mirror of
https://github.com/opencv/opencv.git
synced 2025-01-23 10:03:11 +08:00
Merge pull request #509 from taka-no-me:fix_docs_master
This commit is contained in:
commit
0ccdc5b4af
@ -38,7 +38,7 @@ doc_signatures_whitelist = [
|
|||||||
"CvArr", "CvFileStorage",
|
"CvArr", "CvFileStorage",
|
||||||
# other
|
# other
|
||||||
"InputArray", "OutputArray",
|
"InputArray", "OutputArray",
|
||||||
] + ["CvSubdiv2D", "CvQuadEdge2D", "CvSubdiv2DPoint", "cvDrawContours"]
|
]
|
||||||
|
|
||||||
defines = ["cvGraphEdgeIdx", "cvFree", "CV_Assert", "cvSqrt", "cvGetGraphVtx", "cvGraphVtxIdx",
|
defines = ["cvGraphEdgeIdx", "cvFree", "CV_Assert", "cvSqrt", "cvGetGraphVtx", "cvGraphVtxIdx",
|
||||||
"cvCaptureFromFile", "cvCaptureFromCAM", "cvCalcBackProjectPatch", "cvCalcBackProject",
|
"cvCaptureFromFile", "cvCaptureFromCAM", "cvCalcBackProjectPatch", "cvCalcBackProject",
|
||||||
@ -156,9 +156,10 @@ def formatSignature(s):
|
|||||||
argtype = re.sub(r"\s+(\*|&)$", "\\1", arg[0])
|
argtype = re.sub(r"\s+(\*|&)$", "\\1", arg[0])
|
||||||
bidx = argtype.find('[')
|
bidx = argtype.find('[')
|
||||||
if bidx < 0:
|
if bidx < 0:
|
||||||
_str += argtype + " "
|
_str += argtype
|
||||||
else:
|
else:
|
||||||
_srt += argtype[:bidx]
|
_str += argtype[:bidx]
|
||||||
|
_str += " "
|
||||||
if arg[1]:
|
if arg[1]:
|
||||||
_str += arg[1]
|
_str += arg[1]
|
||||||
else:
|
else:
|
||||||
@ -326,6 +327,7 @@ def process_module(module, path):
|
|||||||
flookup[fn[0]] = flookup_entry
|
flookup[fn[0]] = flookup_entry
|
||||||
|
|
||||||
if do_python_crosscheck:
|
if do_python_crosscheck:
|
||||||
|
pyclsnamespaces = ["cv." + x[3:].replace(".", "_") for x in clsnamespaces]
|
||||||
for name, doc in rst.iteritems():
|
for name, doc in rst.iteritems():
|
||||||
decls = doc.get("decls")
|
decls = doc.get("decls")
|
||||||
if not decls:
|
if not decls:
|
||||||
@ -394,7 +396,7 @@ def process_module(module, path):
|
|||||||
pname = signature[1][4:signature[1].find('(')]
|
pname = signature[1][4:signature[1].find('(')]
|
||||||
cvname = "cv." + pname
|
cvname = "cv." + pname
|
||||||
parent = None
|
parent = None
|
||||||
for cl in clsnamespaces:
|
for cl in pyclsnamespaces:
|
||||||
if cvname.startswith(cl + "."):
|
if cvname.startswith(cl + "."):
|
||||||
if cl.startswith(parent or ""):
|
if cl.startswith(parent or ""):
|
||||||
parent = cl
|
parent = cl
|
||||||
|
@ -94,7 +94,7 @@ Code
|
|||||||
* Loads an image
|
* Loads an image
|
||||||
* Convert the original to HSV format and separate only *Hue* channel to be used for the Histogram (using the OpenCV function :mix_channels:`mixChannels <>`)
|
* Convert the original to HSV format and separate only *Hue* channel to be used for the Histogram (using the OpenCV function :mix_channels:`mixChannels <>`)
|
||||||
* Let the user to enter the number of bins to be used in the calculation of the histogram.
|
* Let the user to enter the number of bins to be used in the calculation of the histogram.
|
||||||
* Calculate the histogram (and update it if the bins change) and the backprojection of the same image.
|
* Calculate the histogram (and update it if the bins change) and the backprojection of the same image.
|
||||||
* Display the backprojection and the histogram in windows.
|
* Display the backprojection and the histogram in windows.
|
||||||
|
|
||||||
* **Downloadable code**:
|
* **Downloadable code**:
|
||||||
|
File diff suppressed because one or more lines are too long
@ -685,7 +685,7 @@ findEssentialMat
|
|||||||
------------------
|
------------------
|
||||||
Calculates an essential matrix from the corresponding points in two images.
