mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 04:36:36 +08:00
Merge pull request #12450 from sturkmen72:update_HOGDescriptor
This commit is contained in:
commit
0f3fe957f5
@ -380,7 +380,7 @@ public:
|
||||
|
||||
/**@brief Creates the HOG descriptor and detector with default params.
|
||||
|
||||
aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9, 1 )
|
||||
aqual to HOGDescriptor(Size(64,128), Size(16,16), Size(8,8), Size(8,8), 9 )
|
||||
*/
|
||||
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
|
||||
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
|
||||
@ -414,7 +414,7 @@ public:
|
||||
{}
|
||||
|
||||
/** @overload
|
||||
@param filename the file name containing HOGDescriptor properties and coefficients of the trained classifier
|
||||
@param filename The file name containing HOGDescriptor properties and coefficients for the linear SVM classifier.
|
||||
*/
|
||||
CV_WRAP HOGDescriptor(const String& filename)
|
||||
{
|
||||
@ -448,28 +448,28 @@ public:
|
||||
/**@example samples/cpp/peopledetect.cpp
|
||||
*/
|
||||
/**@brief Sets coefficients for the linear SVM classifier.
|
||||
@param _svmdetector coefficients for the linear SVM classifier.
|
||||
@param svmdetector coefficients for the linear SVM classifier.
|
||||
*/
|
||||
CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
|
||||
CV_WRAP virtual void setSVMDetector(InputArray svmdetector);
|
||||
|
||||
/** @brief Reads HOGDescriptor parameters from a file node.
|
||||
/** @brief Reads HOGDescriptor parameters from a cv::FileNode.
|
||||
@param fn File node
|
||||
*/
|
||||
virtual bool read(FileNode& fn);
|
||||
|
||||
/** @brief Stores HOGDescriptor parameters in a file storage.
|
||||
/** @brief Stores HOGDescriptor parameters in a cv::FileStorage.
|
||||
@param fs File storage
|
||||
@param objname Object name
|
||||
*/
|
||||
virtual void write(FileStorage& fs, const String& objname) const;
|
||||
|
||||
/** @brief loads coefficients for the linear SVM classifier from a file
|
||||
@param filename Name of the file to read.
|
||||
/** @brief loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file.
|
||||
@param filename Path of the file to read.
|
||||
@param objname The optional name of the node to read (if empty, the first top-level node will be used).
|
||||
*/
|
||||
CV_WRAP virtual bool load(const String& filename, const String& objname = String());
|
||||
|
||||
/** @brief saves coefficients for the linear SVM classifier to a file
|
||||
/** @brief saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
|
||||
@param filename File name
|
||||
@param objname Object name
|
||||
*/
|
||||
@ -505,7 +505,7 @@ public:
|
||||
@param padding Padding
|
||||
@param searchLocations Vector of Point includes set of requested locations to be evaluated.
|
||||
*/
|
||||
CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
|
||||
CV_WRAP virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations,
|
||||
CV_OUT std::vector<double>& weights,
|
||||
double hitThreshold = 0, Size winStride = Size(),
|
||||
Size padding = Size(),
|
||||
@ -521,7 +521,7 @@ public:
|
||||
@param padding Padding
|
||||
@param searchLocations Vector of Point includes locations to search.
|
||||
*/
|
||||
virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
|
||||
virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations,
|
||||
double hitThreshold = 0, Size winStride = Size(),
|
||||
Size padding = Size(),
|
||||
const std::vector<Point>& searchLocations=std::vector<Point>()) const;
|
||||
@ -570,7 +570,7 @@ public:
|
||||
@param paddingTL Padding from top-left
|
||||
@param paddingBR Padding from bottom-right
|
||||
*/
|
||||
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
|
||||
CV_WRAP virtual void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray angleOfs,
|
||||
Size paddingTL = Size(), Size paddingBR = Size()) const;
|
||||
|
||||
/** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows).
|
||||
@ -639,7 +639,7 @@ public:
|
||||
@param winStride winStride
|
||||
@param padding padding
|
||||
*/
|
||||
virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
|
||||
virtual void detectROI(InputArray img, const std::vector<cv::Point> &locations,
|
||||
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
|
||||
double hitThreshold = 0, cv::Size winStride = Size(),
|
||||
cv::Size padding = Size()) const;
|
||||
@ -652,17 +652,12 @@ public:
|
||||
in the detector coefficients (as the last free coefficient). But if the free coefficient is omitted (which is allowed), you can specify it manually here.
|
||||
@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a group of rectangles to retain it.
