mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 13:10:12 +08:00
added getDescriptors support into gpu HOG, also added commented test for this feature
This commit is contained in:
parent
515bdfa71e
commit
11c0c5bf85
@ -1001,14 +1001,13 @@ namespace cv
|
||||
void setSVMDetector(const vector<float>& detector);
|
||||
bool checkDetectorSize() const;
|
||||
|
||||
void computeBlockHistograms(const GpuMat& img);
|
||||
void detect(const GpuMat& img, vector<Point>& found_locations, double hit_threshold=0,
|
||||
Size win_stride=Size(), Size padding=Size());
|
||||
void detectMultiScale(const GpuMat& img, vector<Rect>& found_locations,
|
||||
double hit_threshold=0, Size win_stride=Size(), Size padding=Size(),
|
||||
double scale0=1.05, int group_threshold=2);
|
||||
|
||||
////TODO: test it
|
||||
//void getDescriptors(const GpuMat& img, Size win_stride, vector<GpuMat>& descriptors)
|
||||
void getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors);
|
||||
|
||||
Size win_size;
|
||||
Size block_size;
|
||||
@ -1035,7 +1034,6 @@ namespace cv
|
||||
static int numPartsWithin(int size, int part_size, int stride);
|
||||
static Size numPartsWithin(Size size, Size part_size, Size stride);
|
||||
|
||||
void computeBlockHistograms(const GpuMat& img);
|
||||
void computeGradient(const GpuMat& img, GpuMat& grad, GpuMat& qangle);
|
||||
|
||||
GpuMat grad, qangle;
|
||||
|
@ -397,11 +397,9 @@ __global__ void classify_hists_kernel_many_blocks(const int img_win_width, const
|
||||
}
|
||||
|
||||
|
||||
// We only support win_stride_x == block_stride_x, win_stride_y == block_stride_y
|
||||
void classify_hists(int win_height, int win_width, int block_stride_y, int block_stride_x,
|
||||
int win_stride_y, int win_stride_x,
|
||||
int height, int width, float* block_hists, float* coefs,
|
||||
float free_coef, float threshold, unsigned char* labels)
|
||||
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
|
||||
float* coefs, float free_coef, float threshold, unsigned char* labels)
|
||||
{
|
||||
const int nthreads = 256;
|
||||
const int nblocks = 1;
|
||||
@ -425,8 +423,54 @@ void classify_hists(int win_height, int win_width, int block_stride_y, int block
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// Extract descriptors
|
||||
|
||||
//------------------------------------------------------------
|
||||
|
||||
template <int nthreads>
|
||||
__global__ void extract_descriptors_kernel(const int img_win_width, const int img_block_width,
|
||||
const int win_block_stride_x, const int win_block_stride_y,
|
||||
const float* block_hists, PtrElemStepf descriptors)
|
||||
{
|
||||
// Get left top corner of the window in src
|
||||
const float* hist = block_hists + (blockIdx.y * win_block_stride_y * img_block_width +
|
||||
blockIdx.x * win_block_stride_x) * cblock_hist_size;
|
||||
|
||||
// Get left top corner of the window in dst
|
||||
float* descriptor = descriptors.ptr(blockIdx.y * gridDim.x + blockIdx.x);
|
||||
|
||||
// Copy elements from src to dst
|
||||
for (int i = threadIdx.x; i < cdescr_size; i += nthreads)
|
||||
{
|
||||
int offset_y = i / cdescr_width;
|
||||
int offset_x = i - offset_y * cdescr_width;
|
||||
descriptor[i] = hist[offset_y * img_block_width * cblock_hist_size + offset_x];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void extract_descriptors(int win_height, int win_width, int block_stride_y, int block_stride_x,
|
||||
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
|
||||
DevMem2Df descriptors)
|
||||
{
|
||||
const int nthreads = 256;
|
||||
|
||||
int win_block_stride_x = win_stride_x / block_stride_x;
|
||||
int win_block_stride_y = win_stride_y / block_stride_y;
|
||||
int img_win_width = (width - win_width + win_stride_x) / win_stride_x;
|
||||
int img_win_height = (height - win_height + win_stride_y) / win_stride_y;
|
||||
dim3 threads(nthreads, 1);
|
||||
dim3 grid(img_win_width, img_win_height);
|
||||
|
||||
