mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
0cbaaba4b1
@ -129,9 +129,9 @@ endif()
|
||||
|
||||
if(INF_ENGINE_TARGET)
|
||||
if(NOT INF_ENGINE_RELEASE)
|
||||
message(WARNING "InferenceEngine version has not been set, 2020.2 will be used by default. Set INF_ENGINE_RELEASE variable if you experience build errors.")
|
||||
message(WARNING "InferenceEngine version has not been set, 2020.3 will be used by default. Set INF_ENGINE_RELEASE variable if you experience build errors.")
|
||||
endif()
|
||||
set(INF_ENGINE_RELEASE "2020020000" CACHE STRING "Force IE version, should be in form YYYYAABBCC (e.g. 2020.1.0.2 -> 2020010002)")
|
||||
set(INF_ENGINE_RELEASE "2020030000" CACHE STRING "Force IE version, should be in form YYYYAABBCC (e.g. 2020.1.0.2 -> 2020010002)")
|
||||
set_target_properties(${INF_ENGINE_TARGET} PROPERTIES
|
||||
INTERFACE_COMPILE_DEFINITIONS "HAVE_INF_ENGINE=1;INF_ENGINE_RELEASE=${INF_ENGINE_RELEASE}"
|
||||
)
|
||||
|
@ -79,9 +79,10 @@ get_mkl_version(${MKL_INCLUDE_DIRS}/mkl_version.h)
|
||||
|
||||
#determine arch
|
||||
if(CMAKE_CXX_SIZEOF_DATA_PTR EQUAL 8)
|
||||
set(MKL_X64 1)
|
||||
set(MKL_ARCH "intel64")
|
||||
|
||||
set(MKL_ARCH_LIST "intel64")
|
||||
if(MSVC)
|
||||
list(APPEND MKL_ARCH_LIST "win-x64")
|
||||
endif()
|
||||
include(CheckTypeSize)
|
||||
CHECK_TYPE_SIZE(int _sizeof_int)
|
||||
if (_sizeof_int EQUAL 4)
|
||||
@ -90,14 +91,19 @@ if(CMAKE_CXX_SIZEOF_DATA_PTR EQUAL 8)
|
||||
set(MKL_ARCH_SUFFIX "ilp64")
|
||||
endif()
|
||||
else()
|
||||
set(MKL_ARCH "ia32")
|
||||
set(MKL_ARCH_LIST "ia32")
|
||||
set(MKL_ARCH_SUFFIX "c")
|
||||
endif()
|
||||
|
||||
if(MKL_VERSION_STR VERSION_GREATER "11.3.0" OR MKL_VERSION_STR VERSION_EQUAL "11.3.0")
|
||||
set(mkl_lib_find_paths
|
||||
${MKL_ROOT_DIR}/lib
|
||||
${MKL_ROOT_DIR}/lib/${MKL_ARCH} ${MKL_ROOT_DIR}/../tbb/lib/${MKL_ARCH})
|
||||
${MKL_ROOT_DIR}/lib)
|
||||
foreach(MKL_ARCH ${MKL_ARCH_LIST})
|
||||
list(APPEND mkl_lib_find_paths
|
||||
${MKL_ROOT_DIR}/lib/${MKL_ARCH}
|
||||
${MKL_ROOT_DIR}/../tbb/lib/${MKL_ARCH}
|
||||
${MKL_ROOT_DIR}/${MKL_ARCH})
|
||||
endforeach()
|
||||
|
||||
set(mkl_lib_list "mkl_intel_${MKL_ARCH_SUFFIX}")
|
||||
|
||||
@ -121,7 +127,7 @@ endif()
|
||||
|
||||
set(MKL_LIBRARIES "")
|
||||
foreach(lib ${mkl_lib_list})
|
||||
find_library(${lib} ${lib} ${mkl_lib_find_paths})
|
||||
find_library(${lib} NAMES ${lib} ${lib}_dll HINTS ${mkl_lib_find_paths})
|
||||
mark_as_advanced(${lib})
|
||||
if(NOT ${lib})
|
||||
mkl_fail()
|
||||
|
@ -30,7 +30,7 @@ Installing CMake
|
||||
|
||||
-# Install the dmg package and launch it from Applications. That will give you the UI app of CMake
|
||||
|
||||
-# From the CMake app window, choose menu Tools --> Install For Command Line Use.