|
Calculates an essential matrix from the corresponding points in two images.
|
||||||
|
|
||||||
.. ocv:function:: Mat findEssentialMat( InputArray points1, InputArray points2, double focal = 1.0, Point2d pp = Point2d(0, 0), int method = FM_RANSAC, double prob = 0.999, double threshold = 1.0, OutputArray mask = noArray() )
|
.. ocv:function:: Mat findEssentialMat( InputArray points1, InputArray points2, double focal=1.0, Point2d pp=Point2d(0, 0), int method=CV_RANSAC, double prob=0.999, double threshold=1.0, OutputArray mask=noArray() )
|
||||||
|
|
||||||
:param points1: Array of ``N`` ``(N >= 5)`` 2D points from the first image. The point coordinates should be floating-point (single or double precision).
|
:param points1: Array of ``N`` ``(N >= 5)`` 2D points from the first image. The point coordinates should be floating-point (single or double precision).
|
||||||
|
|
||||||
|
@ -4,24 +4,24 @@ Command Line Parser
|
|||||||
.. highlight:: cpp
|
.. highlight:: cpp
|
||||||
|
|
||||||
CommandLineParser
|
CommandLineParser
|
||||||
--------
|
-----------------
|
||||||
.. ocv:class:: CommandLineParser
|
.. ocv:class:: CommandLineParser
|
||||||
|
|
||||||
The CommandLineParser class is designed for command line arguments parsing
|
The CommandLineParser class is designed for command line arguments parsing
|
||||||
|
|
||||||
|
|
||||||
.. ocv:function:: CommandLineParser::CommandLineParser(int argc, const char * const argv[], const std::string keys)
|
.. ocv:function:: CommandLineParser::CommandLineParser( int argc, const char* const argv[], const string& keys )
|
||||||
|
|
||||||
:param argc:
|
:param argc:
|
||||||
:param argv:
|
:param argv:
|
||||||
:param keys:
|
:param keys:
|
||||||
|
|
||||||
.. ocv:function:: T CommandLineParser::get<T>(const std::string& name, bool space_delete = true)
|
.. ocv:function:: template<typename T> T CommandLineParser::get<T>(const std::string& name, bool space_delete = true)
|
||||||
|
|
||||||
:param name:
|
:param name:
|
||||||
:param space_delete:
|
:param space_delete:
|
||||||
|
|
||||||
.. ocv:function:: T CommandLineParser::get<T>(int index, bool space_delete = true)
|
.. ocv:function:: template<typename T> T CommandLineParser::get<T>(int index, bool space_delete = true)
|
||||||
|
|
||||||
:param index:
|
:param index:
|
||||||
:param space_delete:
|
:param space_delete:
|
||||||
@ -33,7 +33,7 @@ The CommandLineParser class is designed for command line arguments parsing
|
|||||||
.. ocv:function:: bool CommandLineParser::check()
|
.. ocv:function:: bool CommandLineParser::check()
|
||||||
|
|
||||||
|
|
||||||
.. ocv:function:: void CommandLineParser::about(std::string message)
|
.. ocv:function:: void CommandLineParser::about( const string& message )
|
||||||
|
|
||||||
:param message:
|
:param message:
|
||||||
|
|
||||||
|
@ -692,7 +692,7 @@ cvarrToMat
|
|||||||
----------
|
----------
|
||||||
Converts ``CvMat``, ``IplImage`` , or ``CvMatND`` to ``Mat``.
|
Converts ``CvMat``, ``IplImage`` , or ``CvMatND`` to ``Mat``.
|
||||||
|
|
||||||
.. ocv:function:: Mat cvarrToMat( const CvArr* arr, bool copyData=false, bool allowND=true, int coiMode=0 )
|
.. ocv:function:: Mat cvarrToMat( const CvArr* arr, bool copyData=false, bool allowND=true, int coiMode=0, AutoBuffer<double>* buf=0 )
|
||||||
|
|
||||||
:param arr: input ``CvMat``, ``IplImage`` , or ``CvMatND``.
|
:param arr: input ``CvMat``, ``IplImage`` , or ``CvMatND``.
|
||||||
|
|
||||||
|
@ -7,7 +7,8 @@ FAST
|
|||||||
----
|
----
|
||||||
Detects corners using the FAST algorithm
|
Detects corners using the FAST algorithm
|
||||||
|
|
||||||
.. ocv:function:: void FAST( InputArray image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression=true, type=FastFeatureDetector::TYPE_9_16 )
|
.. ocv:function:: void FAST( InputArray image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression=true )
|
||||||
|
.. ocv:function:: void FAST( InputArray image, vector<KeyPoint>& keypoints, int threshold, bool nonmaxSupression, int type )
|
||||||
|
|
||||||
:param image: grayscale image where keypoints (corners) are detected.