|
||||
*/
|
||||
virtual void detectMultiScaleROI(const cv::Mat& img,
|
||||
virtual void detectMultiScaleROI(InputArray img,
|
||||
CV_OUT std::vector<cv::Rect>& foundLocations,
|
||||
std::vector<DetectionROI>& locations,
|
||||
double hitThreshold = 0,
|
||||
int groupThreshold = 0) const;
|
||||
|
||||
/** @brief read/parse Dalal's alt model file
|
||||
@param modelfile Path of Dalal's alt model file.
|
||||
*/
|
||||
void readALTModel(String modelfile);
|
||||
|
||||
/** @brief Groups the object candidate rectangles.
|
||||
@param rectList Input/output vector of rectangles. Output vector includes retained and grouped rectangles. (The Python list is not modified in place.)
|
||||
@param weights Input/output vector of weights of rectangles. Output vector includes weights of retained and grouped rectangles. (The Python list is not modified in place.)
|
||||
@ -688,7 +683,7 @@ protected:
|
||||
};
|
||||
|
||||
/** @brief Detect QR code in image and return minimum area of quadrangle that describes QR code.
|
||||
@param in Matrix of the type CV_8UC1 containing an image where QR code are detected.
|
||||
@param in Matrix of the type CV_8U containing an image where QR code are detected.
|
||||
@param points Output vector of vertices of a quadrangle of minimal area that describes QR code.
|
||||
@param eps_x Epsilon neighborhood, which allows you to determine the horizontal pattern of the scheme 1:1:3:1:1 according to QR code standard.
|
||||
@param eps_y Epsilon neighborhood, which allows you to determine the vertical pattern of the scheme 1:1:3:1:1 according to QR code standard.
|
||||
|
@ -234,17 +234,20 @@ inline float32x4_t vsetq_f32(float f0, float f1, float f2, float f3)
|
||||
return a;
|
||||
}
|
||||
#endif
|
||||
void HOGDescriptor::computeGradient(const Mat& img, Mat& grad, Mat& qangle,
|
||||
void HOGDescriptor::computeGradient(InputArray _img, InputOutputArray _grad, InputOutputArray _qangle,
|
||||
Size paddingTL, Size paddingBR) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat img = _img.getMat();
|
||||
CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 );
|
||||
|
||||
Size gradsize(img.cols + paddingTL.width + paddingBR.width,
|
||||
img.rows + paddingTL.height + paddingBR.height);
|
||||
grad.create(gradsize, CV_32FC2); // <magnitude*(1-alpha), magnitude*alpha>
|
||||
qangle.create(gradsize, CV_8UC2); // [0..nbins-1] - quantized gradient orientation
|
||||
_grad.create(gradsize, CV_32FC2); // <magnitude*(1-alpha), magnitude*alpha>
|
||||
_qangle.create(gradsize, CV_8UC2); // [0..nbins-1] - quantized gradient orientation
|
||||
Mat grad = _grad.getMat();
|
||||
Mat qangle = _qangle.getMat();
|
||||
|
||||
Size wholeSize;
|
||||
Point roiofs;
|
||||
@ -1650,12 +1653,13 @@ void HOGDescriptor::compute(InputArray _img, std::vector<float>& descriptors,
|
||||
}
|
||||
}
|
||||
|
||||
void HOGDescriptor::detect(const Mat& img,
|
||||
void HOGDescriptor::detect(InputArray _img,
|
||||
std::vector<Point>& hits, std::vector<double>& weights, double hitThreshold,
|
||||
Size winStride, Size padding, const std::vector<Point>& locations) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat img = _img.getMat();
|
||||
hits.clear();
|
||||
weights.clear();
|
||||
if( svmDetector.empty() )
|
||||
@ -1764,7 +1768,7 @@ void HOGDescriptor::detect(const Mat& img,
|
||||
}
|
||||
}
|
||||
|
||||
void HOGDescriptor::detect(const Mat& img, std::vector<Point>& hits, double hitThreshold,
|
||||
void HOGDescriptor::detect(InputArray img, std::vector<Point>& hits, double hitThreshold,
|
||||
Size winStride, Size padding, const std::vector<Point>& locations) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
@ -3544,12 +3548,13 @@ public:
|
||||
Mutex* mtx;
|
||||
};
|
||||
|
||||
void HOGDescriptor::detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
|
||||
void HOGDescriptor::detectROI(InputArray _img, const std::vector<cv::Point> &locations,
|
||||
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
|
||||
double hitThreshold, cv::Size winStride, cv::Size padding) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat img = _img.getMat();
|
||||
foundLocations.clear();
|
||||
confidences.clear();
|
||||
|
||||
@ -3656,12 +3661,13 @@ void HOGDescriptor::detectROI(const cv::Mat& img, const std::vector<cv::Point> &
|
||||
}
|
||||
}
|
||||
|
||||
void HOGDescriptor::detectMultiScaleROI(const cv::Mat& img,
|
||||
void HOGDescriptor::detectMultiScaleROI(InputArray _img,
|
||||
CV_OUT std::vector<cv::Rect>& foundLocations, std::vector<DetectionROI>& locations,
|
||||
double hitThreshold, int groupThreshold) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat img = _img.getMat();
|
||||
std::vector<Rect> allCandidates;
|
||||
Mutex mtx;
|
||||
|
||||
@ -3674,110 +3680,6 @@ void HOGDescriptor::detectMultiScaleROI(const cv::Mat& img,
|
||||
cv::groupRectangles(foundLocations, groupThreshold, 0.2);
|
||||
}
|
||||
|
||||
void HOGDescriptor::readALTModel(String modelfile)
|
||||
{
|
||||
// read model from SVMlight format..
