mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
allow multiple detectors
This commit is contained in:
parent
469eeea370
commit
11f3927c58
@ -7,6 +7,8 @@ import sys, os, os.path, glob, math, cv2
|
||||
from datetime import datetime
|
||||
import numpy
|
||||
|
||||
plot_colors = ['b', 'r', 'g', 'c', 'm']
|
||||
|
||||
# "key" : ( b, g, r)
|
||||
bgr = { "red" : ( 0, 0, 255),
|
||||
"green" : ( 0, 255, 0),
|
||||
@ -19,7 +21,7 @@ if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description = 'Plot ROC curve using Caltech mathod of per image detection performance estimation.')
|
||||
|
||||
# positional
|
||||
parser.add_argument("cascade", help = "Path to the tested detector.")
|
||||
parser.add_argument("cascade", help = "Path to the tested detector.", nargs='+')
|
||||
parser.add_argument("input", help = "Image sequence pattern.")
|
||||
parser.add_argument("annotations", help = "Path to the annotations.")
|
||||
|
||||
@ -34,47 +36,53 @@ if __name__ == "__main__":
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# parse annotations
|
||||
print args.cascade
|
||||
# # parse annotations
|
||||
sft.initPlot()
|
||||
samples = call_parser(args.anttn_format, args.annotations)
|
||||
cascade = sft.cascade(args.min_scale, args.max_scale, args.nscales, args.cascade)
|
||||
pattern = args.input
|
||||
camera = cv2.VideoCapture(pattern)
|
||||
for idx, each in enumerate(args.cascade):
|
||||
print each
|
||||
cascade = sft.cascade(args.min_scale, args.max_scale, args.nscales, each)
|
||||
pattern = args.input
|
||||
camera = cv2.VideoCapture(pattern)
|
||||
|
||||
# for plotting over dataset
|
||||
nannotated = 0
|
||||
nframes = 0
|
||||
# for plotting over dataset
|
||||
nannotated = 0
|
||||
nframes = 0
|
||||
|
||||
confidenses = []
|
||||
tp = []
|
||||
confidenses = []
|
||||
tp = []
|
||||
|
||||
while True:
|
||||
ret, img = camera.read()
|
||||
if not ret:
|
||||
break;
|
||||
while True:
|
||||
ret, img = camera.read()
|
||||
if not ret:
|
||||
break;
|
||||
|
||||
name = pattern % (nframes,)
|
||||
_, tail = os.path.split(name)
|
||||
name = pattern % (nframes,)
|
||||
_, tail = os.path.split(name)
|
||||
|
||||
boxes = samples[tail]
|
||||
boxes = sft.norm_acpect_ratio(boxes, 0.5)
|
||||
boxes = samples[tail]
|
||||
boxes = sft.norm_acpect_ratio(boxes, 0.5)
|
||||
|
||||
nannotated = nannotated + len(boxes)
|
||||
nframes = nframes + 1
|
||||
rects, confs = cascade.detect(img, rois = None)
|
||||
nannotated = nannotated + len(boxes)
|
||||
nframes = nframes + 1
|
||||
rects, confs = cascade.detect(img, rois = None)
|
||||
|
||||
if confs is None:
|
||||
continue
|
||||
if confs is None:
|
||||
continue
|
||||
|
||||
dts = sft.convert2detections(rects, confs)
|
||||
dts = sft.convert2detections(rects, confs)
|
||||
|
||||
confs = confs.tolist()[0]
|
||||
confs.sort(lambda x, y : -1 if (x - y) > 0 else 1)
|
||||
confidenses = confidenses + confs
|
||||
confs = confs.tolist()[0]
|
||||
confs.sort(lambda x, y : -1 if (x - y) > 0 else 1)
|
||||
confidenses = confidenses + confs
|
||||
|
||||
matched = sft.match(boxes, dts)
|
||||
tp = tp + matched
|
||||
matched = sft.match(boxes, dts)
|
||||
tp = tp + matched
|
||||
|
||||
print nframes, nannotated
|
||||
print nframes, nannotated
|
||||
|
||||
fppi, miss_rate = sft.computeROC(confidenses, tp, nannotated, nframes)
|
||||
sft.plotLogLog(fppi, miss_rate)
|
||||
fppi, miss_rate = sft.computeROC(confidenses, tp, nannotated, nframes)
|
||||
sft.plotLogLog(fppi, miss_rate, plot_colors[idx])
|
||||
|
||||
sft.showPlot("roc_curve.png")
|
@ -55,7 +55,7 @@ def crop_rect(rect, factor):
|
||||
|
||||
#
|
||||
|
||||
def plotLogLog(fppi, miss_rate):
|
||||
def initPlot():
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
fig.canvas.draw()
|
||||
@ -63,22 +63,19 @@ def plotLogLog(fppi, miss_rate):
|
||||
plt.xlabel("fppi")
|
||||
plt.ylabel("miss rate")
|
||||
plt.title("ROC curve Bahnhof")
|
||||
|
||||
# plt.yticks( [0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.64, 0.80])
|
||||
# ylabels = [item.get_text() for item in ax.get_yticklabels()]
|
||||
# ax.set_yticklabels( ylabels )
|
||||
plt.grid(True)
|
||||
|
||||
# plt.xticks( [pow(10, -4), pow(10, -3), pow(10, -2), pow(10, -1), pow(10, 0), pow(10, 1)])
|
||||
# xlabels = [item.get_text() for item in ax.get_xticklabels()]
|
||||
# ax.set_xticklabels( xlabels )
|
||||
plt.xscale('log')
|
||||
plt.yscale('log')
|
||||
|
||||
plt.semilogy(fppi, miss_rate, color='m', linewidth=2)
|
||||
|
||||
def showPlot(name):
|
||||
plt.savefig(name)
|
||||
plt.show()
|
||||
|
||||
|
||||
def plotLogLog(fppi, miss_rate, c):
|
||||
plt.semilogy(fppi, miss_rate, color = c, linewidth = 2)
|
||||
|
||||
|
||||
def draw_rects(img, rects, color, l = lambda x, y : x + y):
|
||||
if rects is not None:
|
||||
for x1, y1, x2, y2 in rects:
|
||||
|
Loading…
Reference in New Issue
Block a user