mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Update to improve performance of SimpleFlow algorithm
+ Improve performance of calcOpticalFlowSingleScale method + Small refactoring Current results: IMAGE NAMES RMSE Beanbags Dimetrodon 0.329428 DogDance Grove2 0.550852 Grove3 1.464699 Hydrangea 0.523277 MiniCooper RubberWhale 0.367246 Urban2 2.717003 Urban3 4.185070 Venus 0.775422 Walking Time (for Urban3): 17.490248 sec
This commit is contained in:
parent
7ad4c25452
commit
0c10ed26e3
@ -60,6 +60,9 @@ static void removeOcclusions(const Mat& flow,
|
||||
Mat& confidence) {
|
||||
const int rows = flow.rows;
|
||||
const int cols = flow.cols;
|
||||
if (!confidence.data) {
|
||||
confidence = Mat::zeros(rows, cols, CV_32F);
|
||||
}
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
for (int c = 0; c < cols; ++c) {
|
||||
if (dist(flow.at<Vec2f>(r, c), -flow_inv.at<Vec2f>(r, c)) > occ_thr) {
|
||||
@ -96,20 +99,12 @@ static void wc(const Mat& image, Mat& d, int r0, int c0,
|
||||
exp(d, d);
|
||||
}
|
||||
|
||||
static void dist(const Mat& m1, const Mat& m2, Mat& result) {
|
||||
const int rows = m1.rows;
|
||||
const int cols = m1.cols;
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
const Vec3b *m1_row = m1.ptr<Vec3b>(r);
|
||||
const Vec3b *m2_row = m2.ptr<Vec3b>(r);
|
||||
float* row = result.ptr<float>(r);
|
||||
for (int c = 0; c < cols; ++c) {
|
||||
row[c] = dist(m1_row[c], m2_row[c]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void crossBilateralFilter(const Mat& image, const Mat& edge_image, const Mat confidence, Mat& dst, int d, float sigma_color, float sigma_space, bool flag=false) {
|
||||
static void crossBilateralFilter(const Mat& image,
|
||||
const Mat& edge_image,
|
||||
const Mat confidence,
|
||||
Mat& dst, int d,
|
||||
float sigma_color, float sigma_space,
|
||||
bool flag=false) {
|
||||
const int rows = image.rows;
|
||||
const int cols = image.cols;
|
||||
Mat image_extended, edge_image_extended, confidence_extended;
|
||||
@ -121,7 +116,6 @@ static void crossBilateralFilter(const Mat& image, const Mat& edge_image, const
|
||||
Mat weights(2*d+1, 2*d+1, CV_32F);
|
||||
Mat weighted_sum(2*d+1, 2*d+1, CV_32F);
|
||||
|
||||
|
||||
vector<Mat> image_extended_channels;
|
||||
split(image_extended, image_extended_channels);
|
||||
|
||||
@ -148,31 +142,15 @@ static void crossBilateralFilter(const Mat& image, const Mat& edge_image, const
|
||||
}
|
||||
}
|
||||
|
||||
static void calcOpticalFlowSingleScaleSF(const Mat& prev,
|
||||
const Mat& next,
|
||||
const Mat& mask,
|
||||
Mat& flow,
|
||||
Mat& confidence,
|
||||
int averaging_radius,
|
||||
int max_flow,
|
||||
float sigma_dist,
|
||||
float sigma_color) {
|
||||
static void calcConfidence(const Mat& prev,
|
||||
const Mat& next,
|
||||
const Mat& flow,
|
||||
Mat& confidence,
|
||||
int max_flow) {
|
||||
const int rows = prev.rows;
|
||||
const int cols = prev.cols;
|
||||
confidence = Mat::zeros(rows, cols, CV_32F);
|
||||
|
||||
Mat diff_storage(averaging_radius*2 + 1, averaging_radius*2 + 1, CV_32F);
|
||||
