mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Merge pull request #478 from jet47:gpu-reduction-fix
This commit is contained in:
commit
0cf9c16adc
@ -55,6 +55,128 @@
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
namespace detail
|
||||
{
|
||||
__device__ __forceinline__ int cvAtomicAdd(int* address, int val)
|
||||
{
|
||||
return ::atomicAdd(address, val);
|
||||
}
|
||||
__device__ __forceinline__ unsigned int cvAtomicAdd(unsigned int* address, unsigned int val)
|
||||
{
|
||||
return ::atomicAdd(address, val);
|
||||
}
|
||||
__device__ __forceinline__ float cvAtomicAdd(float* address, float val)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 200
|
||||
return ::atomicAdd(address, val);
|
||||
#else
|
||||
int* address_as_i = (int*) address;
|
||||
int old = *address_as_i, assumed;
|
||||
do {
|
||||
assumed = old;
|
||||
old = ::atomicCAS(address_as_i, assumed,
|
||||
__float_as_int(val + __int_as_float(assumed)));
|
||||
} while (assumed != old);
|
||||
return __int_as_float(old);
|
||||
#endif
|
||||
}
|
||||
__device__ __forceinline__ double cvAtomicAdd(double* address, double val)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 130
|
||||
unsigned long long int* address_as_ull = (unsigned long long int*) address;
|
||||
unsigned long long int old = *address_as_ull, assumed;
|
||||
do {
|
||||
assumed = old;
|
||||
old = ::atomicCAS(address_as_ull, assumed,
|
||||
__double_as_longlong(val + __longlong_as_double(assumed)));
|
||||
} while (assumed != old);
|
||||
return __longlong_as_double(old);
|
||||
#else
|
||||
(void) address;
|
||||
(void) val;
|
||||
return 0.0;
|
||||
#endif
|
||||
}
|
||||
|
||||
__device__ __forceinline__ int cvAtomicMin(int* address, int val)
|
||||
{
|
||||
return ::atomicMin(address, val);
|
||||
}
|
||||
__device__ __forceinline__ float cvAtomicMin(float* address, float val)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 120
|
||||
int* address_as_i = (int*) address;
|
||||
int old = *address_as_i, assumed;
|
||||
do {
|
||||
assumed = old;
|
||||
old = ::atomicCAS(address_as_i, assumed,
|
||||
__float_as_int(::fminf(val, __int_as_float(assumed))));
|
||||
} while (assumed != old);
|
||||
return __int_as_float(old);
|
||||
#else
|
||||
(void) address;
|
||||
(void) val;
|
||||
return 0.0f;
|
||||
#endif
|
||||
}
|
||||
__device__ __forceinline__ double cvAtomicMin(double* address, double val)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 130
|
||||
unsigned long long int* address_as_ull = (unsigned long long int*) address;
|
||||
unsigned long long int old = *address_as_ull, assumed;
|
||||
do {
|
||||
assumed = old;
|
||||
old = ::atomicCAS(address_as_ull, assumed,
|
||||
__double_as_longlong(::fmin(val, __longlong_as_double(assumed))));
|
||||
} while (assumed != old);
|
||||
return __longlong_as_double(old);
|
||||
#else
|
||||
(void) address;
|
||||
(void) val;
|
||||
return 0.0;
|
||||
#endif
|
||||
}
|
||||
|
||||
__device__ __forceinline__ int cvAtomicMax(int* address, int val)
|
||||
{
|
||||
return ::atomicMax(address, val);
|
||||
}
|
||||
__device__ __forceinline__ float cvAtomicMax(float* address, float val)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 120
|
||||
int* address_as_i = (int*) address;
|
||||
int old = *address_as_i, assumed;
|
||||
do {
|
||||
assumed = old;
|
||||
old = ::atomicCAS(address_as_i, assumed,
|
||||
__float_as_int(::fmaxf(val, __int_as_float(assumed))));
|
||||
} while (assumed != old);
|
||||
return __int_as_float(old);
|
||||
#else
|
||||
(void) address;
|
||||
(void) val;
|
||||
return 0.0f;
|
||||
#endif
|
||||
}
|
||||
__device__ __forceinline__ double cvAtomicMax(double* address, double val)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 130
|
||||
unsigned long long int* address_as_ull = (unsigned long long int*) address;
|
||||
unsigned long long int old = *address_as_ull, assumed;
|
||||
do {
|
||||
assumed = old;
|
||||
old = ::atomicCAS(address_as_ull, assumed,