|
||||
-# From the CMake app window, choose menu Tools --> How to Install For Command Line Use. Then, follow the instructions from the pop-up there.
|
||||
|
||||
-# Install folder will be /usr/bin/ by default, submit it by choosing Install command line links.
|
||||
|
||||
@ -66,7 +66,7 @@ git clone https://github.com/opencv/opencv_contrib.git
|
||||
Building OpenCV from Source Using CMake
|
||||
---------------------------------------
|
||||
|
||||
-# Create a temporary directory, which we denote as `<cmake_build_dir>`, where you want to put
|
||||
-# Create a temporary directory, which we denote as `build_opencv`, where you want to put
|
||||
the generated Makefiles, project files as well the object files and output binaries and enter
|
||||
there.
|
||||
|
||||
@ -87,8 +87,8 @@ Building OpenCV from Source Using CMake
|
||||
|
||||
or cmake-gui
|
||||
|
||||
- set full path to OpenCV source code, e.g. `/home/user/opencv`
|
||||
- set full path to `<cmake_build_dir>`, e.g. `/home/user/build_opencv`
|
||||
- set the OpenCV source code path to, e.g. `/home/user/opencv`
|
||||
- set the binary build path to your CMake build directory, e.g. `/home/user/build_opencv`
|
||||
- set optional parameters
|
||||
- run: "Configure"
|
||||
- run: "Generate"
|
||||
|
@ -66,10 +66,18 @@
|
||||
namespace cv
|
||||
{
|
||||
|
||||
//! @addtogroup core_eigen
|
||||
/** @addtogroup core_eigen
|
||||
These functions are provided for OpenCV-Eigen interoperability. They convert `Mat`
|
||||
objects to corresponding `Eigen::Matrix` objects and vice-versa. Consult the [Eigen
|
||||
documentation](https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html) for
|
||||
information about the `Matrix` template type.
|
||||
|
||||
@note Using these functions requires the `Eigen/Dense` or similar header to be
|
||||
included before this header.
|
||||
*/
|
||||
//! @{
|
||||
|
||||
#ifdef OPENCV_EIGEN_TENSOR_SUPPORT
|
||||
#if defined(OPENCV_EIGEN_TENSOR_SUPPORT) || defined(CV_DOXYGEN)
|
||||
/** @brief Converts an Eigen::Tensor to a cv::Mat.
|
||||
|
||||
The method converts an Eigen::Tensor with shape (H x W x C) to a cv::Mat where:
|
||||
|
@ -2248,7 +2248,7 @@ struct Net::Impl : public detail::NetImplBase
|
||||
|
||||
auto ieInpNode = inputNodes[i].dynamicCast<InfEngineNgraphNode>();
|
||||
CV_Assert(oid < ieInpNode->node->get_output_size());
|
||||
#if INF_ENGINE_VER_MAJOR_GT(2020030000)
|
||||
#if INF_ENGINE_VER_MAJOR_GT(INF_ENGINE_RELEASE_2020_3)
|
||||
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(ieInpNode->node->get_output_as_single_output_node(oid)));
|
||||
#else
|
||||
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(ieInpNode->node->get_output_as_single_output_node(oid, false)));
|
||||
|
@ -82,7 +82,7 @@ public:
|
||||
return type_info;
|
||||
}
|
||||
|
||||
#if INF_ENGINE_VER_MAJOR_GT(2020020000)
|
||||
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_3)
|
||||
NgraphCustomOp(const ngraph::OutputVector& inputs,
|
||||
#else
|
||||
NgraphCustomOp(const ngraph::NodeVector& inputs,
|
||||
@ -112,7 +112,7 @@ public:
|
||||
|
||||
std::shared_ptr<ngraph::Node> copy_with_new_args(const ngraph::NodeVector& new_args) const override
|
||||
{
|
||||
#if INF_ENGINE_VER_MAJOR_GT(2020020000)
|
||||
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_3)
|
||||
