Merge pull request #18707 from alalek:imgproc_drop_lsd

This commit is contained in:
Alexander Alekhin 2020-11-07 17:29:21 +00:00
commit 1088d95c50
3 changed files with 0 additions and 763 deletions

View File

@ -480,14 +480,6 @@ enum HoughModes {
HOUGH_GRADIENT_ALT = 4, //!< variation of HOUGH_GRADIENT to get better accuracy HOUGH_GRADIENT_ALT = 4, //!< variation of HOUGH_GRADIENT to get better accuracy
}; };
//! Variants of Line Segment %Detector
enum LineSegmentDetectorModes {
LSD_REFINE_NONE = 0, //!< No refinement applied
LSD_REFINE_STD = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations.
LSD_REFINE_ADV = 2 //!< Advanced refinement. Number of false alarms is calculated, lines are
//!< refined through increase of precision, decrement in size, etc.
};
//! @} imgproc_feature //! @} imgproc_feature
/** Histogram comparison methods /** Histogram comparison methods
@ -1251,88 +1243,6 @@ protected:
//! @} imgproc_subdiv2d //! @} imgproc_subdiv2d
//! @addtogroup imgproc_feature
//! @{
/** @brief Line segment detector class
following the algorithm described at @cite Rafael12 .
@note Implementation has been removed due original code license conflict
*/
class CV_EXPORTS_W LineSegmentDetector : public Algorithm
{
public:
/** @brief Finds lines in the input image.
This is the output of the default parameters of the algorithm on the above shown image.
![image](pics/building_lsd.png)
@param _image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use:
`lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);`
@param _lines A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line. Where
Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly
oriented depending on the gradient.
@param width Vector of widths of the regions, where the lines are found. E.g. Width of line.
@param prec Vector of precisions with which the lines are found.
@param nfa Vector containing number of false alarms in the line region, with precision of 10%. The
bigger the value, logarithmically better the detection.
- -1 corresponds to 10 mean false alarms
- 0 corresponds to 1 mean false alarm
- 1 corresponds to 0.1 mean false alarms
This vector will be calculated only when the objects type is #LSD_REFINE_ADV.
*/
CV_WRAP virtual void detect(InputArray _image, OutputArray _lines,
OutputArray width = noArray(), OutputArray prec = noArray(),
OutputArray nfa = noArray()) = 0;
/** @brief Draws the line segments on a given image.
@param _image The image, where the lines will be drawn. Should be bigger or equal to the image,
where the lines were found.
@param lines A vector of the lines that needed to be drawn.
*/
CV_WRAP virtual void drawSegments(InputOutputArray _image, InputArray lines) = 0;
/** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels.
@param size The size of the image, where lines1 and lines2 were found.
@param lines1 The first group of lines that needs to be drawn. It is visualized in blue color.
@param lines2 The second group of lines. They visualized in red color.
@param _image Optional image, where the lines will be drawn. The image should be color(3-channel)
in order for lines1 and lines2 to be drawn in the above mentioned colors.
*/
CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) = 0;
virtual ~LineSegmentDetector() { }
};
/** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it.
The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
to edit those, as to tailor it for their own application.
@param _refine The way found lines will be refined, see #LineSegmentDetectorModes
@param _scale The scale of the image that will be used to find the lines. Range (0..1].
@param _sigma_scale Sigma for Gaussian filter. It is computed as sigma = _sigma_scale/_scale.
@param _quant Bound to the quantization error on the gradient norm.
@param _ang_th Gradient angle tolerance in degrees.
@param _log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement
is chosen.
@param _density_th Minimal density of aligned region points in the enclosing rectangle.
@param _n_bins Number of bins in pseudo-ordering of gradient modulus.
@note Implementation has been removed due original code license conflict
*/
CV_EXPORTS_W Ptr<LineSegmentDetector> createLineSegmentDetector(
int _refine = LSD_REFINE_STD, double _scale = 0.8,
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
//! @} imgproc_feature
//! @addtogroup imgproc_filter //! @addtogroup imgproc_filter
//! @{ //! @{

View File

@ -1,264 +0,0 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <vector>
#if defined(_MSC_VER)
# pragma warning(disable:4702) // unreachable code
#endif
namespace cv {
class LineSegmentDetectorImpl CV_FINAL : public LineSegmentDetector
{
public:
/**
* Create a LineSegmentDetectorImpl object. Specifying scale, number of subdivisions for the image, should the lines be refined and other constants as follows:
*
* @param _refine How should the lines found be refined?