|
:param image: grayscale image where keypoints (corners) are detected.
|
||||||
|
|
||||||
|
@ -703,14 +703,10 @@ Calculates histogram for one channel 8-bit image.
|
|||||||
|
|
||||||
.. ocv:function:: void gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null())
|
.. ocv:function:: void gpu::calcHist(const GpuMat& src, GpuMat& hist, Stream& stream = Stream::Null())
|
||||||
|
|
||||||
.. ocv:function:: void gpu::calcHist(const GpuMat& src, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null())
|
|
||||||
|
|
||||||
:param src: Source image.
|
:param src: Source image.
|
||||||
|
|
||||||
:param hist: Destination histogram with one row, 256 columns, and the ``CV_32SC1`` type.
|
:param hist: Destination histogram with one row, 256 columns, and the ``CV_32SC1`` type.
|
||||||
|
|
||||||
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes).
|
|
||||||
|
|
||||||
:param stream: Stream for the asynchronous version.
|
:param stream: Stream for the asynchronous version.
|
||||||
|
|
||||||
|
|
||||||
@ -721,8 +717,6 @@ Equalizes the histogram of a grayscale image.
|
|||||||
|
|
||||||
.. ocv:function:: void gpu::equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null())
|
.. ocv:function:: void gpu::equalizeHist(const GpuMat& src, GpuMat& dst, Stream& stream = Stream::Null())
|
||||||
|
|
||||||
.. ocv:function:: void gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, Stream& stream = Stream::Null())
|
|
||||||
|
|
||||||
.. ocv:function:: void gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null())
|
.. ocv:function:: void gpu::equalizeHist(const GpuMat& src, GpuMat& dst, GpuMat& hist, GpuMat& buf, Stream& stream = Stream::Null())
|
||||||
|
|
||||||
:param src: Source image.
|
:param src: Source image.
|
||||||
|
@ -220,10 +220,6 @@ After each weak classifier evaluation, the sample trace at the point :math:`t` i
|
|||||||
|
|
||||||
The sample has been rejected if it fall rejection threshold. So stageless cascade allows to reject not-object sample as soon as possible. Another meaning of the sample trace is a confidence with that sample recognized as desired object. At each :math:`t` that confidence depend on all previous weak classifier. This feature of soft cascade is resulted in more accurate detection. The original formulation of soft cascade can be found in [BJ05]_.
|
The sample has been rejected if it fall rejection threshold. So stageless cascade allows to reject not-object sample as soon as possible. Another meaning of the sample trace is a confidence with that sample recognized as desired object. At each :math:`t` that confidence depend on all previous weak classifier. This feature of soft cascade is resulted in more accurate detection. The original formulation of soft cascade can be found in [BJ05]_.
|
||||||
|
|
||||||
.. [BJ05] Lubomir Bourdev and Jonathan Brandt. tRobust Object Detection Via Soft Cascade. IEEE CVPR, 2005.
|
|
||||||
.. [BMTG12] Rodrigo Benenson, Markus Mathias, Radu Timofte and Luc Van Gool. Pedestrian detection at 100 frames per second. IEEE CVPR, 2012.
|
|
||||||
|
|
||||||
|
|
||||||
gpu::SCascade
|
gpu::SCascade
|
||||||
-----------------------------------------------
|
-----------------------------------------------
|
||||||
.. ocv:class:: gpu::SCascade : public Algorithm
|
.. ocv:class:: gpu::SCascade : public Algorithm
|
||||||
|
@ -881,7 +881,7 @@ CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circ
|
|||||||
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
|
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
|
||||||
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
|
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
|
||||||
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
|
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
|
||||||
class CV_EXPORTS GeneralizedHough_GPU : public Algorithm
|
class CV_EXPORTS GeneralizedHough_GPU : public cv::Algorithm
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
static Ptr<GeneralizedHough_GPU> create(int method);
|
static Ptr<GeneralizedHough_GPU> create(int method);
|
||||||
@ -1554,7 +1554,7 @@ protected:
|
|||||||
};
|
};
|
||||||
|
|
||||||
// Implementation of soft (stage-less) cascaded detector.
|
// Implementation of soft (stage-less) cascaded detector.