|
||||
FILE *modelfl;
|
||||
if ((modelfl = fopen(modelfile.c_str(), "rb")) == NULL)
|
||||
{
|
||||
String eerr("file not exist");
|
||||
String efile(__FILE__);
|
||||
String efunc(__FUNCTION__);
|
||||
CV_THROW (Exception(Error::StsError, eerr, efile, efunc, __LINE__));
|
||||
}
|
||||
char version_buffer[10];
|
||||
if (!fread (&version_buffer,sizeof(char),10,modelfl))
|
||||
{
|
||||
String eerr("version?");
|
||||
String efile(__FILE__);
|
||||
String efunc(__FUNCTION__);
|
||||
fclose(modelfl);
|
||||
|
||||
CV_THROW (Exception(Error::StsError, eerr, efile, efunc, __LINE__));
|
||||
}
|
||||
if(strcmp(version_buffer,"V6.01")) {
|
||||
String eerr("version does not match");
|
||||
String efile(__FILE__);
|
||||
String efunc(__FUNCTION__);
|
||||
fclose(modelfl);
|
||||
|
||||
CV_THROW (Exception(Error::StsError, eerr, efile, efunc, __LINE__));
|
||||
}
|
||||
/* read version number */
|
||||
int version = 0;
|
||||
if (!fread (&version,sizeof(int),1,modelfl))
|
||||
{
|
||||
fclose(modelfl);
|
||||
CV_THROW (Exception());
|
||||
}
|
||||
if (version < 200)
|
||||
{
|
||||
String eerr("version does not match");
|
||||
String efile(__FILE__);
|
||||
String efunc(__FUNCTION__);
|
||||
fclose(modelfl);
|
||||
CV_THROW (Exception());
|
||||
}
|
||||
int kernel_type;
|
||||
size_t nread;
|
||||
nread=fread(&(kernel_type),sizeof(int),1,modelfl);
|
||||
|
||||
{// ignore these
|
||||
int poly_degree;
|
||||
nread=fread(&(poly_degree),sizeof(int),1,modelfl);
|
||||
|
||||
double rbf_gamma;
|
||||
nread=fread(&(rbf_gamma),sizeof(double), 1, modelfl);
|
||||
double coef_lin;
|
||||
nread=fread(&(coef_lin),sizeof(double),1,modelfl);
|
||||
double coef_const;
|
||||
nread=fread(&(coef_const),sizeof(double),1,modelfl);
|
||||
int l;
|
||||
nread=fread(&l,sizeof(int),1,modelfl);
|
||||
CV_Assert(l >= 0 && l < 0xFFFF);
|
||||
char* custom = new char[l];
|
||||
nread=fread(custom,sizeof(char),l,modelfl);
|
||||
delete[] custom;
|
||||
}
|
||||
int totwords;
|
||||
nread=fread(&(totwords),sizeof(int),1,modelfl);
|
||||
{// ignore these
|
||||
int totdoc;
|
||||
nread=fread(&(totdoc),sizeof(int),1,modelfl);
|
||||
int sv_num;
|
||||
nread=fread(&(sv_num), sizeof(int),1,modelfl);
|
||||
}
|
||||
|
||||
double linearbias;
|
||||
nread=fread(&linearbias, sizeof(double), 1, modelfl);
|
||||
|
||||
std::vector<float> detector;
|
||||
detector.clear();
|
||||
if(kernel_type == 0) { /* linear kernel */
|
||||
/* save linear wts also */
|
||||
CV_Assert(totwords + 1 > 0 && totwords < 0xFFFF);
|
||||
double *linearwt = new double[totwords+1];
|
||||
int length = totwords;
|
||||
nread = fread(linearwt, sizeof(double), totwords + 1, modelfl);
|
||||
if(nread != static_cast<size_t>(length) + 1) {
|
||||
delete [] linearwt;
|
||||
fclose(modelfl);
|
||||
CV_THROW (Exception());
|
||||
}
|
||||
|
||||
for(int i = 0; i < length; i++)
|
||||
detector.push_back((float)linearwt[i]);
|
||||
|
||||
detector.push_back((float)-linearbias);
|
||||
setSVMDetector(detector);
|
||||
delete [] linearwt;
|
||||
} else {
|
||||
fclose(modelfl);
|
||||
CV_THROW (Exception());
|
||||
}
|
||||
fclose(modelfl);
|
||||
}
|
||||
|
||||
void HOGDescriptor::groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