* LSD_REFINE_NONE - No refinement applied.
* LSD_REFINE_STD - Standard refinement is applied. E.g. breaking arches into smaller line approximations.
* LSD_REFINE_ADV - Advanced refinement. Number of false alarms is calculated,
* lines are refined through increase of precision, decrement in size, etc.
* @param _scale The scale of the image that will be used to find the lines. Range (0..1].
* @param _sigma_scale Sigma for Gaussian filter is computed as sigma = _sigma_scale/_scale.
* @param _quant Bound to the quantization error on the gradient norm.
* @param _ang_th Gradient angle tolerance in degrees.
* @param _log_eps Detection threshold: -log10(NFA) > _log_eps
* @param _density_th Minimal density of aligned region points in rectangle.
* @param _n_bins Number of bins in pseudo-ordering of gradient modulus.
*/
LineSegmentDetectorImpl(int _refine = LSD_REFINE_STD, double _scale = 0.8,
double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5,
double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024);
/**
* Detect lines in the input image.
*
* @param _image A grayscale(CV_8UC1) input image.
* If only a roi needs to be selected, use
* lsd_ptr->detect(image(roi), ..., lines);
* lines += Scalar(roi.x, roi.y, roi.x, roi.y);
* @param _lines Return: A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line.
* Where Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end.
* Returned lines are strictly oriented depending on the gradient.
* @param width Return: Vector of widths of the regions, where the lines are found. E.g. Width of line.
* @param prec Return: Vector of precisions with which the lines are found.
* @param nfa Return: Vector containing number of false alarms in the line region, with precision of 10%.
* The bigger the value, logarithmically better the detection.
* * -1 corresponds to 10 mean false alarms
* * 0 corresponds to 1 mean false alarm
* * 1 corresponds to 0.1 mean false alarms
* This vector will be calculated _only_ when the objects type is REFINE_ADV
*/
void detect(InputArray _image, OutputArray _lines,
OutputArray width = noArray(), OutputArray prec = noArray(),
OutputArray nfa = noArray()) CV_OVERRIDE;
/**
* Draw lines on the given canvas.
*
* @param image The image, where lines will be drawn.
* Should have the size of the image, where the lines were found
* @param lines The lines that need to be drawn
*/
void drawSegments(InputOutputArray _image, InputArray lines) CV_OVERRIDE;
/**
* Draw both vectors on the image canvas. Uses blue for lines 1 and red for lines 2.
*
* @param size The size of the image, where lines1 and lines2 were found.
* @param lines1 The first lines that need to be drawn. Color - Blue.
* @param lines2 The second lines that need to be drawn. Color - Red.
* @param image An optional image, where lines will be drawn.
* Should have the size of the image, where the lines were found
* @return The number of mismatching pixels between lines1 and lines2.
*/
int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) CV_OVERRIDE;
private:
LineSegmentDetectorImpl& operator= (const LineSegmentDetectorImpl&); // to quiet MSVC
};
/////////////////////////////////////////////////////////////////////////////////////////
CV_EXPORTS Ptr<LineSegmentDetector> createLineSegmentDetector(
int _refine, double _scale, double _sigma_scale, double _quant, double _ang_th,
double _log_eps, double _density_th, int _n_bins)
{
return makePtr<LineSegmentDetectorImpl>(
_refine, _scale, _sigma_scale, _quant, _ang_th,
_log_eps, _density_th, _n_bins);
}
/////////////////////////////////////////////////////////////////////////////////////////
LineSegmentDetectorImpl::LineSegmentDetectorImpl(int _refine, double _scale, double _sigma_scale, double _quant,
double _ang_th, double _log_eps, double _density_th, int _n_bins)
{
CV_Assert(_scale > 0 && _sigma_scale > 0 && _quant >= 0 &&
_ang_th > 0 && _ang_th < 180 && _density_th >= 0 && _density_th < 1 &&
_n_bins > 0);
CV_UNUSED(_refine); CV_UNUSED(_log_eps);