Mat w_full_window(averaging_radius*2 + 1, averaging_radius*2 + 1, CV_32F);
|
||||
Mat wd_full_window(averaging_radius*2 + 1, averaging_radius*2 + 1, CV_32F);
|
||||
float w_full_window_sum = 1e-9;
|
||||
|
||||
Mat prev_extended;
|
||||
copyMakeBorder(prev, prev_extended,
|
||||
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
|
||||
BORDER_DEFAULT);
|
||||
|
||||
wd(wd_full_window, averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_dist);
|
||||
|
||||
for (int r0 = 0; r0 < rows; ++r0) {
|
||||
for (int c0 = 0; c0 < cols; ++c0) {
|
||||
Vec2f flow_at_point = flow.at<Vec2f>(r0, c0);
|
||||
@ -183,25 +161,16 @@ static void calcOpticalFlowSingleScaleSF(const Mat& prev,
|
||||
if (c0 + v0 < 0) { v0 = -c0; }
|
||||
if (c0 + v0 >= cols) { v0 = cols - 1 - c0; }
|
||||
|
||||
const int min_row_shift = -min(r0 + u0, max_flow);
|
||||
const int max_row_shift = min(rows - 1 - (r0 + u0), max_flow);
|
||||
const int min_col_shift = -min(c0 + v0, max_flow);
|
||||
const int max_col_shift = min(cols - 1 - (c0 + v0), max_flow);
|
||||
|
||||
float min_cost = DBL_MAX, best_u = u0, best_v = v0;
|
||||
|
||||
if (mask.at<uchar>(r0, c0)) {
|
||||
wc(prev_extended, w_full_window, r0 + averaging_radius, c0 + averaging_radius,
|
||||
averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_color);
|
||||
multiply(w_full_window, wd_full_window, w_full_window);
|
||||
w_full_window_sum = sum(w_full_window)[0];
|
||||
}
|
||||
const int top_row_shift = -min(r0 + u0, max_flow);
|
||||
const int bottom_row_shift = min(rows - 1 - (r0 + u0), max_flow);
|
||||
const int left_col_shift = -min(c0 + v0, max_flow);
|
||||
const int right_col_shift = min(cols - 1 - (c0 + v0), max_flow);
|
||||
|
||||
bool first_flow_iteration = true;
|
||||
float sum_e = 0, min_e = 0;
|
||||
|
||||
for (int u = min_row_shift; u <= max_row_shift; ++u) {
|
||||
for (int v = min_col_shift; v <= max_col_shift; ++v) {
|
||||
for (int u = top_row_shift; u <= bottom_row_shift; ++u) {
|
||||
for (int v = left_col_shift; v <= right_col_shift; ++v) {
|
||||
float e = dist(prev.at<Vec3b>(r0, c0), next.at<Vec3b>(r0 + u0 + u, c0 + v0 + v));
|
||||
if (first_flow_iteration) {
|
||||
sum_e = e;
|
||||
@ -211,55 +180,83 @@ static void calcOpticalFlowSingleScaleSF(const Mat& prev,
|
||||
sum_e += e;
|
||||
min_e = std::min(min_e, e);
|
||||
}
|
||||
if (!mask.at<uchar>(r0, c0)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
int windows_square = (bottom_row_shift - top_row_shift + 1) *
|
||||
(right_col_shift - left_col_shift + 1);
|
||||
confidence.at<float>(r0, c0) = (windows_square == 0) ? 0
|
||||
: sum_e / windows_square - min_e;
|
||||
CV_Assert(confidence.at<float>(r0, c0) >= 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void calcOpticalFlowSingleScaleSF(const Mat& prev_extended,
|
||||
const Mat& next_extended,
|
||||
const Mat& mask,
|
||||
Mat& flow,
|
||||
int averaging_radius,
|
||||
int max_flow,
|
||||
float sigma_dist,
|
||||
float sigma_color) {
|
||||
const int averaging_radius_2 = averaging_radius << 1;
|
||||
const int rows = prev_extended.rows - averaging_radius_2;
|
||||
const int cols = prev_extended.cols - averaging_radius_2;