|
||||||
class CV_EXPORTS SCascade : public Algorithm
|
class CV_EXPORTS SCascade : public cv::Algorithm
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
#/usr/bin/env python
|
#/usr/bin/env python
|
||||||
|
|
||||||
import os, sys, re, string, fnmatch
|
import os, sys, re, string, fnmatch
|
||||||
allmodules = ["core", "flann", "imgproc", "ml", "highgui", "video", "features2d", "calib3d", "objdetect", "legacy", "contrib", "gpu", "androidcamera", "java", "python", "stitching", "ts", "photo", "nonfree", "videostab", "ocl"]
|
allmodules = ["core", "flann", "imgproc", "ml", "highgui", "video", "features2d", "calib3d", "objdetect", "legacy", "contrib", "gpu", "androidcamera", "java", "python", "stitching", "ts", "photo", "nonfree", "videostab", "ocl", "softcascade"]
|
||||||
verbose = False
|
verbose = False
|
||||||
show_warnings = True
|
show_warnings = True
|
||||||
show_errors = True
|
show_errors = True
|
||||||
|
@ -25,37 +25,37 @@ The sample has been rejected if it fall rejection threshold. So stageless cascad
|
|||||||
.. [BMTG12] Rodrigo Benenson, Markus Mathias, Radu Timofte and Luc Van Gool. Pedestrian detection at 100 frames per second. IEEE CVPR, 2012.
|
.. [BMTG12] Rodrigo Benenson, Markus Mathias, Radu Timofte and Luc Van Gool. Pedestrian detection at 100 frames per second. IEEE CVPR, 2012.
|
||||||
|
|
||||||
|
|
||||||
Detector
|
softcascade::Detector
|
||||||
-------------------
|
---------------------
|
||||||
.. ocv:class:: Detector
|
.. ocv:class:: softcascade::Detector : public Algorithm
|
||||||
|
|
||||||
Implementation of soft (stageless) cascaded detector. ::
|
Implementation of soft (stageless) cascaded detector. ::
|
||||||
|
|
||||||
class CV_EXPORTS_W Detector : public Algorithm
|
class Detector : public Algorithm
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
|
||||||
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT};
|
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT};
|
||||||
|
|
||||||
CV_WRAP Detector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1);
|
Detector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1);
|
||||||
CV_WRAP virtual ~Detector();
|
virtual ~Detector();
|
||||||
cv::AlgorithmInfo* info() const;
|
cv::AlgorithmInfo* info() const;
|
||||||
CV_WRAP virtual bool load(const FileNode& fileNode);
|
virtual bool load(const FileNode& fileNode);
|
||||||
CV_WRAP virtual void read(const FileNode& fileNode);
|
virtual void read(const FileNode& fileNode);
|
||||||
virtual void detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const;
|
virtual void detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const;
|
||||||
CV_WRAP virtual void detect(InputArray image, InputArray rois, CV_OUT OutputArray rects, CV_OUT OutputArray confs) const;
|
virtual void detect(InputArray image, InputArray rois, CV_OUT OutputArray rects, CV_OUT OutputArray confs) const;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Detector::Detector
|
softcascade::Detector::Detector
|
||||||
----------------------------------------
|
----------------------------------------
|
||||||
An empty cascade will be created.
|
An empty cascade will be created.
|
||||||
|
|
||||||
.. ocv:function:: Detector::Detector(float minScale = 0.4f, float maxScale = 5.f, int scales = 55, int rejCriteria = 1)
|
.. ocv:function:: softcascade::Detector::Detector( double minScale=0.4, double maxScale=5., int scales=55, int rejCriteria=1 )
|
||||||
|
|
||||||
.. ocv:pyfunction:: cv2.Detector.Detector(minScale[, maxScale[, scales[, rejCriteria]]]) -> cascade
|
.. ocv:pyfunction:: cv2.softcascade_Detector([minScale[, maxScale[, scales[, rejCriteria]]]]) -> <softcascade_Detector object>
|
||||||
|
|
||||||
:param minScale: a minimum scale relative to the original size of the image on which cascade will be applied.
|
:param minScale: a minimum scale relative to the original size of the image on which cascade will be applied.
|
||||||
|
|
||||||
@ -67,35 +67,35 @@ An empty cascade will be created.
