updated ORB: limit the number of output keypoints, use bi-linear interpolation between subsequent layers instead of much slower area-based interpolation between 0-th and i-th layers.

This commit is contained in:
Vadim Pisarevsky 2011-11-22 09:44:37 +00:00
parent ebc3043c86
commit 0c773ca931

View File

@ -618,14 +618,19 @@ ORB::ORB(size_t n_features, const CommonParams & detector_params) :
params_(detector_params), n_features_(n_features)
{
// fill the extractors and descriptors for the corresponding scales
int n_levels = (int)params_.n_levels_;
float factor = (float)(1.0 / params_.scale_factor_);
int n_desired_features_per_scale = n_features_;//cvRound(n_features / ((std::pow(factor, int(params_.n_levels_)) - 1) / (factor - 1)));
n_features_per_level_.resize(params_.n_levels_);
for (unsigned int level = 0; level < params_.n_levels_; level++)
float n_desired_features_per_scale = n_features_*(1 - factor)/(1 - (float)pow((double)factor, (double)n_levels));
n_features_per_level_.resize(n_levels);
int sum_n_features = 0;
for( int level = 0; level < n_levels-1; level++ )
{
n_features_per_level_[level] = n_desired_features_per_scale;
n_desired_features_per_scale = cvRound(n_desired_features_per_scale * factor);
n_features_per_level_[level] = cvRound(n_desired_features_per_scale);
sum_n_features += n_features_per_level_[level];
n_desired_features_per_scale *= factor;
}
n_features_per_level_[n_levels-1] = n_features - sum_n_features;
// Make sure we forget about what is too close to the boundary
//params_.edge_threshold_ = std::max(params_.edge_threshold_, params_.patch_size_/2 + kKernelWidth / 2 + 2);
@ -701,6 +706,30 @@ void ORB::operator()(const Mat &image, const Mat &mask, vector<KeyPoint> & keypo
this->operator ()(image, mask, keypoints, descriptors, !useProvidedKeypoints, true);
}
//takes keypoints and culls them by the response
static void cull(vector<KeyPoint>& keypoints, size_t n_points)
{
//this is only necessary if the keypoints size is greater than the number of desired points.
if (keypoints.size() > n_points)
{
if (n_points==0) {
keypoints.clear();
return;
}
//first use nth element to partition the keypoints into the best and worst.
std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), KeypointResponseGreater());
//this is the boundary response, and in the case of FAST may be ambigous
float ambiguous_response = keypoints[n_points - 1].response;
//use std::partition to grab all of the keypoints with the boundary response.
vector<KeyPoint>::const_iterator new_end =
std::partition(keypoints.begin() + n_points, keypoints.end(),
KeypointResponseGreaterThanThreshold(ambiguous_response));
//resize the keypoints, given this new end point. nth_element and partition reordered the points inplace
keypoints.resize(new_end - keypoints.begin());
}
}
/** Compute the ORB features and descriptors on an image
* @param img the image to compute the features and descriptors on
* @param mask the mask to apply
@ -764,11 +793,23 @@ void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & ke
// Compute the resized image
if (level != (int)params_.first_level_)
{
resize(image, image_pyramid[level], sz, scale, scale, INTER_AREA);
if (!mask.empty())
resize(mask, mask_pyramid[level], sz, scale, scale, INTER_AREA);
copyMakeBorder(image_pyramid[level], temp, border, border, border, border,
BORDER_REFLECT_101+BORDER_ISOLATED);
if( level < (int)params_.first_level_ )
{
resize(image, image_pyramid[level], sz, scale, scale, INTER_LINEAR);
if (!mask.empty())
resize(mask, mask_pyramid[level], sz, scale, scale, INTER_LINEAR);
copyMakeBorder(image_pyramid[level], temp, border, border, border, border,
BORDER_REFLECT_101+BORDER_ISOLATED);
}
else
{
float sf = params_.scale_factor_;
resize(image_pyramid[level-1], image_pyramid[level], sz, 1./sf, 1./sf, INTER_LINEAR);
if (!mask.empty())
resize(mask_pyramid[level-1], mask_pyramid[level], sz, 1./sf, 1./sf, INTER_LINEAR);
copyMakeBorder(image_pyramid[level], temp, border, border, border, border,
BORDER_REFLECT_101+BORDER_ISOLATED);
}
}
else
{
@ -787,8 +828,26 @@ void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & ke
// Pre-compute the keypoints (we keep the best over all scales, so this has to be done beforehand
vector < vector<KeyPoint> > all_keypoints;
if (do_keypoints)
{
// Get keypoints, those will be far enough from the border that no check will be required for the descriptor