@ -553,15 +553,15 @@ public:
|
||||
ts(cvtest::TS::ptr()), failed(false)
|
||||
{ }
|
||||
|
||||
virtual void computeGradient(const Mat& img, Mat& grad, Mat& qangle,
|
||||
virtual void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray qangle,
|
||||
Size paddingTL, Size paddingBR) const;
|
||||
|
||||
virtual void detect(const Mat& img,
|
||||
virtual void detect(InputArray img,
|
||||
vector<Point>& hits, vector<double>& weights, double hitThreshold = 0.0,
|
||||
Size winStride = Size(), Size padding = Size(),
|
||||
const vector<Point>& locations = vector<Point>()) const;
|
||||
|
||||
virtual void detect(const Mat& img, vector<Point>& hits, double hitThreshold = 0.0,
|
||||
virtual void detect(InputArray img, vector<Point>& hits, double hitThreshold = 0.0,
|
||||
Size winStride = Size(), Size padding = Size(),
|
||||
const vector<Point>& locations = vector<Point>()) const;
|
||||
|
||||
@ -985,7 +985,7 @@ inline bool HOGDescriptorTester::is_failed() const
|
||||
|
||||
static inline int gcd(int a, int b) { return (a % b == 0) ? b : gcd (b, a % b); }
|
||||
|
||||
void HOGDescriptorTester::detect(const Mat& img,
|
||||
void HOGDescriptorTester::detect(InputArray _img,
|
||||
vector<Point>& hits, vector<double>& weights, double hitThreshold,
|
||||
Size winStride, Size padding, const vector<Point>& locations) const
|
||||
{
|
||||
@ -996,6 +996,7 @@ void HOGDescriptorTester::detect(const Mat& img,
|
||||
if( svmDetector.empty() )
|
||||
return;
|
||||
|
||||
Mat img = _img.getMat();
|
||||
if( winStride == Size() )
|
||||
winStride = cellSize;
|
||||
Size cacheStride(gcd(winStride.width, blockStride.width),
|
||||
@ -1085,7 +1086,7 @@ void HOGDescriptorTester::detect(const Mat& img,
|
||||
}
|
||||
}
|
||||
|
||||
void HOGDescriptorTester::detect(const Mat& img, vector<Point>& hits, double hitThreshold,
|
||||
void HOGDescriptorTester::detect(InputArray img, vector<Point>& hits, double hitThreshold,
|
||||
Size winStride, Size padding, const vector<Point>& locations) const
|
||||
{
|
||||
vector<double> weightsV;
|
||||
@ -1166,15 +1167,19 @@ void HOGDescriptorTester::compute(InputArray _img, vector<float>& descriptors,
|
||||
}
|
||||
}
|
||||
|
||||
void HOGDescriptorTester::computeGradient(const Mat& img, Mat& grad, Mat& qangle,
|
||||
void HOGDescriptorTester::computeGradient(InputArray _img, InputOutputArray _grad, InputOutputArray _qangle,
|
||||
Size paddingTL, Size paddingBR) const
|
||||
{
|
||||
Mat img = _img.getMat();
|
||||
CV_Assert( img.type() == CV_8U || img.type() == CV_8UC3 );
|
||||
|
||||
Size gradsize(img.cols + paddingTL.width + paddingBR.width,
|
||||
img.rows + paddingTL.height + paddingBR.height);
|
||||
grad.create(gradsize, CV_32FC2); // <magnitude*(1-alpha), magnitude*alpha>
|
||||
qangle.create(gradsize, CV_8UC2); // [0..nbins-1] - quantized gradient orientation
|
||||
_grad.create(gradsize, CV_32FC2); // <magnitude*(1-alpha), magnitude*alpha>
|
||||
_qangle.create(gradsize, CV_8UC2); // [0..nbins-1] - quantized gradient orientation
|
||||
Mat grad = _grad.getMat();
|
||||
Mat qangle = _qangle.getMat();
|
||||
|
||||
Size wholeSize;
|
||||
Point roiofs;
|
||||
img.locateROI(wholeSize, roiofs);
|
||||
|
Loading…
Reference in New Issue
Block a user