mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 05:54:08 +08:00
Merge pull request #26573 from Abdurrahheem:ash/fix-gpt2-sample
Fix gpt2 sample #26573 This PR adds dynamic input support for `gpt2_inference.py` sample. Fixes #26518 Fixes #26517 ### Pull Request Readiness Checklist See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
ddfb9d1dc8
commit
0c774c94f9
@ -10,7 +10,7 @@ To export GPT-2 model to ONNX, you can use the following procedure:
|
||||
|
||||
1. Clone fork of Andrej Karpathy's GPT-2 repository:
|
||||
|
||||
git clone https://github.com/Abdurrahheem/build-nanogpt/tree/ash/export-gpt2-onnx
|
||||
git clone -b ash/export-gpt2-onnx-dynamic https://github.com/Abdurrahheem/build-nanogpt.git
|
||||
|
||||
2. Install the required dependencies:
|
||||
|
||||
@ -18,34 +18,33 @@ To export GPT-2 model to ONNX, you can use the following procedure:
|
||||
|
||||
3 Export the model to ONNX:
|
||||
|
||||
python export2onnx.py --promt=<Any-promt-you-want> --batch_size=<batch-size>
|
||||
python export2onnx.py --promt=<Any-promt-you-want>
|
||||
|
||||
|
||||
Run the script:
|
||||
1. Install the required dependencies:
|
||||
|
||||
pip install tiktoken==0.7.0
|
||||
pip install tiktoken==0.7.0 numpy tqdm
|
||||
|
||||
2. Run the script:
|
||||
|
||||
python gpt2_inference.py --model=<path-to-onnx-model> --max_seq_len=<max-output-lenght> --batch_size=<use-one-used-while-exportinh> --prompt=<use-promt-of-the-same-length-used-while-exporting>
|
||||
python gpt2_inference.py --model=<path-to-onnx-model> --prompt=<use-promt-of-the-same-length-used-while-exporting>
|
||||
'''
|
||||
|
||||
|
||||
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
import argparse
|
||||
import cv2 as cv
|
||||
from tqdm import tqdm
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser(description='Use this script to run GPT-2 inference in OpenCV',
|
||||
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--model', type=str, required=True, help='Path to GPT-2 model ONNX model file.')
|
||||
parser.add_argument("--max_seq_len", type=int, default=30, help="Number of tokens to continue.")
|
||||
parser.add_argument("--batch_size", type=int, default=5, help="Number of batches.")
|
||||
parser.add_argument("--prompt", type=str, default="Hello, I'm a language model,", help="Prompt to start with.")
|
||||
parser.add_argument("--max_seq_len", type=int, default=40, help="Number of tokens to continue.")
|
||||
parser.add_argument("--batch_size", type=int, default=1, help="Number of batches.")
|
||||
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
||||
return parser.parse_args()
|
||||
|
||||
@ -54,17 +53,21 @@ def stable_softmax(logits):
|
||||
return exp_logits / np.sum(exp_logits, axis=-1, keepdims=True)
|
||||
|
||||
|
||||
def gpt2_inference(net, tokens, max_length, num_return_sequences=5):
|
||||
def gpt2_inference(net, tokens, max_length, num_return_sequences=1):
|
||||
|
||||
print("Inferencing GPT-2 model...")
|
||||
x = np.array(tokens)
|
||||
x = np.tile(x, (num_return_sequences, 1))
|
||||
x = np.tile(x, (num_return_sequences, 1)).astype(np.int32)
|
||||
pos = np.arange(0, len(x), dtype=np.int32)
|
||||
|
||||
output_buffer = deepcopy(x)
|
||||
counter = x.shape[1]
|
||||
pbar = tqdm(total=max_length - counter, desc="Generating tokens")
|
||||
while counter < max_length:
|
||||
|
||||
net.setInput(x)
|
||||
net.setInputsNames(['input_ids', 'position_ids'])
|
||||
net.setInput(x, 'input_ids')
|
||||
net.setInput(pos, 'position_ids')
|
||||
|
||||
logits = net.forward()
|
||||
|
||||
# logits is assumed to be (B, seq_length, vocab_size) and needs to be the last token's logits
|
||||
@ -86,12 +89,14 @@ def gpt2_inference(net, tokens, max_length, num_return_sequences=5):
|
||||
|
||||
# Append to the sequence
|
||||
x = np.concatenate((x, sampled_indices), axis=1)
|
||||
x = x[:, 1:] ## issue due to fixes size window in opencv
|
||||
pos = np.arange(0, x.shape[1], dtype=np.int32) # shape (T)
|
||||
|
||||
output_buffer = np.concatenate((output_buffer, sampled_indices), axis=1)
|
||||
counter += 1
|
||||
pbar.update(1)
|
||||
|
||||
pbar.close()
|
||||
print("Inference done!")
|
||||
return output_buffer
|
||||
return x
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
@ -102,24 +107,13 @@ if __name__ == '__main__':
|
||||
prompt = args.prompt
|
||||
|
||||
net = cv.dnn.readNet(args.model)
|
||||
input_token_size = net.getLayerShapes([], 0, 0)[0][0][1]
|
||||
|
||||
enc = tiktoken.get_encoding('gpt2')
|
||||
tokens = enc.encode(prompt)
|
||||
|
||||
# Check if the prompt is of the same length as the input tokens
|
||||
# if not, pad the tokens else truncate the tokens
|
||||
if len(tokens) > input_token_size:
|
||||
tokens = tokens[:input_token_size]
|
||||
elif len(tokens) < input_token_size:
|
||||
tokens2pad = input_token_size - len(tokens)
|
||||
# append <space> token to the prompt
|
||||
tokens += [220] * tokens2pad
|
||||
|
||||
|
||||
output_buffer = gpt2_inference(net, tokens, max_length, num_return_sequences)
|
||||
output = gpt2_inference(net, tokens, max_length, num_return_sequences)
|
||||
|
||||
for i in range(num_return_sequences):
|
||||
tokens = output_buffer[i, :max_length].tolist()
|
||||
tokens = output[i].tolist()
|
||||
decoded = enc.decode(tokens)
|
||||
print(">>>>", decoded)
|
||||
print(">>>>", decoded)
|
||||
|
Loading…
Reference in New Issue
Block a user