CV_Error(Error::StsNotImplemented, "Implementation has been removed due original code license issues");
}
void LineSegmentDetectorImpl::detect(InputArray _image, OutputArray _lines,
OutputArray _width, OutputArray _prec, OutputArray _nfa)
{
CV_INSTRUMENT_REGION();
CV_UNUSED(_image); CV_UNUSED(_lines);
CV_UNUSED(_width); CV_UNUSED(_prec); CV_UNUSED(_nfa);
CV_Error(Error::StsNotImplemented, "Implementation has been removed due original code license issues");
}
void LineSegmentDetectorImpl::drawSegments(InputOutputArray _image, InputArray lines)
{
CV_INSTRUMENT_REGION();
CV_Assert(!_image.empty() && (_image.channels() == 1 || _image.channels() == 3));
if (_image.channels() == 1)
{
cvtColor(_image, _image, COLOR_GRAY2BGR);
}
Mat _lines = lines.getMat();
const int N = _lines.checkVector(4);
CV_Assert(_lines.depth() == CV_32F || _lines.depth() == CV_32S);
// Draw segments
if (_lines.depth() == CV_32F)
{
for (int i = 0; i < N; ++i)
{
const Vec4f& v = _lines.at<Vec4f>(i);
const Point2f b(v[0], v[1]);
const Point2f e(v[2], v[3]);
line(_image, b, e, Scalar(0, 0, 255), 1);
}
}
else
{
for (int i = 0; i < N; ++i)
{
const Vec4i& v = _lines.at<Vec4i>(i);
const Point2i b(v[0], v[1]);
const Point2i e(v[2], v[3]);
line(_image, b, e, Scalar(0, 0, 255), 1);
}
}
}
int LineSegmentDetectorImpl::compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image)
{
CV_INSTRUMENT_REGION();
Size sz = size;
if (_image.needed() && _image.size() != size) sz = _image.size();
CV_Assert(!sz.empty());
Mat_<uchar> I1 = Mat_<uchar>::zeros(sz);
Mat_<uchar> I2 = Mat_<uchar>::zeros(sz);
Mat _lines1 = lines1.getMat();
Mat _lines2 = lines2.getMat();
const int N1 = _lines1.checkVector(4);
const int N2 = _lines2.checkVector(4);
CV_Assert(_lines1.depth() == CV_32F || _lines1.depth() == CV_32S);
CV_Assert(_lines2.depth() == CV_32F || _lines2.depth() == CV_32S);
if (_lines1.depth() == CV_32S)
_lines1.convertTo(_lines1, CV_32F);
if (_lines2.depth() == CV_32S)
_lines2.convertTo(_lines2, CV_32F);
// Draw segments
for(int i = 0; i < N1; ++i)
{
const Point2f b(_lines1.at<Vec4f>(i)[0], _lines1.at<Vec4f>(i)[1]);
const Point2f e(_lines1.at<Vec4f>(i)[2], _lines1.at<Vec4f>(i)[3]);
line(I1, b, e, Scalar::all(255), 1);
}
for(int i = 0; i < N2; ++i)
{
const Point2f b(_lines2.at<Vec4f>(i)[0], _lines2.at<Vec4f>(i)[1]);
const Point2f e(_lines2.at<Vec4f>(i)[2], _lines2.at<Vec4f>(i)[3]);
line(I2, b, e, Scalar::all(255), 1);
}
// Count the pixels that don't agree
Mat Ixor;
bitwise_xor(I1, I2, Ixor);
int N = countNonZero(Ixor);
if (_image.needed())
{
CV_Assert(_image.channels() == 3);
Mat img = _image.getMatRef();
CV_Assert(img.isContinuous() && I1.isContinuous() && I2.isContinuous());
for (unsigned int i = 0; i < I1.total(); ++i)
{
uchar i1 = I1.ptr()[i];
uchar i2 = I2.ptr()[i];
if (i1 || i2)
{
unsigned int base_idx = i * 3;
if (i1) img.ptr()[base_idx] = 255;
else img.ptr()[base_idx] = 0;
img.ptr()[base_idx + 1] = 0;
if (i2) img.ptr()[base_idx + 2] = 255;
else img.ptr()[base_idx + 2] = 0;
}
}
}
return N;
}
} // namespace cv

View File

@ -1,409 +0,0 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
namespace opencv_test { namespace {
#if 0 // LSD implementation has been removed due original code license issues
const Size img_size(640, 480);
const int LSD_TEST_SEED = 0x134679;
const int EPOCHS = 20;
class LSDBase : public testing::Test
{
public:
LSDBase() { }
protected:
Mat test_image;
vector<Vec4f> lines;
RNG rng;
int passedtests;
void GenerateWhiteNoise(Mat& image);
void GenerateConstColor(Mat& image);
void GenerateLines(Mat& image, const unsigned int numLines);
void GenerateRotatedRect(Mat& image);
virtual void SetUp();
};
class Imgproc_LSD_ADV: public LSDBase
{
public:
Imgproc_LSD_ADV() { }
protected:
};
class Imgproc_LSD_STD: public LSDBase
{
public:
Imgproc_LSD_STD() { }
protected:
};
class Imgproc_LSD_NONE: public LSDBase
{
public:
Imgproc_LSD_NONE() { }
protected:
};
class Imgproc_LSD_Common : public LSDBase
{
public:
Imgproc_LSD_Common() { }
protected:
};
