mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Let part of the operators in nary_eltwise support cuda
This commit is contained in:
parent
f378f02954
commit
11d492b0b9
@ -55,6 +55,8 @@ struct Layer_Slice : public TestBaseWithParam<tuple<Backend, Target> >
|
||||
}
|
||||
};
|
||||
|
||||
static std::set<std::string> nary_eltwise_cuda_deny_ops = {"add", "equal", "greater", "less", "mean", "mul", "pow", "sub"};
|
||||
|
||||
struct Layer_NaryEltwise : public TestBaseWithParam<tuple<Backend, Target> >
|
||||
{
|
||||
void test_layer(const std::vector<int>& a_shape, const std::vector<int>& b_shape, const String op, bool isRef = false)
|
||||
@ -62,6 +64,13 @@ struct Layer_NaryEltwise : public TestBaseWithParam<tuple<Backend, Target> >
|
||||
int backendId = get<0>(GetParam());
|
||||
int targetId = get<1>(GetParam());
|
||||
|
||||
if (!isRef && backendId == DNN_BACKEND_CUDA)
|
||||
{
|
||||
if (a_shape != b_shape)
|
||||
throw SkipTestException("The test is skipped because inputs with different shapes are not supported.");
|
||||
if (nary_eltwise_cuda_deny_ops.find(op) != nary_eltwise_cuda_deny_ops.end())
|
||||
throw SkipTestException("The operator '" + op + "' is skipped because is not support with cuda currently.");
|
||||
}
|
||||
Mat a(a_shape, CV_32FC1);
|
||||
Mat b(b_shape, CV_32FC1);
|
||||
|
||||
@ -410,6 +419,9 @@ PERF_TEST_P_(Layer_ScatterND, DISABLED_ScatterND_add)
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_Slice, dnnBackendsAndTargets(false, false));
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_NaryEltwise, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
||||
#ifdef HAVE_CUDA
|
||||
INSTANTIATE_TEST_CASE_P(CUDA, Layer_NaryEltwise, testing::Values(std::make_tuple(DNN_BACKEND_CUDA, DNN_TARGET_CUDA)));
|
||||
#endif
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_Scatter, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Layer_ScatterND, testing::Values(std::make_tuple(DNN_BACKEND_OPENCV, DNN_TARGET_CPU)));
|
||||
|
||||
|
@ -4,12 +4,18 @@
|
||||
|
||||
#include "../precomp.hpp"
|
||||
#include "layers_common.hpp"
|
||||
#include "../op_cuda.hpp"
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
#include <numeric>
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
#include "../cuda4dnn/primitives/eltwise.hpp"
|
||||
using namespace cv::dnn::cuda4dnn;
|
||||
#endif
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace dnn
|
||||
@ -91,6 +97,9 @@ public:
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
if (op == OPERATION::MAX || op == OPERATION::MIN || op == OPERATION::SUM ||
|
||||
op == OPERATION::PROD || op == OPERATION::DIV)
|
||||
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA;
|
||||
return backendId == DNN_BACKEND_OPENCV;
|
||||
}
|
||||
|
||||
@ -641,6 +650,38 @@ public:
|
||||
};
|
||||
}
|
||||
|
||||
#ifdef HAVE_CUDA
|
||||
Ptr<BackendNode> initCUDA(
|
||||
void *context_,
|
||||
const std::vector<Ptr<BackendWrapper>>& inputs,
|
||||
const std::vector<Ptr<BackendWrapper>>& outputs
|
||||
) override
|
||||
{
|
||||
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
||||
|
||||
auto input_wrapper = inputs[0].dynamicCast<CUDABackendWrapper>();
|
||||
for (int i = 1; i < inputs.size(); i++)
|
||||
{
|
||||
auto from_wrapper = inputs[i].dynamicCast<CUDABackendWrapper>();
|
||||
if (input_wrapper->getShape() != from_wrapper->getShape())
|
||||
return Ptr<BackendNode>();
|
||||
}
|
||||
|
||||
auto op_ = [this] {
|
||||
switch (op) {
|
||||
case OPERATION::MAX: return cuda4dnn::EltwiseOpType::MAX;
|
||||
case OPERATION::MIN: return cuda4dnn::EltwiseOpType::MIN;
|
||||
case OPERATION::SUM: return cuda4dnn::EltwiseOpType::SUM;
|
||||
case OPERATION::PROD: return cuda4dnn::EltwiseOpType::PRODUCT;
|
||||
case OPERATION::DIV: return cuda4dnn::EltwiseOpType::DIV;
|
||||
default: CV_Error(Error::StsNotImplemented, "Other operators except MAX, MIN, SUM, PRODUCT and DIV are not supported with cuda.");
|
||||
}
|
||||
}();
|
||||
|
||||
return make_cuda_node<cuda4dnn::EltwiseOp>(preferableTarget, std::move(context->stream), op_, std::vector<float>());
|
||||
}
|
||||
#endif
|
||||
|
||||
virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
|
||||
const std::vector<std::vector<int> > &zeropoints, LayerParams& params) CV_OVERRIDE
|
||||
{
|
||||
|
@ -86,8 +86,11 @@ void Net::Impl::initCUDABackend(const std::vector<LayerPin>& blobsToKeep_)
|
||||
auto node = layerInstance->initCUDA(&context, ld.inputBlobsWrappers, ld.outputBlobsWrappers);
|
||||
ld.backendNodes[DNN_BACKEND_CUDA] = node;
|
||||
|
||||
auto cudaNode = node.dynamicCast<CUDABackendNode>();
|
||||
cudaInfo->workspace.require(cudaNode->get_workspace_memory_in_bytes());
|
||||
if(!node.empty())
|
||||
{
|
||||
auto cudaNode = node.dynamicCast<CUDABackendNode>();
|
||||
cudaInfo->workspace.require(cudaNode->get_workspace_memory_in_bytes());
|
||||
}
|
||||
}
|
||||
|
||||
if (blobsToKeep_.size() > 1)
|
||||
|
Loading…
Reference in New Issue
Block a user