channels=True)
|
||||
assert isinstance(mat_data1, cv.Mat)
|
||||
assert isinstance(mat_data1, np.ndarray)
|
||||
self.assertEqual(mat_data1.wrap_channels, True)
|
||||
res1 = cv.utils.dumpInputArray(mat_data1)
|
||||
self.assertEqual(res1, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=500 dims(-1)=3 size(-1)=[5 10 10] type(-1)=CV_64FC3")
|
||||
|
||||
mat_data2 = cv.Mat(mat_data1)
|
||||
assert isinstance(mat_data2, cv.Mat)
|
||||
assert isinstance(mat_data2, np.ndarray)
|
||||
self.assertEqual(mat_data2.wrap_channels, True) # __array_finalize__ doesn't work
|
||||
res2 = cv.utils.dumpInputArray(mat_data2)
|
||||
self.assertEqual(res2, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=500 dims(-1)=3 size(-1)=[5 10 10] type(-1)=CV_64FC3")
|
||||
|
||||
|
||||
def test_mat_wrap_channels_fail(self):
|
||||
data = np.random.random([2, 3, 4, 520])
|
||||
|
||||
mat_data0 = cv.Mat(data)
|
||||
assert isinstance(mat_data0, cv.Mat)
|
||||
assert isinstance(mat_data0, np.ndarray)
|
||||
self.assertEqual(mat_data0.wrap_channels, False)
|
||||
res0 = cv.utils.dumpInputArray(mat_data0)
|
||||
self.assertEqual(res0, "InputArray: empty()=false kind=0x00010000 flags=0x01010000 total(-1)=12480 dims(-1)=4 size(-1)=[2 3 4 520] type(-1)=CV_64FC1")
|
||||
|
||||
with self.assertRaises(cv.error):
|
||||
mat_data1 = cv.Mat(data, wrap_channels=True) # argument unable to wrap channels, too high (520 > CV_CN_MAX=512)
|
||||
res1 = cv.utils.dumpInputArray(mat_data1)
|
||||
print(mat_data1.__dict__)
|
||||
print(res1)
|
||||
|
||||
|
||||
def test_ufuncs(self):
|
||||
data = np.arange(10)
|
||||
mat_data = cv.Mat(data)
|
||||
mat_data2 = 2 * mat_data
|
||||
self.assertEqual(type(mat_data2), cv.Mat)
|
||||
np.testing.assert_equal(2 * data, 2 * mat_data)
|
||||
|
||||
|
||||
def test_comparison(self):
|
||||
# Undefined behavior, do NOT use that.
|
||||
# Behavior may be changed in the future
|
||||
|
||||
data = np.ones((10, 10, 3))
|
||||
mat_wrapped = cv.Mat(data, wrap_channels=True)
|
||||
mat_simple = cv.Mat(data)
|
||||
np.testing.assert_equal(mat_wrapped, mat_simple) # ???: wrap_channels is not checked for now
|
||||
np.testing.assert_equal(data, mat_simple)
|
||||
np.testing.assert_equal(data, mat_wrapped)
|
||||
|
||||
#self.assertEqual(mat_wrapped, mat_simple) # ???
|
||||
#self.assertTrue(mat_wrapped == mat_simple) # ???
|
||||
#self.assertTrue((mat_wrapped == mat_simple).all())
|
||||
|
||||
|
||||
except unittest.SkipTest as e:
|
||||
|
||||
message = str(e)
|
||||
|
||||
class TestSkip(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.skipTest('Skip tests: ' + message)
|
||||
|
||||
def test_skip():
|
||||
pass
|
||||
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
@ -10,6 +10,7 @@ import random
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
#sys.OpenCV_LOADER_DEBUG = True
|
||||
import cv2 as cv
|
||||
|
||||
# Python 3 moved urlopen to urllib.requests
|
||||
|
Loading…
Reference in New Issue
Block a user