return std::make_shared<NgraphCustomOp>(ngraph::as_output_vector(new_args), params);
|
||||
#else
|
||||
return std::make_shared<NgraphCustomOp>(new_args, params);
|
||||
@ -239,7 +239,9 @@ private:
|
||||
class InfEngineNgraphExtension : public InferenceEngine::IExtension
|
||||
{
|
||||
public:
|
||||
#if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2020_2)
|
||||
virtual void SetLogCallback(InferenceEngine::IErrorListener&) noexcept {}
|
||||
#endif
|
||||
virtual void Unload() noexcept {}
|
||||
virtual void Release() noexcept {}
|
||||
virtual void GetVersion(const InferenceEngine::Version*&) const noexcept {}
|
||||
@ -283,7 +285,7 @@ InfEngineNgraphNode::InfEngineNgraphNode(const std::vector<Ptr<BackendNode> >& n
|
||||
{"internals", shapesToStr(internals)}
|
||||
};
|
||||
|
||||
#if INF_ENGINE_VER_MAJOR_GT(2020020000)
|
||||
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2020_3)
|
||||
ngraph::OutputVector inp_nodes;
|
||||
#else
|
||||
ngraph::NodeVector inp_nodes;
|
||||
|
@ -25,10 +25,11 @@
|
||||
#define INF_ENGINE_RELEASE_2019R3 2019030000
|
||||
#define INF_ENGINE_RELEASE_2020_1 2020010000
|
||||
#define INF_ENGINE_RELEASE_2020_2 2020020000
|
||||
#define INF_ENGINE_RELEASE_2020_3 2020030000
|
||||
|
||||
#ifndef INF_ENGINE_RELEASE
|
||||
#warning("IE version have not been provided via command-line. Using 2020.2 by default")
|
||||
#define INF_ENGINE_RELEASE INF_ENGINE_RELEASE_2020_2
|
||||
#warning("IE version have not been provided via command-line. Using 2020.3 by default")
|
||||
#define INF_ENGINE_RELEASE INF_ENGINE_RELEASE_2020_3
|
||||
#endif
|
||||
|
||||
#define INF_ENGINE_VER_MAJOR_GT(ver) (((INF_ENGINE_RELEASE) / 10000) > ((ver) / 10000))
|
||||
@ -226,7 +227,9 @@ private:
|
||||
class InfEngineExtension : public InferenceEngine::IExtension
|
||||
{
|
||||
public:
|
||||
#if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2020_2)
|
||||
virtual void SetLogCallback(InferenceEngine::IErrorListener&) noexcept {}
|
||||
#endif
|
||||
virtual void Unload() noexcept {}
|
||||
virtual void Release() noexcept {}
|
||||
virtual void GetVersion(const InferenceEngine::Version*&) const noexcept {}
|
||||
|
@ -1,25 +1,81 @@
|
||||
'''
|
||||
Text detection model: https://github.com/argman/EAST
|
||||
Download link: https://www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1
|
||||
Text recognition model taken from here: https://github.com/meijieru/crnn.pytorch
|
||||
How to convert from pb to onnx:
|
||||
Using classes from here: https://github.com/meijieru/crnn.pytorch/blob/master/models/crnn.py
|
||||
import torch
|
||||
import models.crnn as CRNN
|
||||
model = CRNN(32, 1, 37, 256)
|
||||
model.load_state_dict(torch.load('crnn.pth'))
|
||||
dummy_input = torch.randn(1, 1, 32, 100)
|
||||
torch.onnx.export(model, dummy_input, "crnn.onnx", verbose=True)
|
||||
'''
|
||||
|
||||
|
||||
# Import required modules
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
import math
|
||||
import argparse
|
||||
|
||||
############ Add argument parser for command line arguments ############
|
||||
parser = argparse.ArgumentParser(description='Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)')
|
||||
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
||||
parser.add_argument('--model', required=True,
|
||||
help='Path to a binary .pb file of model contains trained weights.')