int img_block_width = (width - CELLS_PER_BLOCK_X * CELL_WIDTH + block_stride_x) /
|
||||
block_stride_x;
|
||||
extract_descriptors_kernel<nthreads><<<grid, threads>>>(
|
||||
img_win_width, img_block_width, win_block_stride_x, win_block_stride_y,
|
||||
block_hists, descriptors);
|
||||
cudaSafeCall(cudaThreadSynchronize());
|
||||
}
|
||||
|
||||
//----------------------------------------------------------------------------
|
||||
// Gradients computation
|
||||
|
||||
|
||||
@ -481,7 +525,7 @@ __global__ void compute_gradients_8UC4_kernel(int height, int width, const PtrEl
|
||||
|
||||
float3 dx = make_float3(sqrtf(b.x) - sqrtf(a.x),
|
||||
sqrtf(b.y) - sqrtf(a.y),
|
||||
sqrtf(b.z) - sqrtf(a.z));
|
||||
sqrtf(b.z) - sqrtf(a.z));
|
||||
float3 dy = make_float3(0.f, 0.f, 0.f);
|
||||
|
||||
if (blockIdx.y > 0 && blockIdx.y < height - 1)
|
||||
|
@ -51,8 +51,10 @@ double cv::gpu::HOGDescriptor::getWinSigma() const { throw_nogpu(); return 0; }
|
||||
bool cv::gpu::HOGDescriptor::checkDetectorSize() const { throw_nogpu(); return false; }
|
||||
void cv::gpu::HOGDescriptor::setSVMDetector(const vector<float>&) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::computeGradient(const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::computeBlockHistograms(const GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::detect(const GpuMat&, vector<Point>&, double, Size, Size) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::detectMultiScale(const GpuMat&, vector<Rect>&, double, Size, Size, double, int) { throw_nogpu(); }
|
||||
void cv::gpu::HOGDescriptor::getDescriptors(const GpuMat&, Size, GpuMat&) { throw_nogpu(); }
|
||||
std::vector<float> cv::gpu::HOGDescriptor::getDefaultPeopleDetector() { throw_nogpu(); return std::vector<float>(); }
|
||||
std::vector<float> cv::gpu::HOGDescriptor::getPeopleDetector_48x96() { throw_nogpu(); return std::vector<float>(); }
|
||||
std::vector<float> cv::gpu::HOGDescriptor::getPeopleDetector_64x128() { throw_nogpu(); return std::vector<float>(); }
|
||||
@ -76,6 +78,10 @@ void classify_hists(int win_height, int win_width, int block_stride_y,
|
||||
int width, float* block_hists, float* coefs, float free_coef,
|
||||
float threshold, unsigned char* labels);
|
||||
|
||||
void extract_descriptors(int win_height, int win_width, int block_stride_y, int block_stride_x,
|
||||
int win_stride_y, int win_stride_x, int height, int width, float* block_hists,
|
||||
cv::gpu::DevMem2Df descriptors);
|
||||
|
||||
void compute_gradients_8UC1(int nbins, int height, int width, const cv::gpu::DevMem2D& img,
|
||||
float angle_scale, cv::gpu::DevMem2Df grad, cv::gpu::DevMem2D qangle);
|
||||
void compute_gradients_8UC4(int nbins, int height, int width, const cv::gpu::DevMem2D& img,
|
||||
@ -212,39 +218,23 @@ void cv::gpu::HOGDescriptor::computeBlockHistograms(const GpuMat& img)
|
||||
}
|
||||
|
||||
|
||||
////TODO: test it
|
||||
//void cv::gpu::HOGDescriptor::getDescriptors(const GpuMat& img, Size win_stride,
|
||||
// vector<GpuMat>& descriptors)
|
||||
//{
|
||||
// CV_Assert(win_stride.width % block_stride.width == 0 &&
|
||||
// win_stride.height % block_stride.height == 0);
|
||||
//
|
||||
// computeBlockHistograms(img);
|
||||
//
|
||||
// Size blocks_per_img = numPartsWithin(img.size(), block_size, block_stride);
|
||||
// GpuMat hists_reshaped = block_hists.reshape(0, blocks_per_img.height);
|
||||
//
|
||||
// const int block_hist_size = getBlockHistogramSize();
|
||||
// Size blocks_per_win = numPartsWithin(win_size, block_size, block_stride);
|
||||
// Size wins_per_img = numPartsWithin(img.size(), win_size, win_stride);
|
||||
//
|
||||
// descriptors.resize(wins_per_img.area());
|
||||
// for (int i = 0; i < wins_per_img.height; ++i)
|
||||
// {
|
||||
// for (int j = 0; j < wins_per_img.width; ++j)
|
||||
// {
|
||||
// Range rows;
|
||||
// rows.start = i * (blocks_per_win.height + 1);
|
||||
// rows.end = rows.start + blocks_per_win.height;
|
||||
//
|
||||
// Range cols;
|
||||