|
||||
|
||||
Mat weight_window(averaging_radius_2 + 1, averaging_radius_2 + 1, CV_32F);
|
||||
Mat space_weight_window(averaging_radius_2 + 1, averaging_radius_2 + 1, CV_32F);
|
||||
|
||||
wd(space_weight_window, averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_dist);
|
||||
|
||||
for (int r0 = 0; r0 < rows; ++r0) {
|
||||
for (int c0 = 0; c0 < cols; ++c0) {
|
||||
if (!mask.at<uchar>(r0, c0)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// TODO: do smth with this creepy staff
|
||||
Vec2f flow_at_point = flow.at<Vec2f>(r0, c0);
|
||||
int u0 = floor(flow_at_point[0] + 0.5);
|
||||
if (r0 + u0 < 0) { u0 = -r0; }
|
||||
if (r0 + u0 >= rows) { u0 = rows - 1 - r0; }
|
||||
int v0 = floor(flow_at_point[1] + 0.5);
|
||||
if (c0 + v0 < 0) { v0 = -c0; }
|
||||
if (c0 + v0 >= cols) { v0 = cols - 1 - c0; }
|
||||
|
||||
const int top_row_shift = -min(r0 + u0, max_flow);
|
||||
const int bottom_row_shift = min(rows - 1 - (r0 + u0), max_flow);
|
||||
const int left_col_shift = -min(c0 + v0, max_flow);
|
||||
const int right_col_shift = min(cols - 1 - (c0 + v0), max_flow);
|
||||
|
||||
float min_cost = DBL_MAX, best_u = u0, best_v = v0;
|
||||
|
||||
wc(prev_extended, weight_window, r0 + averaging_radius, c0 + averaging_radius,
|
||||
averaging_radius, averaging_radius, averaging_radius, averaging_radius, sigma_color);
|
||||
multiply(weight_window, space_weight_window, weight_window);
|
||||
|
||||
const int prev_extended_top_window_row = r0;
|
||||
const int prev_extended_left_window_col = c0;
|
||||
|
||||
for (int u = top_row_shift; u <= bottom_row_shift; ++u) {
|
||||
const int next_extended_top_window_row = r0 + u0 + u;
|
||||
for (int v = left_col_shift; v <= right_col_shift; ++v) {
|
||||
const int next_extended_left_window_col = c0 + v0 + v;
|
||||
|
||||
float cost = 0;
|
||||
for (int r = 0; r <= averaging_radius_2; ++r) {
|
||||
const Vec3b *prev_extended_window_row = prev_extended.ptr<Vec3b>(prev_extended_top_window_row + r);
|
||||
const Vec3b *next_extended_window_row = next_extended.ptr<Vec3b>(next_extended_top_window_row + r);
|
||||
const float* weight_window_row = weight_window.ptr<float>(r);
|
||||
for (int c = 0; c <= averaging_radius_2; ++c) {
|
||||
cost += weight_window_row[c] *
|
||||
dist(prev_extended_window_row[prev_extended_left_window_col + c],
|
||||
next_extended_window_row[next_extended_left_window_col + c]);
|
||||
}
|
||||
}
|
||||
// cost should be divided by sum(weight_window), but because
|
||||
// we interested only in min(cost) and sum(weight_window) is constant
|
||||
// for every point - we remove it
|
||||
|
||||
const int window_top_shift = min(r0, r0 + u + u0, averaging_radius);
|
||||
const int window_bottom_shift = min(rows - 1 - r0,
|
||||
rows - 1 - (r0 + u + u0),
|
||||
averaging_radius);
|
||||
const int window_left_shift = min(c0, c0 + v + v0, averaging_radius);
|
||||
const int window_right_shift = min(cols - 1 - c0,
|
||||
cols - 1 - (c0 + v + v0),
|
||||
averaging_radius);
|
||||
|
||||
const Range prev_row_range(r0 - window_top_shift, r0 + window_bottom_shift + 1);