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
Detector::~Detector
|
softcascade::Detector::~Detector
|
||||||
-----------------------------------------
|
-----------------------------------------
|
||||||
Destructor for Detector.
|
Destructor for Detector.
|
||||||
|
|
||||||
.. ocv:function:: Detector::~Detector()
|
.. ocv:function:: softcascade::Detector::~Detector()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Detector::load
|
softcascade::Detector::load
|
||||||
--------------------------
|
---------------------------
|
||||||
Load cascade from FileNode.
|
Load cascade from FileNode.
|
||||||
|
|
||||||
.. ocv:function:: bool Detector::load(const FileNode& fileNode)
|
.. ocv:function:: bool softcascade::Detector::load(const FileNode& fileNode)
|
||||||
|
|
||||||
.. ocv:pyfunction:: cv2.Detector.load(fileNode)
|
.. ocv:pyfunction:: cv2.softcascade_Detector.load(fileNode) -> retval
|
||||||
|
|
||||||
:param fileNode: File node from which the soft cascade are read.
|
:param fileNode: File node from which the soft cascade are read.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Detector::detect
|
softcascade::Detector::detect
|
||||||
---------------------------
|
-----------------------------
|
||||||
Apply cascade to an input frame and return the vector of Detection objects.
|
Apply cascade to an input frame and return the vector of Detection objects.
|
||||||
|
|
||||||
.. ocv:function:: void Detector::detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const
|
.. ocv:function:: void softcascade::Detector::detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const
|
||||||
|
|
||||||
.. ocv:function:: void Detector::detect(InputArray image, InputArray rois, OutputArray rects, OutputArray confs) const
|
.. ocv:function:: void softcascade::Detector::detect(InputArray image, InputArray rois, OutputArray rects, OutputArray confs) const
|
||||||
|
|
||||||
.. ocv:pyfunction:: cv2.Detector.detect(image, rois) -> (rects, confs)
|
.. ocv:pyfunction:: cv2.softcascade_Detector.detect(image, rois[, rects[, confs]]) -> rects, confs
|
||||||
|
|
||||||
:param image: a frame on which detector will be applied.
|
:param image: a frame on which detector will be applied.
|
||||||
|
|
||||||
@ -108,37 +108,39 @@ Apply cascade to an input frame and return the vector of Detection objects.
|
|||||||
:param confs: an output array of confidence for detected objects. i-th bounding rectangle corresponds i-th confidence.
|
:param confs: an output array of confidence for detected objects. i-th bounding rectangle corresponds i-th confidence.
|
||||||
|
|
||||||
|
|
||||||
ChannelFeatureBuilder
|
softcascade::ChannelFeatureBuilder
|
||||||
---------------------
|
----------------------------------
|
||||||
.. ocv:class:: ChannelFeatureBuilder
|
.. ocv:class:: softcascade::ChannelFeatureBuilder : public Algorithm
|
||||||
|
|
||||||
Public interface for of soft (stageless) cascaded detector. ::
|
Public interface for of soft (stageless) cascaded detector. ::
|
||||||
|
|
||||||
class CV_EXPORTS_W ChannelFeatureBuilder : public Algorithm
|
class ChannelFeatureBuilder : public Algorithm
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
virtual ~ChannelFeatureBuilder();
|
virtual ~ChannelFeatureBuilder();
|
||||||
|
|
||||||
CV_WRAP_AS(compute) virtual void operator()(InputArray src, CV_OUT OutputArray channels) const = 0;
|
virtual void operator()(InputArray src, CV_OUT OutputArray channels) const = 0;
|
||||||
|
|
||||||
CV_WRAP static cv::Ptr<ChannelFeatureBuilder> create();
|
static cv::Ptr<ChannelFeatureBuilder> create();
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
ChannelFeatureBuilder:~ChannelFeatureBuilder
|
softcascade::ChannelFeatureBuilder:~ChannelFeatureBuilder
|
||||||
--------------------------------------------
|
---------------------------------------------------------
|
||||||
Destructor for ChannelFeatureBuilder.
|
Destructor for ChannelFeatureBuilder.
|
||||||
|
|
||||||
.. ocv:function:: ChannelFeatureBuilder::~ChannelFeatureBuilder()
|
.. ocv:function:: softcascade::ChannelFeatureBuilder::~ChannelFeatureBuilder()
|
||||||
|
|
||||||
|
.. ocv:pyfunction:: cv2.softcascade_ChannelFeatureBuilder_create() -> retval
|
||||||
|
|
||||||
|
|
||||||
ChannelFeatureBuilder::operator()
|
softcascade::ChannelFeatureBuilder::operator()
|
||||||
---------------------------------
|
----------------------------------------------
|
||||||
Create channel feature integrals for input image.
|
Create channel feature integrals for input image.