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of "
|
||||
"EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)"
|
||||
"The OCR model can be obtained from converting the pretrained CRNN model to .onnx format from the github repository https://github.com/meijieru/crnn.pytorch")
|
||||
parser.add_argument('--input',
|
||||
help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
||||
parser.add_argument('--model', '-m', required=True,
|
||||
help='Path to a binary .pb file contains trained detector network.')
|
||||
parser.add_argument('--ocr', default="crnn.onnx",
|
||||
help="Path to a binary .pb or .onnx file contains trained recognition network", )
|
||||
parser.add_argument('--width', type=int, default=320,
|
||||
help='Preprocess input image by resizing to a specific width. It should be multiple by 32.')
|
||||
parser.add_argument('--height',type=int, default=320,
|
||||
parser.add_argument('--height', type=int, default=320,
|
||||
help='Preprocess input image by resizing to a specific height. It should be multiple by 32.')
|
||||
parser.add_argument('--thr',type=float, default=0.5,
|
||||
parser.add_argument('--thr', type=float, default=0.5,
|
||||
help='Confidence threshold.')
|
||||
parser.add_argument('--nms',type=float, default=0.4,
|
||||
parser.add_argument('--nms', type=float, default=0.4,
|
||||
help='Non-maximum suppression threshold.')
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
############ Utility functions ############
|
||||
def decode(scores, geometry, scoreThresh):
|
||||
|
||||
def fourPointsTransform(frame, vertices):
|
||||
vertices = np.asarray(vertices)
|
||||
outputSize = (100, 32)
|
||||
targetVertices = np.array([
|
||||
[0, outputSize[1] - 1],
|
||||
[0, 0],
|
||||
[outputSize[0] - 1, 0],
|
||||
[outputSize[0] - 1, outputSize[1] - 1]], dtype="float32")
|
||||
|
||||
rotationMatrix = cv.getPerspectiveTransform(vertices, targetVertices)
|
||||
result = cv.warpPerspective(frame, rotationMatrix, outputSize)
|
||||
return result
|
||||
|
||||
|
||||
def decodeText(scores):
|
||||
text = ""
|
||||
alphabet = "0123456789abcdefghijklmnopqrstuvwxyz"
|
||||
for i in range(scores.shape[0]):
|
||||
c = np.argmax(scores[i][0])
|
||||
if c != 0:
|
||||
text += alphabet[c - 1]
|
||||
else:
|
||||
text += '-'
|
||||
|
||||
# adjacent same letters as well as background text must be removed to get the final output
|
||||
char_list = []
|
||||
for i in range(len(text)):
|
||||
if text[i] != '-' and (not (i > 0 and text[i] == text[i - 1])):
|
||||
char_list.append(text[i])
|
||||
return ''.join(char_list)
|
||||
|
||||
|
||||
def decodeBoundingBoxes(scores, geometry, scoreThresh):
|
||||
detections = []
|
||||
confidences = []
|
||||
|
||||
@ -47,7 +103,7 @@ def decode(scores, geometry, scoreThresh):
|
||||
score = scoresData[x]
|
||||
|
||||
# If score is lower than threshold score, move to next x
|
||||
if(score < scoreThresh):
|
||||
if (score < scoreThresh):
|
||||
continue
|
||||
|
||||
# Calculate offset
|
||||
@ -66,24 +122,27 @@ def decode(scores, geometry, scoreThresh):
|
||||
|
||||
# Find points for rectangle
|
||||
p1 = (-sinA * h + offset[0], -cosA * h + offset[1])
|
||||
p3 = (-cosA * w + offset[0], sinA * w + offset[1])
|
||||
center = (0.5*(p1[0]+p3[0]), 0.5*(p1[1]+p3[1]))
|
||||
detections.append((center, (w,h), -1*angle * 180.0 / math.pi))
|
||||
p3 = (-cosA * w + offset[0], sinA * w + offset[1])
|
||||
center = (0.5 * (p1[0] + p3[0]), 0.5 * (p1[1] + p3[1]))
|
||||
detections.append((center, (w, h), -1 * angle * 180.0 / math.pi))
|
||||
confidences.append(float(score))
|
||||
|
||||
# Return detections and confidences
|
||||
return [detections, confidences]
|
||||
|
||||
|
||||
def main():
|
||||
# Read and store arguments
|
||||
confThreshold = args.thr
|
||||
nmsThreshold = args.nms
|
||||
inpWidth = args.width
|
||||
inpHeight = args.height
|
||||
model = args.model
|
||||
modelDetector = args.model
|
||||
modelRecognition = args.ocr
|
||||
|
||||
# Load network
|
||||
net = cv.dnn.readNet(model)
|
||||
detector = cv.dnn.readNet(modelDetector)
|
||||
recognizer = cv.dnn.readNet(modelRecognition)
|
||||
|
||||
# Create a new named window
|
||||
kWinName = "EAST: An Efficient and Accurate Scene Text Detector"
|
||||
@ -95,6 +154,7 @@ def main():
|
||||
# Open a video file or an image file or a camera stream
|
||||
cap = cv.VideoCapture(args.input if args.input else 0)
|
||||
|
||||
tickmeter = cv.TickMeter()
|
||||
while cv.waitKey(1) < 0:
|
||||
# Read frame
|
||||
hasFrame, frame = cap.read()
|
||||
@ -111,19 +171,20 @@ def main():