|
||||
const Range prev_col_range(c0 - window_left_shift, c0 + window_right_shift + 1);
|
||||
|
||||
const Range next_row_range(r0 + u0 + u - window_top_shift,
|
||||
r0 + u0 + u + window_bottom_shift + 1);
|
||||
const Range next_col_range(c0 + v0 + v - window_left_shift,
|
||||
c0 + v0 + v + window_right_shift + 1);
|
||||
|
||||
|
||||
Mat diff2;
|
||||
Mat w;
|
||||
float w_sum;
|
||||
if (window_top_shift == averaging_radius &&
|
||||
window_bottom_shift == averaging_radius &&
|
||||
window_left_shift == averaging_radius &&
|
||||
window_right_shift == averaging_radius) {
|
||||
w = w_full_window;
|
||||
w_sum = w_full_window_sum;
|
||||
diff2 = diff_storage;
|
||||
dist(prev(prev_row_range, prev_col_range), next(next_row_range, next_col_range), diff2);
|
||||
} else {
|
||||
diff2 = diff_storage(Range(averaging_radius - window_top_shift,
|
||||
averaging_radius + 1 + window_bottom_shift),
|
||||
Range(averaging_radius - window_left_shift,
|
||||
averaging_radius + 1 + window_right_shift));
|
||||
|
||||
dist(prev(prev_row_range, prev_col_range), next(next_row_range, next_col_range), diff2);
|
||||
w = w_full_window(Range(averaging_radius - window_top_shift,
|
||||
averaging_radius + 1 + window_bottom_shift),
|
||||
Range(averaging_radius - window_left_shift,
|
||||
averaging_radius + 1 + window_right_shift));
|
||||
w_sum = sum(w)[0];
|
||||
}
|
||||
multiply(diff2, w, diff2);
|
||||
|
||||
const float cost = sum(diff2)[0] / w_sum;
|
||||
if (cost < min_cost) {
|
||||
min_cost = cost;
|
||||
best_u = u + u0;
|
||||
@ -267,14 +264,7 @@ static void calcOpticalFlowSingleScaleSF(const Mat& prev,
|
||||
}
|
||||
}
|
||||
}
|
||||
int windows_square = (max_row_shift - min_row_shift + 1) *
|
||||
(max_col_shift - min_col_shift + 1);
|
||||
confidence.at<float>(r0, c0) = (windows_square == 0) ? 0
|
||||
: sum_e / windows_square - min_e;
|
||||
CV_Assert(confidence.at<float>(r0, c0) >= 0); // TODO: remove it after testing
|
||||
if (mask.at<uchar>(r0, c0)) {
|
||||
flow.at<Vec2f>(r0, c0) = Vec2f(best_u, best_v);
|
||||
}
|
||||
flow.at<Vec2f>(r0, c0) = Vec2f(best_u, best_v);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -474,22 +464,22 @@ static void buildPyramidWithResizeMethod(Mat& src,
|
||||
}
|
||||
}
|
||||
|
||||
void calcOpticalFlowSF(Mat& from,
|
||||
Mat& to,
|
||||
Mat& resulted_flow,
|
||||
int layers,
|
||||
int averaging_block_size,
|
||||
int max_flow,
|
||||
double sigma_dist,
|
||||
double sigma_color,
|
||||
int postprocess_window,
|
||||
double sigma_dist_fix,
|
||||
double sigma_color_fix,
|
||||
double occ_thr,
|
||||
int upscale_averaging_radius,
|
||||
double upscale_sigma_dist,
|
||||
double upscale_sigma_color,
|
||||
double speed_up_thr) {
|
||||
CV_EXPORTS_W void calcOpticalFlowSF(Mat& from,
|
||||
Mat& to,
|
||||
Mat& resulted_flow,
|
||||
int layers,
|
||||
int averaging_radius,
|
||||
int max_flow,
|
||||
double sigma_dist,
|
||||
double sigma_color,
|
||||
int postprocess_window,
|
||||
double sigma_dist_fix,
|
||||
double sigma_color_fix,
|
||||
double occ_thr,
|
||||
int upscale_averaging_radius,
|
