mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Test for adaptive thresh will give FAIL_BAD_ACCURACY for old
implementation of adaptivethreshold
This commit is contained in:
parent
ca0114228c
commit
12362f76b1
113
modules/imgproc/test/test_adpativethresh.cpp
Normal file
113
modules/imgproc/test/test_adpativethresh.cpp
Normal file
@ -0,0 +1,113 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <string>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
class CV_Adaptivethresh : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_Adaptivethresh();
|
||||
~CV_Adaptivethresh();
|
||||
protected:
|
||||
void run(int);
|
||||
};
|
||||
|
||||
CV_Adaptivethresh::CV_Adaptivethresh() {}
|
||||
CV_Adaptivethresh::~CV_Adaptivethresh() {}
|
||||
|
||||
void CV_Adaptivethresh::run( int /* start_from */)
|
||||
{
|
||||
string exp_path = string(ts->get_data_path()) + "adaptivethresh/lena_orig.png";
|
||||
Mat lena = imread(exp_path, 0); // CV_LOAD_IMAGE_GRAYSCALE=0
|
||||
if (lena.empty() )
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISSING_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
int sum=0;
|
||||
for (int i = 0; i < lena.rows; i++)
|
||||
{
|
||||
unsigned char *ptr = lena.ptr(i);
|
||||
for (int j=0;j<lena.cols;j++,ptr++)
|
||||
sum+=*ptr;
|
||||
}
|
||||
if (sum!=31910861)
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
int windowSize[9] = {3,9,11,17,21,25,29,37,47};
|
||||
int expectedValueMean[9] = {96138,121836,124499,129096,130538,131330,131743,131616,131223};
|
||||
int expectedValueGaussNew[9] = {86308,112910,116197,122117,124672,126488,127855,129377,130387};
|
||||
int expectedValueGaussOld[9] = {88583,81365,154081,98049,149357,106414,179701,168433,90250};
|
||||
Mat im;
|
||||
bool failed=false;
|
||||
for(int i = 0; i<9; ++i )
|
||||
{
|
||||
adaptiveThreshold( lena, im, 255,cv::ADAPTIVE_THRESH_MEAN_C,THRESH_BINARY,windowSize[i],0);
|
||||
int numberWhite=countNonZero(im);
|
||||
if (numberWhite != expectedValueMean[i])
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
|
||||
return;
|
||||
}
|
||||
adaptiveThreshold( lena, im, 255,cv::ADAPTIVE_THRESH_GAUSSIAN_C,THRESH_BINARY,windowSize[i],0);
|
||||
if (numberWhite != expectedValueGaussNew[i])
|
||||
{
|
||||
|
||||
if (numberWhite != expectedValueGaussOld[i])
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
else
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
|
||||
}
|
||||
}
|
||||
if (failed)
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
else
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
|
||||
TEST(Imgproc_Adaptivethresh, regression) { CV_Adaptivethresh test; test.safe_run(); }
|
Loading…
Reference in New Issue
Block a user