void LSDBase::GenerateWhiteNoise(Mat& image)
{
image = Mat(img_size, CV_8UC1);
rng.fill(image, RNG::UNIFORM, 0, 256);
}
void LSDBase::GenerateConstColor(Mat& image)
{
image = Mat(img_size, CV_8UC1, Scalar::all(rng.uniform(0, 256)));
}
void LSDBase::GenerateLines(Mat& image, const unsigned int numLines)
{
image = Mat(img_size, CV_8UC1, Scalar::all(rng.uniform(0, 128)));
for(unsigned int i = 0; i < numLines; ++i)
{
int y = rng.uniform(10, img_size.width - 10);
Point p1(y, 10);
Point p2(y, img_size.height - 10);
line(image, p1, p2, Scalar(255), 3);
}
}
void LSDBase::GenerateRotatedRect(Mat& image)
{
image = Mat::zeros(img_size, CV_8UC1);
Point center(rng.uniform(img_size.width/4, img_size.width*3/4),
rng.uniform(img_size.height/4, img_size.height*3/4));
Size rect_size(rng.uniform(img_size.width/8, img_size.width/6),
rng.uniform(img_size.height/8, img_size.height/6));
float angle = rng.uniform(0.f, 360.f);
Point2f vertices[4];
RotatedRect rRect = RotatedRect(center, rect_size, angle);
rRect.points(vertices);
for (int i = 0; i < 4; i++)
{
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(255), 3);
}
}
void LSDBase::SetUp()
{
lines.clear();
test_image = Mat();
rng = RNG(LSD_TEST_SEED);
passedtests = 0;
}
TEST_F(Imgproc_LSD_ADV, whiteNoise)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateWhiteNoise(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_ADV);
detector->detect(test_image, lines);
if(40u >= lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_ADV, constColor)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateConstColor(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_ADV);
detector->detect(test_image, lines);
if(0u == lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_ADV, lines)
{
for (int i = 0; i < EPOCHS; ++i)
{
const unsigned int numOfLines = 1;
GenerateLines(test_image, numOfLines);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_ADV);
detector->detect(test_image, lines);
if(numOfLines * 2 == lines.size()) ++passedtests; // * 2 because of Gibbs effect
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_ADV, rotatedRect)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateRotatedRect(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_ADV);
detector->detect(test_image, lines);
if(2u <= lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_STD, whiteNoise)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateWhiteNoise(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_STD);
detector->detect(test_image, lines);
if(50u >= lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_STD, constColor)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateConstColor(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_STD);
detector->detect(test_image, lines);
if(0u == lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_STD, lines)
{
for (int i = 0; i < EPOCHS; ++i)
{
const unsigned int numOfLines = 1;
GenerateLines(test_image, numOfLines);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_STD);
detector->detect(test_image, lines);
if(numOfLines * 2 == lines.size()) ++passedtests; // * 2 because of Gibbs effect
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_STD, rotatedRect)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateRotatedRect(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_STD);
detector->detect(test_image, lines);
if(4u <= lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_NONE, whiteNoise)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateWhiteNoise(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_NONE);
detector->detect(test_image, lines);
if(50u >= lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_NONE, constColor)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateConstColor(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_NONE);
detector->detect(test_image, lines);
if(0u == lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_NONE, lines)
{
for (int i = 0; i < EPOCHS; ++i)
{
const unsigned int numOfLines = 1;