|
||||
__double_as_longlong(::fmax(val, __longlong_as_double(assumed))));
|
||||
} while (assumed != old);
|
||||
return __longlong_as_double(old);
|
||||
#else
|
||||
(void) address;
|
||||
(void) val;
|
||||
return 0.0;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
namespace detail
|
||||
{
|
||||
template <int cn> struct Unroll;
|
||||
@ -152,7 +274,7 @@ namespace sum
|
||||
{
|
||||
static __device__ void run(R* ptr, R val)
|
||||
{
|
||||
::atomicAdd(ptr, val);
|
||||
detail::cvAtomicAdd(ptr, val);
|
||||
}
|
||||
};
|
||||
template <typename R> struct AtomicAdd<R, 2>
|
||||
@ -161,8 +283,8 @@ namespace sum
|
||||
|
||||
static __device__ void run(R* ptr, val_type val)
|
||||
{
|
||||
::atomicAdd(ptr, val.x);
|
||||
::atomicAdd(ptr + 1, val.y);
|
||||
detail::cvAtomicAdd(ptr, val.x);
|
||||
detail::cvAtomicAdd(ptr + 1, val.y);
|
||||
}
|
||||
};
|
||||
template <typename R> struct AtomicAdd<R, 3>
|
||||
@ -171,9 +293,9 @@ namespace sum
|
||||
|
||||
static __device__ void run(R* ptr, val_type val)
|
||||
{
|
||||
::atomicAdd(ptr, val.x);
|
||||
::atomicAdd(ptr + 1, val.y);
|
||||
::atomicAdd(ptr + 2, val.z);
|
||||
detail::cvAtomicAdd(ptr, val.x);
|
||||
detail::cvAtomicAdd(ptr + 1, val.y);
|
||||
detail::cvAtomicAdd(ptr + 2, val.z);
|
||||
}
|
||||
};
|
||||
template <typename R> struct AtomicAdd<R, 4>
|
||||
@ -182,10 +304,10 @@ namespace sum
|
||||
|
||||
static __device__ void run(R* ptr, val_type val)
|
||||
{
|
||||
::atomicAdd(ptr, val.x);
|
||||
::atomicAdd(ptr + 1, val.y);
|
||||
::atomicAdd(ptr + 2, val.z);
|
||||
::atomicAdd(ptr + 3, val.w);
|
||||
detail::cvAtomicAdd(ptr, val.x);
|
||||
detail::cvAtomicAdd(ptr + 1, val.y);
|
||||
detail::cvAtomicAdd(ptr + 2, val.z);
|
||||
detail::cvAtomicAdd(ptr + 3, val.w);
|
||||
}
|
||||
};
|
||||
|
||||
@ -229,41 +351,6 @@ namespace sum
|
||||
#endif
|
||||
}
|
||||
};
|
||||
template <int BLOCK_SIZE, int cn>
|
||||
struct GlobalReduce<BLOCK_SIZE, double, cn>
|
||||
{
|
||||
typedef typename TypeVec<double, cn>::vec_type result_type;
|
||||
|
||||
static __device__ void run(result_type& sum, result_type* result, int tid, int bid, double* smem)
|
||||
{
|
||||
__shared__ bool is_last;
|
||||
|
||||
if (tid == 0)
|
||||
{
|
||||
result[bid] = sum;
|
||||
|
||||
__threadfence();
|
||||
|
||||
unsigned int ticket = ::atomicAdd(&blocks_finished, 1);
|
||||
is_last = (ticket == gridDim.x * gridDim.y - 1);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (is_last)
|
||||
{
|
||||
sum = tid < gridDim.x * gridDim.y ? result[tid] : VecTraits<result_type>::all(0);
|
||||
|
||||
device::reduce<BLOCK_SIZE>(detail::Unroll<cn>::template smem_tuple<BLOCK_SIZE>(smem), detail::Unroll<cn>::tie(sum), tid, detail::Unroll<cn>::op(plus<double>()));
|
||||
|
||||
if (tid == 0)
|
||||
{
|
||||
result[0] = sum;
|
||||
blocks_finished = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <int BLOCK_SIZE, typename src_type, typename result_type, class Op>
|
||||
__global__ void kernel(const PtrStepSz<src_type> src, result_type* result, const Op op, const int twidth, const int theight)
|
||||
@ -518,53 +605,12 @@ namespace minMax
|
||||
struct GlobalReduce
|
||||
{
|
||||
static __device__ void run(R& mymin, R& mymax, R* minval, R* maxval, int tid, int bid, R* sminval, R* smaxval)
|
||||
{
|
||||
__shared__ bool is_last;
|
||||
|
||||
if (tid == 0)
|
||||
{
|
||||
minval[bid] = mymin;
|
||||
maxval[bid] = mymax;
|
||||
|
||||
__threadfence();
|
||||
|
||||
unsigned int ticket = ::atomicAdd(&blocks_finished, 1);
|
||||
is_last = (ticket == gridDim.x * gridDim.y - 1);
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
if (is_last)
|
||||
{
|
||||
int idx = ::min(tid, gridDim.x * gridDim.y - 1);
|
||||
|
||||
mymin = minval[idx];
|
||||
mymax = maxval[idx];
|
||||
|
||||
const minimum<R> minOp;
|
||||
const maximum<R> maxOp;
|
||||
device::reduce<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), tid, thrust::make_tuple(minOp, maxOp));
|
||||
|