|
||||||
|
|
||||||
.. ocv:function:: void ChannelFeatureBuilder::operator()(InputArray src, OutputArray channels) const
|
.. ocv:function:: void softcascade::ChannelFeatureBuilder::operator()(InputArray src, OutputArray channels) const
|
||||||
|
|
||||||
.. ocv:pyfunction:: cv2.ChannelFeatureBuilder.compute(src, channels) -> None
|
.. ocv:pyfunction:: cv2.softcascade_ChannelFeatureBuilder.compute(src, channels) -> None
|
||||||
|
|
||||||
:param src source frame
|
:param src source frame
|
||||||
|
|
||||||
|
@ -7,13 +7,13 @@ Soft Cascade Detector Training
|
|||||||
--------------------------------------------
|
--------------------------------------------
|
||||||
|
|
||||||
|
|
||||||
Octave
|
softcascade::Octave
|
||||||
-----------------
|
-------------------
|
||||||
.. ocv:class:: Octave
|
.. ocv:class:: softcascade::Octave : public Algorithm
|
||||||
|
|
||||||
Public interface for soft cascade training algorithm. ::
|
Public interface for soft cascade training algorithm. ::
|
||||||
|
|
||||||
class CV_EXPORTS Octave : public Algorithm
|
class Octave : public Algorithm
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
|
||||||
@ -37,17 +37,17 @@ Public interface for soft cascade training algorithm. ::
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
Octave::~Octave
|
softcascade::Octave::~Octave
|
||||||
---------------------------------------
|
---------------------------------------
|
||||||
Destructor for Octave.
|
Destructor for Octave.
|
||||||
|
|
||||||
.. ocv:function:: Octave::~Octave()
|
.. ocv:function:: softcascade::Octave::~Octave()
|
||||||
|
|
||||||
|
|
||||||
Octave::train
|
softcascade::Octave::train
|
||||||
------------------------
|
--------------------------
|
||||||
|
|
||||||
.. ocv:function:: bool Octave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
|
.. ocv:function:: bool softcascade::Octave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
|
||||||
|
|
||||||
:param dataset an object that allows communicate for training set.
|
:param dataset an object that allows communicate for training set.
|
||||||
|
|
||||||
@ -59,19 +59,19 @@ Octave::train
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
Octave::setRejectThresholds
|
softcascade::Octave::setRejectThresholds
|
||||||
--------------------------------------
|
----------------------------------------
|
||||||
|
|
||||||
.. ocv:function:: void Octave::setRejectThresholds(OutputArray thresholds)
|
.. ocv:function:: void softcascade::Octave::setRejectThresholds(OutputArray thresholds)
|
||||||
|
|
||||||
:param thresholds an output array of resulted rejection vector. Have same size as number of trained stages.
|
:param thresholds an output array of resulted rejection vector. Have same size as number of trained stages.
|
||||||
|
|
||||||
|
|
||||||
Octave::write
|
softcascade::Octave::write
|
||||||
------------------------
|
--------------------------
|
||||||
|
|
||||||
.. ocv:function:: void Octave::train(cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const
|
.. ocv:function:: void softcascade::Octave::train(cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const
|
||||||
.. ocv:function:: void Octave::train( CvFileStorage* fs, string name) const
|
.. ocv:function:: void softcascade::Octave::train( CvFileStorage* fs, string name) const
|
||||||
|
|
||||||
:param fs an output file storage to store trained detector.
|
:param fs an output file storage to store trained detector.
|
||||||
|
|
||||||
@ -82,13 +82,13 @@ Octave::write
|
|||||||
:param name a name of root node for trained detector.
|
:param name a name of root node for trained detector.
|
||||||
|
|
||||||
|
|
||||||
FeaturePool
|
softcascade::FeaturePool
|
||||||
-----------
|
------------------------
|
||||||
.. ocv:class:: FeaturePool
|
.. ocv:class:: softcascade::FeaturePool
|
||||||
|
|
||||||
Public interface for feature pool. This is a hight level abstraction for training random feature pool. ::
|
Public interface for feature pool. This is a hight level abstraction for training random feature pool. ::
|
||||||
|
|
||||||
class CV_EXPORTS FeaturePool
|
class FeaturePool
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
|
||||||
@ -99,42 +99,42 @@ Public interface for feature pool. This is a hight level abstraction for trainin
|
|||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
FeaturePool::size
|
softcascade::FeaturePool::size
|
||||||
-----------------
|
------------------------------
|
||||||
|
|
||||||
Returns size of feature pool.
|
Returns size of feature pool.