// cols.start = j * (blocks_per_win.width + 1) * block_hist_size;
|
||||
// cols.end = cols.start + blocks_per_win.width * block_hist_size;
|
||||
//
|
||||
// descriptors[i * wins_per_img.width + j] = hists_reshaped(rows, cols);
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
void cv::gpu::HOGDescriptor::getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors)
|
||||
{
|
||||
CV_Assert(win_stride.width % block_stride.width == 0 &&
|
||||
win_stride.height % block_stride.height == 0);
|
||||
|
||||
computeBlockHistograms(img);
|
||||
|
||||
const int block_hist_size = getBlockHistogramSize();
|
||||
Size blocks_per_win = numPartsWithin(win_size, block_size, block_stride);
|
||||
Size wins_per_img = numPartsWithin(img.size(), win_size, win_stride);
|
||||
|
||||
descriptors.create(wins_per_img.area(), blocks_per_win.area() * block_hist_size, CV_32F);
|
||||
|
||||
hog::extract_descriptors(win_size.height, win_size.width, block_stride.height, block_stride.width,
|
||||
win_stride.height, win_stride.width, img.rows, img.cols, block_hists.ptr<float>(),
|
||||
descriptors);
|
||||
}
|
||||
|
||||
|
||||
void cv::gpu::HOGDescriptor::detect(const GpuMat& img, vector<Point>& hits, double hit_threshold,
|
||||
|
@ -225,7 +225,11 @@ void App::RunOpencvGui()
|
||||
vc >> frame;
|
||||
}
|
||||
else
|
||||
{
|
||||
frame = imread(settings.src);
|
||||
if (frame.empty())
|
||||
throw exception(string("Can't open image file: " + settings.src).c_str());
|
||||
}
|
||||
|
||||
Mat img_aux, img, img_to_show;
|
||||
gpu::GpuMat gpu_img;
|
||||
|
@ -51,9 +51,43 @@ using namespace std;
|
||||
ts->set_failed_test_info(err); \
|
||||
return; }
|
||||
|
||||
struct CV_GpuHogTest : public CvTest
|
||||
struct CV_GpuHogDetectionTest: public CvTest
|
||||
{
|
||||
CV_GpuHogTest() : CvTest( "GPU-HOG", "HOGDescriptor" ) {}
|
||||
CV_GpuHogDetectionTest(): CvTest( "GPU-HOG-detect", "HOGDescriptorDetection" ) {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::Mat img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/road.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
|
||||
#ifdef DUMP
|
||||
f.open((std::string(ts->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
CHECK(f.is_open(), CvTS::FAIL_GENERIC);
|
||||
#else
|
||||
f.open((std::string(ts->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
CHECK(f.is_open(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
#endif
|
||||
|
||||
// Test on color image
|
||||
cv::Mat img;
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
test(img);
|
||||
|
||||
// Test on gray image
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
test(img);
|
||||
|
||||
f.close();
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
f.close();
|
||||
if (!check_and_treat_gpu_exception(e, ts)) throw;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DUMP
|
||||
void dump(const cv::Mat& block_hists, const std::vector<cv::Point>& locations)
|
||||
@ -168,45 +202,115 @@ struct CV_GpuHogTest : public CvTest
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void run(int)
|
||||
{
|
||||
try
|
||||
{
|
||||
cv::Mat img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/road.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
|
||||
#ifdef DUMP
|
||||
f.open((std::string(ts->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
CHECK(f.is_open(), CvTS::FAIL_GENERIC);
|
||||
#else
|
||||
f.open((std::string(ts->get_data_path()) + "hog/expected_output.bin").c_str(), std::ios_base::binary);
|
||||
CHECK(f.is_open(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
#endif
|
||||
|
||||
// Test on color image
|
||||
cv::Mat img;
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
test(img);
|
||||
|
||||
// Test on gray image
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2GRAY);
|
||||
test(img);
|
||||
|
||||
f.close();
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
f.close();
|
||||
if (!check_and_treat_gpu_exception(e, ts)) throw;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef DUMP