||||
if (tid == 0)
|
||||
{
|
||||
minval[0] = mymin;
|
||||
maxval[0] = mymax;
|
||||
|
||||
blocks_finished = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
template <int BLOCK_SIZE>
|
||||
struct GlobalReduce<BLOCK_SIZE, int>
|
||||
{
|
||||
static __device__ void run(int& mymin, int& mymax, int* minval, int* maxval, int tid, int bid, int* sminval, int* smaxval)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 200
|
||||
if (tid == 0)
|
||||
{
|
||||
::atomicMin(minval, mymin);
|
||||
::atomicMax(maxval, mymax);
|
||||
detail::cvAtomicMin(minval, mymin);
|
||||
detail::cvAtomicMax(maxval, mymax);
|
||||
}
|
||||
#else
|
||||
__shared__ bool is_last;
|
||||
@ -589,8 +635,8 @@ namespace minMax
|
||||
mymin = minval[idx];
|
||||
mymax = maxval[idx];
|
||||
|
||||
const minimum<int> minOp;
|
||||
const maximum<int> maxOp;
|
||||
const minimum<R> minOp;
|
||||
const maximum<R> maxOp;
|
||||
device::reduce<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), tid, thrust::make_tuple(minOp, maxOp));
|
||||
|
||||
if (tid == 0)
|
||||
@ -672,12 +718,19 @@ namespace minMax
|
||||
*minval_buf = numeric_limits<int>::max();
|
||||
*maxval_buf = numeric_limits<int>::min();
|
||||
}
|
||||
__global__ void setDefaultKernel(float* minval_buf, float* maxval_buf)
|
||||
{
|
||||
*minval_buf = numeric_limits<float>::max();
|
||||
*maxval_buf = -numeric_limits<float>::max();
|
||||
}
|
||||
__global__ void setDefaultKernel(double* minval_buf, double* maxval_buf)
|
||||
{
|
||||
*minval_buf = numeric_limits<double>::max();
|
||||
*maxval_buf = -numeric_limits<double>::max();
|
||||
}
|
||||
|
||||
template <typename R>
|
||||
void setDefault(R*, R*)
|
||||
{
|
||||
}
|
||||
void setDefault(int* minval_buf, int* maxval_buf)
|
||||
void setDefault(R* minval_buf, R* maxval_buf)
|
||||
{
|
||||
setDefaultKernel<<<1, 1>>>(minval_buf, maxval_buf);
|
||||
}
|
||||
@ -728,21 +781,19 @@ namespace minMax
|
||||
|
||||
namespace minMaxLoc
|
||||
{
|
||||
__device__ unsigned int blocks_finished = 0;
|
||||
|
||||
// To avoid shared bank conflicts we convert each value into value of
|
||||
// appropriate type (32 bits minimum)
|
||||
template <typename T> struct MinMaxTypeTraits;
|
||||
template <> struct MinMaxTypeTraits<uchar> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<schar> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<ushort> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<unsigned char> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<signed char> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<unsigned short> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<short> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<int> { typedef int best_type; };
|
||||
template <> struct MinMaxTypeTraits<float> { typedef float best_type; };
|
||||
template <> struct MinMaxTypeTraits<double> { typedef double best_type; };
|
||||
|
||||
template <int BLOCK_SIZE, typename T, class Mask>
|
||||
__global__ void kernel(const PtrStepSz<T> src, const Mask mask, T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, const int twidth, const int theight)
|
||||
__global__ void kernel_pass_1(const PtrStepSz<T> src, const Mask mask, T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, const int twidth, const int theight)
|
||||
{
|
||||
typedef typename MinMaxTypeTraits<T>::best_type work_type;
|
||||
|
||||
@ -750,7 +801,6 @@ namespace minMaxLoc
|
||||
__shared__ work_type smaxval[BLOCK_SIZE];
|
||||
__shared__ unsigned int sminloc[BLOCK_SIZE];
|
||||
__shared__ unsigned int smaxloc[BLOCK_SIZE];
|
||||
__shared__ bool is_last;
|
||||
|
||||
const int x0 = blockIdx.x * blockDim.x * twidth + threadIdx.x;
|
||||
const int y0 = blockIdx.y * blockDim.y * theight + threadIdx.y;
|
||||
@ -799,38 +849,36 @@ namespace minMaxLoc
|
||||
maxval[bid] = (T) mymax;
|
||||
minloc[bid] = myminloc;
|
||||
maxloc[bid] = mymaxloc;
|
||||
|
||||
__threadfence();
|
||||
|
||||