|
||||||
|
|
||||||
.. ocv:function:: int FeaturePool::size() const
|
.. ocv:function:: int softcascade::FeaturePool::size() const
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
FeaturePool::~FeaturePool
|
softcascade::FeaturePool::~FeaturePool
|
||||||
-------------------------
|
--------------------------------------
|
||||||
|
|
||||||
FeaturePool destructor.
|
FeaturePool destructor.
|
||||||
|
|
||||||
.. ocv:function:: int FeaturePool::~FeaturePool()
|
.. ocv:function:: softcascade::FeaturePool::~FeaturePool()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
FeaturePool::write
|
softcascade::FeaturePool::write
|
||||||
------------------
|
-------------------------------
|
||||||
|
|
||||||
Write specified feature from feature pool to file storage.
|
Write specified feature from feature pool to file storage.
|
||||||
|
|
||||||
.. ocv:function:: void FeaturePool::write( cv::FileStorage& fs, int index) const
|
.. ocv:function:: void softcascade::FeaturePool::write( cv::FileStorage& fs, int index) const
|
||||||
|
|
||||||
:param fs an output file storage to store feature.
|
:param fs an output file storage to store feature.
|
||||||
|
|
||||||
:param index an index of feature that should be stored.
|
:param index an index of feature that should be stored.
|
||||||
|
|
||||||
|
|
||||||
FeaturePool::apply
|
softcascade::FeaturePool::apply
|
||||||
------------------
|
-------------------------------
|
||||||
|
|
||||||
Compute feature on integral channel image.
|
Compute feature on integral channel image.
|
||||||
|
|
||||||
.. ocv:function:: float FeaturePool::apply(int fi, int si, const Mat& channels) const
|
.. ocv:function:: float softcascade::FeaturePool::apply(int fi, int si, const Mat& channels) const
|
||||||
|
|
||||||
:param fi an index of feature that should be computed.
|
:param fi an index of feature that should be computed.
|
||||||
|
|
||||||
|
@ -7,22 +7,18 @@ The video stabilization module contains a set of functions and classes for globa
|
|||||||
|
|
||||||
videostab::MotionModel
|
videostab::MotionModel
|
||||||
----------------------
|
----------------------
|
||||||
|
|
||||||
Describes motion model between two point clouds.
|
Describes motion model between two point clouds.
|
||||||
|
|
||||||
::
|
.. ocv:enum:: videostab::MotionModel
|
||||||
|
|
||||||
enum MotionModel
|
.. ocv:emember:: MM_TRANSLATION = 0
|
||||||
{
|
.. ocv:emember:: MM_TRANSLATION_AND_SCALE = 1
|
||||||
MM_TRANSLATION = 0,
|
.. ocv:emember:: MM_ROTATION = 2
|
||||||
MM_TRANSLATION_AND_SCALE = 1,
|
.. ocv:emember:: MM_RIGID = 3
|
||||||
MM_ROTATION = 2,
|
.. ocv:emember:: MM_SIMILARITY = 4
|
||||||
MM_RIGID = 3,
|
.. ocv:emember:: MM_AFFINE = 5
|
||||||
MM_SIMILARITY = 4,
|
.. ocv:emember:: MM_HOMOGRAPHY = 6
|
||||||
MM_AFFINE = 5,
|
.. ocv:emember:: MM_UNKNOWN = 7
|
||||||
MM_HOMOGRAPHY = 6,
|
|
||||||
MM_UNKNOWN = 7
|
|
||||||
};
|
|
||||||
|
|
||||||
|
|
||||||
videostab::RansacParams
|
videostab::RansacParams
|
||||||
@ -34,7 +30,7 @@ Describes RANSAC method parameters.
|
|||||||
|
|
||||||
::
|
::
|
||||||
|
|
||||||
struct CV_EXPORTS RansacParams
|
struct RansacParams
|
||||||
{
|
{
|
||||||
int size; // subset size
|
int size; // subset size
|
||||||
float thresh; // max error to classify as inlier
|
float thresh; // max error to classify as inlier
|
||||||
@ -87,7 +83,7 @@ videostab::RansacParams::default2dMotion
|
|||||||
|
|
||||||
.. ocv:function:: static RansacParams videostab::RansacParams::default2dMotion(MotionModel model)
|
.. ocv:function:: static RansacParams videostab::RansacParams::default2dMotion(MotionModel model)
|
||||||
|
|
||||||
:param model: Motion model. See :ocv:class:`videostab::MotionModel`.
|
:param model: Motion model. See :ocv:enum:`videostab::MotionModel`.
|
||||||
|
|
||||||
:return: Default RANSAC method parameters for the given motion model.
|
:return: Default RANSAC method parameters for the given motion model.