||||
double upscale_sigma_dist,
|
||||
double upscale_sigma_color,
|
||||
double speed_up_thr) {
|
||||
vector<Mat> pyr_from_images;
|
||||
vector<Mat> pyr_to_images;
|
||||
|
||||
@ -498,34 +488,43 @@ void calcOpticalFlowSF(Mat& from,
|
||||
|
||||
CV_Assert((int)pyr_from_images.size() == layers && (int)pyr_to_images.size() == layers);
|
||||
|
||||
Mat first_from_image = pyr_from_images[layers - 1];
|
||||
Mat first_to_image = pyr_to_images[layers - 1];
|
||||
Mat curr_from, curr_to, prev_from, prev_to;
|
||||
Mat curr_from_extended, curr_to_extended;
|
||||
|
||||
Mat mask = Mat::ones(first_from_image.rows, first_from_image.cols, CV_8U);
|
||||
Mat mask_inv = Mat::ones(first_from_image.rows, first_from_image.cols, CV_8U);
|
||||
curr_from = pyr_from_images[layers - 1];
|
||||
curr_to = pyr_to_images[layers - 1];
|
||||
|
||||
Mat flow(first_from_image.rows, first_from_image.cols, CV_32FC2);
|
||||
Mat flow_inv(first_to_image.rows, first_to_image.cols, CV_32FC2);
|
||||
copyMakeBorder(curr_from, curr_from_extended,
|
||||
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
|
||||
BORDER_DEFAULT);
|
||||
copyMakeBorder(curr_to, curr_to_extended,
|
||||
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
|
||||
BORDER_DEFAULT);
|
||||
|
||||
Mat mask = Mat::ones(curr_from.size(), CV_8U);
|
||||
Mat mask_inv = Mat::ones(curr_from.size(), CV_8U);
|
||||
|
||||
Mat flow(curr_from.size(), CV_32FC2);
|
||||
Mat flow_inv(curr_to.size(), CV_32FC2);
|
||||
|
||||
Mat confidence;
|
||||
Mat confidence_inv;
|
||||
|
||||
calcOpticalFlowSingleScaleSF(first_from_image,
|
||||
first_to_image,
|
||||
|
||||
calcOpticalFlowSingleScaleSF(curr_from_extended,
|
||||
curr_to_extended,
|
||||
mask,
|
||||
flow,
|
||||
confidence,
|
||||
averaging_block_size,
|
||||
averaging_radius,
|
||||
max_flow,
|
||||
sigma_dist,
|
||||
sigma_color);
|
||||
|
||||
calcOpticalFlowSingleScaleSF(first_to_image,
|
||||
first_from_image,
|
||||
calcOpticalFlowSingleScaleSF(curr_to_extended,
|
||||
curr_from_extended,
|
||||
mask_inv,
|
||||
flow_inv,
|
||||
confidence_inv,
|
||||
averaging_block_size,
|
||||
averaging_radius,
|
||||
max_flow,
|
||||
sigma_dist,
|
||||
sigma_color);
|
||||
@ -540,14 +539,21 @@ void calcOpticalFlowSF(Mat& from,
|
||||
occ_thr,
|
||||
confidence_inv);
|
||||
|
||||
Mat speed_up = Mat::zeros(first_from_image.rows, first_from_image.cols, CV_8U);
|
||||
Mat speed_up_inv = Mat::zeros(first_from_image.rows, first_from_image.cols, CV_8U);
|
||||
Mat speed_up = Mat::zeros(curr_from.size(), CV_8U);
|
||||
Mat speed_up_inv = Mat::zeros(curr_from.size(), CV_8U);
|
||||
|
||||
for (int curr_layer = layers - 2; curr_layer >= 0; --curr_layer) {
|
||||
const Mat curr_from = pyr_from_images[curr_layer];
|
||||
const Mat curr_to = pyr_to_images[curr_layer];
|
||||
const Mat prev_from = pyr_from_images[curr_layer + 1];
|
||||
const Mat prev_to = pyr_to_images[curr_layer + 1];
|
||||
curr_from = pyr_from_images[curr_layer];
|
||||
curr_to = pyr_to_images[curr_layer];
|
||||
prev_from = pyr_from_images[curr_layer + 1];
|
||||
prev_to = pyr_to_images[curr_layer + 1];
|