computeKeyPoints(image_pyramid, mask_pyramid, all_keypoints);
// make sure we have the right number of keypoints keypoints
/*vector<KeyPoint> temp;
for (int level = 0; level < n_levels; ++level)
{
vector<KeyPoint>& keypoints = all_keypoints[level];
temp.insert(temp.end(), keypoints.begin(), keypoints.end());
keypoints.clear();
}
cull(temp, n_features_);
for (vector<KeyPoint>::iterator keypoint = temp.begin(),
keypoint_end = temp.end(); keypoint != keypoint_end; ++keypoint)
all_keypoints[keypoint->octave].push_back(*keypoint);*/
}
else
{
// Remove keypoints very close to the border
@ -798,10 +857,7 @@ void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & ke
all_keypoints.resize(n_levels);
for (vector<KeyPoint>::iterator keypoint = keypoints_in_out.begin(),
keypoint_end = keypoints_in_out.end(); keypoint != keypoint_end; ++keypoint)
{
Point2f pt = keypoint->pt;
all_keypoints[keypoint->octave].push_back(*keypoint);
}
// Make sure we rescale the coordinates
for (int level = 0; level < n_levels; ++level)
@ -843,8 +899,8 @@ void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & ke
offset += nkeypoints;
// preprocess the resized image
Mat& working_mat = image_pyramid[level];
boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101);
//GaussianBlur(working_mat, working_mat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
//boxFilter(working_mat, working_mat, working_mat.depth(), Size(5,5), Point(-1,-1), true, BORDER_REFLECT_101);
GaussianBlur(working_mat, working_mat, Size(7, 7), 2, 2, BORDER_REFLECT_101);
computeDescriptors(working_mat, Mat(), level, keypoints, desc);
}
@ -861,29 +917,6 @@ void ORB::operator()(const Mat &image_in, const Mat &mask, vector<KeyPoint> & ke
}
}
//takes keypoints and culls them by the response
static void cull(vector<KeyPoint>& keypoints, size_t n_points)
{
//this is only necessary if the keypoints size is greater than the number of desired points.
if (keypoints.size() > n_points)
{
if (n_points==0) {
keypoints.clear();
return;
}
//first use nth element to partition the keypoints into the best and worst.
std::nth_element(keypoints.begin(), keypoints.begin() + n_points, keypoints.end(), KeypointResponseGreater());
//this is the boundary response, and in the case of FAST may be ambigous
float ambiguous_response = keypoints[n_points - 1].response;
//use std::partition to grab all of the keypoints with the boundary response.
vector<KeyPoint>::const_iterator new_end =
std::partition(keypoints.begin() + n_points, keypoints.end(),
KeypointResponseGreaterThanThreshold(ambiguous_response));
//resize the keypoints, given this new end point. nth_element and partition reordered the points inplace
keypoints.resize(new_end - keypoints.begin());
}
}
/** Compute the ORB keypoints on an image
* @param image_pyramid the image pyramid to compute the features and descriptors on
* @param mask_pyramid the masks to apply at every level
@ -897,7 +930,8 @@ void ORB::computeKeyPoints(const vector<Mat>& image_pyramid,
for (int level = 0; level < (int)params_.n_levels_; ++level)
{
all_keypoints_out[level].reserve(n_features_per_level_[level]);
int n_features = n_features_per_level_[level];
all_keypoints_out[level].reserve(n_features*2);
vector<KeyPoint> & keypoints = all_keypoints_out[level];
@ -911,14 +945,14 @@ void ORB::computeKeyPoints(const vector<Mat>& image_pyramid,
if( params_.score_type_ == CommonParams::HARRIS_SCORE )
{
// Keep more points than necessary as FAST does not give amazing corners
cull(keypoints, 2 * n_features_per_level_[level]);
cull(keypoints, 2 * n_features);
// Compute the Harris cornerness (better scoring than FAST)
HarrisResponses(image_pyramid[level], keypoints, 7, HARRIS_K);
}
//cull to the final desired level, using the new Harris scores.
cull(keypoints, n_features_per_level_[level]);
//cull to the final desired level, using the new Harris scores or the original FAST scores.
cull(keypoints, n_features);
float sf = get_scale(params_, level);
@ -946,8 +980,8 @@ void ORB::computeOrientation(const Mat& image, const Mat&, unsigned int scale,
int half_patch_size = params_.patch_size_/2;
// Process each keypoint
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint
!= keypoint_end; ++keypoint)
for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
keypoint_end = keypoints.end(); keypoint != keypoint_end; ++keypoint)
{
keypoint->angle = IC_Angle(image, half_patch_size, keypoint->pt, u_max_);
}