unsigned int ticket = ::atomicInc(&blocks_finished, gridDim.x * gridDim.y);
|
||||
is_last = (ticket == gridDim.x * gridDim.y - 1);
|
||||
}
|
||||
}
|
||||
template <int BLOCK_SIZE, typename T>
|
||||
__global__ void kernel_pass_2(T* minval, T* maxval, unsigned int* minloc, unsigned int* maxloc, int count)
|
||||
{
|
||||
typedef typename MinMaxTypeTraits<T>::best_type work_type;
|
||||
|
||||
__syncthreads();
|
||||
__shared__ work_type sminval[BLOCK_SIZE];
|
||||
__shared__ work_type smaxval[BLOCK_SIZE];
|
||||
__shared__ unsigned int sminloc[BLOCK_SIZE];
|
||||
__shared__ unsigned int smaxloc[BLOCK_SIZE];
|
||||
|
||||
if (is_last)
|
||||
unsigned int idx = ::min(threadIdx.x, count - 1);
|
||||
|
||||
work_type mymin = minval[idx];
|
||||
work_type mymax = maxval[idx];
|
||||
unsigned int myminloc = minloc[idx];
|
||||
unsigned int mymaxloc = maxloc[idx];
|
||||
|
||||
reduceKeyVal<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax),
|
||||
smem_tuple(sminloc, smaxloc), thrust::tie(myminloc, mymaxloc),
|
||||
threadIdx.x,
|
||||
thrust::make_tuple(less<work_type>(), greater<work_type>()));
|
||||
|
||||
if (threadIdx.x == 0)
|
||||
{
|
||||
unsigned int idx = ::min(tid, gridDim.x * gridDim.y - 1);
|
||||
|
||||
mymin = minval[idx];
|
||||
mymax = maxval[idx];
|
||||
myminloc = minloc[idx];
|
||||
mymaxloc = maxloc[idx];
|
||||
|
||||
reduceKeyVal<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax),
|
||||
smem_tuple(sminloc, smaxloc), thrust::tie(myminloc, mymaxloc),
|
||||
tid,
|
||||
thrust::make_tuple(less<work_type>(), greater<work_type>()));
|
||||
|
||||
if (tid == 0)
|
||||
{
|
||||
minval[0] = (T) mymin;
|
||||
maxval[0] = (T) mymax;
|
||||
minloc[0] = myminloc;
|
||||
maxloc[0] = mymaxloc;
|
||||
|
||||
blocks_finished = 0;
|
||||
}
|
||||
minval[0] = (T) mymin;
|
||||
maxval[0] = (T) mymax;
|
||||
minloc[0] = myminloc;
|
||||
maxloc[0] = mymaxloc;
|
||||
}
|
||||
}
|
||||
|
||||
@ -877,12 +925,15 @@ namespace minMaxLoc
|
||||
unsigned int* maxloc_buf = locbuf.ptr(1);
|
||||
|
||||
if (mask.data)
|
||||
kernel<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, SingleMask(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight);
|
||||
kernel_pass_1<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, SingleMask(mask), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight);
|
||||
else
|
||||
kernel<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, WithOutMask(), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight);
|
||||
kernel_pass_1<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, WithOutMask(), minval_buf, maxval_buf, minloc_buf, maxloc_buf, twidth, theight);
|
||||
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
kernel_pass_2<threads_x * threads_y><<<1, threads_x * threads_y>>>(minval_buf, maxval_buf, minloc_buf, maxloc_buf, grid.x * grid.y);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
|
||||
T minval_, maxval_;
|
||||
@ -898,9 +949,9 @@ namespace minMaxLoc
|
||||
maxloc[1] = maxloc_ / src.cols; maxloc[0] = maxloc_ - maxloc[1] * src.cols;
|
||||
}
|
||||
|
||||
template void run<uchar >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
|
||||
template void run<schar >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
|
||||
template void run<ushort>(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
|
||||
template void run<unsigned char >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
|
||||
template void run<signed char >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
|
||||
template void run<unsigned short>(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
|
||||
template void run<short >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
|
||||
template void run<int >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
|
||||
template void run<float >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, int* minloc, int* maxloc, PtrStepb valbuf, PtrStep<unsigned int> locbuf);
|
||||
|
Loading…
Reference in New Issue
Block a user