GenerateLines(test_image, numOfLines);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_NONE);
detector->detect(test_image, lines);
if(numOfLines * 2 == lines.size()) ++passedtests; // * 2 because of Gibbs effect
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_NONE, rotatedRect)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateRotatedRect(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_NONE);
detector->detect(test_image, lines);
if(8u <= lines.size()) ++passedtests;
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_Common, supportsVec4iResult)
{
for (int i = 0; i < EPOCHS; ++i)
{
GenerateWhiteNoise(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_STD);
detector->detect(test_image, lines);
std::vector<Vec4i> linesVec4i;
detector->detect(test_image, linesVec4i);
if (lines.size() == linesVec4i.size())
{
bool pass = true;
for (size_t lineIndex = 0; pass && lineIndex < lines.size(); lineIndex++)
{
for (int ch = 0; ch < 4; ch++)
{
if (cv::saturate_cast<int>(lines[lineIndex][ch]) != linesVec4i[lineIndex][ch])
{
pass = false;
break;
}
}
}
if (pass)
++passedtests;
}
}
ASSERT_EQ(EPOCHS, passedtests);
}
TEST_F(Imgproc_LSD_Common, drawSegmentsVec4f)
{
GenerateConstColor(test_image);
std::vector<Vec4f> linesVec4f;
RNG cr(0); // constant seed for deterministic test
for (int j = 0; j < 10; j++) {
linesVec4f.push_back(
Vec4f(float(cr) * test_image.cols, float(cr) * test_image.rows, float(cr) * test_image.cols, float(cr) * test_image.rows));
}
Mat actual = Mat::zeros(test_image.size(), CV_8UC3);
Mat expected = Mat::zeros(test_image.size(), CV_8UC3);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_STD);
detector->drawSegments(actual, linesVec4f);
// something should be drawn
ASSERT_EQ(sum(actual == expected) != Scalar::all(0), true);
for (size_t lineIndex = 0; lineIndex < linesVec4f.size(); lineIndex++)
{
const Vec4f &v = linesVec4f[lineIndex];
const Point2f b(v[0], v[1]);
const Point2f e(v[2], v[3]);
line(expected, b, e, Scalar(0, 0, 255), 1);
}
ASSERT_EQ(sum(actual != expected) == Scalar::all(0), true);
}
TEST_F(Imgproc_LSD_Common, drawSegmentsVec4i)
{
GenerateConstColor(test_image);
std::vector<Vec4i> linesVec4i;
RNG cr(0); // constant seed for deterministic test
for (int j = 0; j < 10; j++) {
linesVec4i.push_back(
Vec4i(cr(test_image.cols), cr(test_image.rows), cr(test_image.cols), cr(test_image.rows)));
}
Mat actual = Mat::zeros(test_image.size(), CV_8UC3);
Mat expected = Mat::zeros(test_image.size(), CV_8UC3);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_STD);
detector->drawSegments(actual, linesVec4i);
// something should be drawn
ASSERT_EQ(sum(actual == expected) != Scalar::all(0), true);
for (size_t lineIndex = 0; lineIndex < linesVec4i.size(); lineIndex++)
{
const Vec4f &v = linesVec4i[lineIndex];
const Point2f b(v[0], v[1]);
const Point2f e(v[2], v[3]);
line(expected, b, e, Scalar(0, 0, 255), 1);
}
ASSERT_EQ(sum(actual != expected) == Scalar::all(0), true);
}
TEST_F(Imgproc_LSD_Common, compareSegmentsVec4f)
{
GenerateConstColor(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_STD);
std::vector<Vec4f> lines1, lines2;
lines1.push_back(Vec4f(0, 0, 100, 200));
lines2.push_back(Vec4f(0, 0, 100, 200));
int result1 = detector->compareSegments(test_image.size(), lines1, lines2);
ASSERT_EQ(result1, 0);
lines2.push_back(Vec4f(100, 100, 110, 100));
int result2 = detector->compareSegments(test_image.size(), lines1, lines2);
ASSERT_EQ(result2, 11);
}
TEST_F(Imgproc_LSD_Common, compareSegmentsVec4i)
{
GenerateConstColor(test_image);
Ptr<LineSegmentDetector> detector = createLineSegmentDetector(LSD_REFINE_STD);
std::vector<Vec4i> lines1, lines2;
lines1.push_back(Vec4i(0, 0, 100, 200));
lines2.push_back(Vec4i(0, 0, 100, 200));
int result1 = detector->compareSegments(test_image.size(), lines1, lines2);
ASSERT_EQ(result1, 0);
lines2.push_back(Vec4i(100, 100, 110, 100));
int result2 = detector->compareSegments(test_image.size(), lines1, lines2);
ASSERT_EQ(result2, 11);
}
#endif
}} // namespace