mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Move templates in dist.h in order to share them between KMeansIndex and HierarchicalClusteringIndex classes.
This commit is contained in:
parent
fa749de0dc
commit
0d19685f95
@ -812,6 +812,66 @@ struct ZeroIterator
|
||||
|
||||
};
|
||||
|
||||
|
||||
/*
|
||||
* Depending on processed distances, some of them are already squared (e.g. L2)
|
||||
* and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure
|
||||
* we are working on ^2 distances, thus following templates to ensure that.
|
||||
*/
|
||||
template <typename Distance, typename ElementType>
|
||||
struct squareDistance
|
||||
{
|
||||
typedef typename Distance::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist*dist; }
|
||||
};
|
||||
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<L2_Simple<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename L2_Simple<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<L2<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename L2<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<MinkowskiDistance<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<HellingerDistance<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename HellingerDistance<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<ChiSquareDistance<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
|
||||
template <typename Distance>
|
||||
typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist )
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
|
||||
squareDistance<Distance, ElementType> dummy;
|
||||
return dummy( dist );
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif //OPENCV_FLANN_DIST_H_
|
||||
|
@ -214,7 +214,7 @@ private:
|
||||
// far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article)
|
||||
for (int i = 0; i < n; i++) {
|
||||
closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
|
||||
closestDistSq[i] *= closestDistSq[i];
|
||||
closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
|
||||
currentPot += closestDistSq[i];
|
||||
}
|
||||
|
||||
@ -242,7 +242,7 @@ private:
|
||||
double newPot = 0;
|
||||
for (int i = 0; i < n; i++) {
|
||||
DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols);
|
||||
newPot += std::min( dist*dist, closestDistSq[i] );
|
||||
newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
|
||||
}
|
||||
|
||||
// Store the best result
|
||||
@ -257,7 +257,7 @@ private:
|
||||
currentPot = bestNewPot;
|
||||
for (int i = 0; i < n; i++) {
|
||||
DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols);
|
||||
closestDistSq[i] = std::min( dist*dist, closestDistSq[i] );
|
||||
closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -53,62 +53,6 @@
|
||||
namespace cvflann
|
||||
{
|
||||
|
||||
template <typename Distance, typename ElementType>
|
||||
struct squareDistance
|
||||
{
|
||||
typedef typename Distance::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist*dist; }
|
||||
};
|
||||
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<L2_Simple<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename L2_Simple<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<L2<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename L2<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<MinkowskiDistance<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename MinkowskiDistance<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<HellingerDistance<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename HellingerDistance<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
template <typename ElementType>
|
||||
struct squareDistance<ChiSquareDistance<ElementType>, ElementType>
|
||||
{
|
||||
typedef typename ChiSquareDistance<ElementType>::ResultType ResultType;
|
||||
ResultType operator()( ResultType dist ) { return dist; }
|
||||
};
|
||||
|
||||
|
||||
template <typename Distance>
|
||||
typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist )
|
||||
{
|
||||
typedef typename Distance::ElementType ElementType;
|
||||
|
||||
squareDistance<Distance, ElementType> dummy;
|
||||
return dummy( dist );
|
||||
}
|
||||
|
||||
|
||||
|
||||
struct KMeansIndexParams : public IndexParams
|
||||
{
|
||||
KMeansIndexParams(int branching = 32, int iterations = 11,
|
||||
|
Loading…
Reference in New Issue
Block a user