|
||||||
|
|
||||||
@ -123,9 +119,9 @@ Estimates best global motion between two 2D point clouds robustly (using RANSAC
|
|||||||
|
|
||||||
:param points1: Destination set of 2D points (``32F``).
|
:param points1: Destination set of 2D points (``32F``).
|
||||||
|
|
||||||
:param model: Motion model. See :ocv:class:`videostab::MotionModel`.
|
:param model: Motion model. See :ocv:enum:`videostab::MotionModel`.
|
||||||
|
|
||||||
:param params: RANSAC method parameters. See :ocv:class:`videostab::RansacParams`.
|
:param params: RANSAC method parameters. See :ocv:struct:`videostab::RansacParams`.
|
||||||
|
|
||||||
:param rmse: Final root-mean-square error.
|
:param rmse: Final root-mean-square error.
|
||||||
|
|
||||||
@ -157,7 +153,7 @@ Base class for all global motion estimation methods.
|
|||||||
|
|
||||||
::
|
::
|
||||||
|
|
||||||
class CV_EXPORTS MotionEstimatorBase
|
class MotionEstimatorBase
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
virtual ~MotionEstimatorBase();
|
virtual ~MotionEstimatorBase();
|
||||||
@ -176,16 +172,16 @@ Sets motion model.
|
|||||||
|
|
||||||
.. ocv:function:: void videostab::MotionEstimatorBase::setMotionModel(MotionModel val)
|
.. ocv:function:: void videostab::MotionEstimatorBase::setMotionModel(MotionModel val)
|
||||||
|
|
||||||
:param val: Motion model. See :ocv:class:`videostab::MotionModel`.
|
:param val: Motion model. See :ocv:enum:`videostab::MotionModel`.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
videostab::MotionEstimatorBase::motionModel
|
videostab::MotionEstimatorBase::motionModel
|
||||||
----------------------------------------------
|
-------------------------------------------
|
||||||
|
|
||||||
.. ocv:function:: MotionModel videostab::MotionEstimatorBase::motionModel() const
|
.. ocv:function:: MotionModel videostab::MotionEstimatorBase::motionModel() const
|
||||||
|
|
||||||
:return: Motion model. See :ocv:class:`videostab::MotionModel`.
|
:return: Motion model. See :ocv:enum:`videostab::MotionModel`.
|
||||||
|
|
||||||
|
|
||||||
videostab::MotionEstimatorBase::estimate
|
videostab::MotionEstimatorBase::estimate
|
||||||
@ -213,7 +209,7 @@ Describes a robust RANSAC-based global 2D motion estimation method which minimiz
|
|||||||
|
|
||||||
::
|
::
|
||||||
|
|
||||||
class CV_EXPORTS MotionEstimatorRansacL2 : public MotionEstimatorBase
|
class MotionEstimatorRansacL2 : public MotionEstimatorBase
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
MotionEstimatorRansacL2(MotionModel model = MM_AFFINE);
|
MotionEstimatorRansacL2(MotionModel model = MM_AFFINE);
|
||||||
@ -239,7 +235,7 @@ Describes a global 2D motion estimation method which minimizes L1 error.
|
|||||||
|
|
||||||
::
|
::
|
||||||
|
|
||||||
class CV_EXPORTS MotionEstimatorL1 : public MotionEstimatorBase
|
class MotionEstimatorL1 : public MotionEstimatorBase
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
MotionEstimatorL1(MotionModel model = MM_AFFINE);
|
MotionEstimatorL1(MotionModel model = MM_AFFINE);
|
||||||
@ -257,7 +253,7 @@ Base class for global 2D motion estimation methods which take frames as input.
|
|||||||
|
|
||||||
::
|
::
|
||||||
|
|
||||||
class CV_EXPORTS ImageMotionEstimatorBase
|
class ImageMotionEstimatorBase
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
virtual ~ImageMotionEstimatorBase();
|
virtual ~ImageMotionEstimatorBase();
|
||||||
@ -278,7 +274,7 @@ Describes a global 2D motion estimation method which uses keypoints detection an
|
|||||||
|
|
||||||
::
|
::
|
||||||
|
|
||||||
class CV_EXPORTS KeypointBasedMotionEstimator : public ImageMotionEstimatorBase
|
class KeypointBasedMotionEstimator : public ImageMotionEstimatorBase
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
KeypointBasedMotionEstimator(Ptr<MotionEstimatorBase> estimator);
|
KeypointBasedMotionEstimator(Ptr<MotionEstimatorBase> estimator);
|
||||||
|
Loading…
Reference in New Issue
Block a user