|
||||
# Create a 4D blob from frame.
|
||||
blob = cv.dnn.blobFromImage(frame, 1.0, (inpWidth, inpHeight), (123.68, 116.78, 103.94), True, False)
|
||||
|
||||
# Run the model
|
||||
net.setInput(blob)
|
||||
outs = net.forward(outNames)
|
||||
t, _ = net.getPerfProfile()
|
||||
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
|
||||
# Run the detection model
|
||||
detector.setInput(blob)
|
||||
|
||||
tickmeter.start()
|
||||
outs = detector.forward(outNames)
|
||||
tickmeter.stop()
|
||||
|
||||
# Get scores and geometry
|
||||
scores = outs[0]
|
||||
geometry = outs[1]
|
||||
[boxes, confidences] = decode(scores, geometry, confThreshold)
|
||||
[boxes, confidences] = decodeBoundingBoxes(scores, geometry, confThreshold)
|
||||
|
||||
# Apply NMS
|
||||
indices = cv.dnn.NMSBoxesRotated(boxes, confidences, confThreshold,nmsThreshold)
|
||||
indices = cv.dnn.NMSBoxesRotated(boxes, confidences, confThreshold, nmsThreshold)
|
||||
for i in indices:
|
||||
# get 4 corners of the rotated rect
|
||||
vertices = cv.boxPoints(boxes[i[0]])
|
||||
@ -131,16 +192,40 @@ def main():
|
||||
for j in range(4):
|
||||
vertices[j][0] *= rW
|
||||
vertices[j][1] *= rH
|
||||
|
||||
|
||||
# get cropped image using perspective transform
|
||||
if modelRecognition:
|
||||
cropped = fourPointsTransform(frame, vertices)
|
||||
cropped = cv.cvtColor(cropped, cv.COLOR_BGR2GRAY)
|
||||
|
||||
# Create a 4D blob from cropped image
|
||||
blob = cv.dnn.blobFromImage(cropped, size=(100, 32), mean=127.5, scalefactor=1 / 127.5)
|
||||
recognizer.setInput(blob)
|
||||
|
||||
# Run the recognition model
|
||||
tickmeter.start()
|
||||
result = recognizer.forward()
|
||||
tickmeter.stop()
|
||||
|
||||
# decode the result into text
|
||||
wordRecognized = decodeText(result)
|
||||
cv.putText(frame, wordRecognized, (int(vertices[1][0]), int(vertices[1][1])), cv.FONT_HERSHEY_SIMPLEX,
|
||||
0.5, (255, 0, 0))
|
||||
|
||||
for j in range(4):
|
||||
p1 = (vertices[j][0], vertices[j][1])
|
||||
p2 = (vertices[(j + 1) % 4][0], vertices[(j + 1) % 4][1])
|
||||
cv.line(frame, p1, p2, (0, 255, 0), 1)
|
||||
|
||||
# Put efficiency information
|
||||
label = 'Inference time: %.2f ms' % (tickmeter.getTimeMilli())
|
||||
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
|
||||
|
||||
# Display the frame
|
||||
cv.imshow(kWinName,frame)
|
||||
cv.imshow(kWinName, frame)
|
||||
tickmeter.reset()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user