||||
|
||||
copyMakeBorder(curr_from, curr_from_extended,
|
||||
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
|
||||
BORDER_DEFAULT);
|
||||
copyMakeBorder(curr_to, curr_to_extended,
|
||||
averaging_radius, averaging_radius, averaging_radius, averaging_radius,
|
||||
BORDER_DEFAULT);
|
||||
|
||||
const int curr_rows = curr_from.rows;
|
||||
const int curr_cols = curr_from.cols;
|
||||
@ -555,7 +561,7 @@ void calcOpticalFlowSF(Mat& from,
|
||||
Mat new_speed_up, new_speed_up_inv;
|
||||
|
||||
selectPointsToRecalcFlow(flow,
|
||||
averaging_block_size,
|
||||
averaging_radius,
|
||||
speed_up_thr,
|
||||
curr_rows,
|
||||
curr_cols,
|
||||
@ -564,7 +570,7 @@ void calcOpticalFlowSF(Mat& from,
|
||||
mask);
|
||||
|
||||
selectPointsToRecalcFlow(flow_inv,
|
||||
averaging_block_size,
|
||||
averaging_radius,
|
||||
speed_up_thr,
|
||||
curr_rows,
|
||||
curr_cols,
|
||||
@ -593,22 +599,22 @@ void calcOpticalFlowSF(Mat& from,
|
||||
upscale_sigma_dist,
|
||||
upscale_sigma_color);
|
||||
|
||||
calcOpticalFlowSingleScaleSF(curr_from,
|
||||
curr_to,
|
||||
calcConfidence(curr_from, curr_to, flow, confidence, max_flow);
|
||||
calcOpticalFlowSingleScaleSF(curr_from_extended,
|
||||
curr_to_extended,
|
||||
mask,
|
||||
flow,
|
||||
confidence,
|
||||
averaging_block_size,
|
||||
averaging_radius,
|
||||
max_flow,
|
||||
sigma_dist,
|
||||
sigma_color);
|
||||
|
||||
calcOpticalFlowSingleScaleSF(curr_to,
|
||||
curr_from,
|
||||
calcConfidence(curr_to, curr_from, flow_inv, confidence_inv, max_flow);
|
||||
calcOpticalFlowSingleScaleSF(curr_to_extended,
|
||||
curr_from_extended,
|
||||
mask_inv,
|
||||
flow_inv,
|
||||
confidence_inv,
|
||||
averaging_block_size,
|
||||
averaging_radius,
|
||||
max_flow,
|
||||
sigma_dist,
|
||||
sigma_color);
|
||||
@ -616,11 +622,12 @@ void calcOpticalFlowSF(Mat& from,
|
||||
extrapolateFlow(flow, speed_up);
|
||||
extrapolateFlow(flow_inv, speed_up_inv);
|
||||
|
||||
//TODO: should we remove occlusions for the last stage?
|
||||
removeOcclusions(flow, flow_inv, occ_thr, confidence);
|
||||
removeOcclusions(flow_inv, flow, occ_thr, confidence_inv);
|
||||
}
|
||||
|
||||
crossBilateralFilter(flow, pyr_from_images[0], confidence, flow,
|
||||
crossBilateralFilter(flow, curr_from, confidence, flow,
|
||||
postprocess_window, sigma_color_fix, sigma_dist_fix);
|
||||
|
||||
GaussianBlur(flow, flow, Size(3, 3), 5);
|
||||
|
@ -51,6 +51,22 @@ using namespace std;
|
||||
#define UNKNOWN_FLOW_THRESH 1e9
|
||||
|
||||
namespace cv {
|
||||
/*
|
||||
template<class T>
|
||||
inline static T sqr(T t) {
|
||||
return t*t;
|
||||
}
|
||||
|
||||
static float dist(const Vec3b& p1, const Vec3b& p2) {
|
||||
return sqr(p1[0] - p2[0]) +
|
||||
sqr(p1[1] - p2[1]) +
|
||||
sqr(p1[2] - p2[2]);
|
||||
}
|
||||
|
||||
inline static float dist(const Vec2f& p1, const Vec2f& p2) {
|
||||
return sqr(p1[0] - p2[0]) +
|
||||
sqr(p1[1] - p2[1]);
|
||||
}*/
|
||||
|
||||
inline static float dist(const Vec3b& p1, const Vec3b& p2) {
|
||||
return (p1[0] - p2[0]) * (p1[0] - p2[0]) +
|
||||
|
Loading…
Reference in New Issue
Block a user