|
||||
std::ofstream f;
|
||||
#else
|
||||
std::ifstream f;
|
||||
#endif
|
||||
|
||||
} gpu_hog_test;
|
||||
} gpu_hog_detection_test;
|
||||
|
||||
|
||||
struct CV_GpuHogGetDescriptorsTest: public CvTest
|
||||
{
|
||||
CV_GpuHogGetDescriptorsTest(): CvTest("GPU-HOG-getDescriptors", "HOGDescriptorGetDescriptors") {}
|
||||
|
||||
void run(int)
|
||||
{
|
||||
try
|
||||
{
|
||||
// Load image (e.g. train data, composed from windows)
|
||||
cv::Mat img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/train_data.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
|
||||
// Convert to C4
|
||||
cv::Mat img;
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
cv::gpu::GpuMat d_img(img);
|
||||
|
||||
cv::Size win_size(64, 128);
|
||||
cv::gpu::HOGDescriptor hog(win_size);
|
||||
|
||||
// Convert train images into feature vectors (train table)
|
||||
cv::gpu::GpuMat descriptors;
|
||||
hog.getDescriptors(d_img, win_size, descriptors);
|
||||
|
||||
// Check size of the result train table
|
||||
wins_per_img_x = 3;
|
||||
wins_per_img_y = 2;
|
||||
blocks_per_win_x = 7;
|
||||
blocks_per_win_y = 15;
|
||||
block_hist_size = 36;
|
||||
cv::Size descr_size_expected = cv::Size(blocks_per_win_x * blocks_per_win_y * block_hist_size,
|
||||
wins_per_img_x * wins_per_img_y);
|
||||
CHECK(descriptors.size() == descr_size_expected, CvTS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
/* Now we want to extract the same feature vectors, but from single images. NOTE: results will
|
||||
be defferent, due to border values interpolation. Using of many small images is slower, however we
|
||||
wont't call getDescriptors and will use computeBlockHistograms instead of. computeBlockHistograms
|
||||
works good, it can be checked in the gpu_hog sample */
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive1.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
// Everything is fine with interpolation for left top subimage
|
||||
CHECK(cv::norm(hog.block_hists, descriptors.rowRange(0, 1)) == 0.f, CvTS::FAIL_INVALID_OUTPUT);
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive2.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(hog.block_hists, descriptors.rowRange(1, 2));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative1.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(hog.block_hists, descriptors.rowRange(2, 3));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative2.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(hog.block_hists, descriptors.rowRange(3, 4));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/positive3.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(hog.block_hists, descriptors.rowRange(4, 5));
|
||||
|
||||
img_rgb = cv::imread(std::string(ts->get_data_path()) + "hog/negative3.png");
|
||||
CHECK(!img_rgb.empty(), CvTS::FAIL_MISSING_TEST_DATA);
|
||||
cv::cvtColor(img_rgb, img, CV_BGR2BGRA);
|
||||
hog.computeBlockHistograms(cv::gpu::GpuMat(img));
|
||||
compare_inner_parts(hog.block_hists, descriptors.rowRange(5, 6));
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
if (!check_and_treat_gpu_exception(e, ts)) throw;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Does not compare border value, as interpolation leads to delta
|
||||
void compare_inner_parts(cv::Mat d1, cv::Mat d2)
|
||||
{
|
||||
for (int i = 1; i < blocks_per_win_y - 1; ++i)
|
||||
for (int j = 1; j < blocks_per_win_x - 1; ++j)
|
||||
for (int k = 0; k < block_hist_size; ++k)
|
||||
{
|
||||
float a = d1.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
||||
float b = d2.at<float>(0, (i * blocks_per_win_x + j) * block_hist_size);
|
||||
CHECK(a == b, CvTS::FAIL_INVALID_OUTPUT)
|
||||
}
|
||||
}
|
||||
|
||||
int wins_per_img_x;
|
||||
int wins_per_img_y;
|
||||
int blocks_per_win_x;
|
||||
int blocks_per_win_y;
|
||||
int block_hist_size;
|
||||
} gpu_hog_get_descriptors_test;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user