mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
Merge pull request #18237 from LupusSanctus:am/pytorch_tf_det_tutorial
[GSoC] Added TF and PyTorch detection model conversion cases * Added object detection convertion pipeline and tutorials * Added tutorial corrections
This commit is contained in:
parent
12d80b9e64
commit
1263949e70
Binary file not shown.
After Width: | Height: | Size: 81 KiB |
Binary file not shown.
After Width: | Height: | Size: 74 KiB |
@ -0,0 +1,140 @@
|
||||
# Conversion of TensorFlow Detection Models and Launch with OpenCV Python {#tf_det_tutorial_dnn_conversion}
|
||||
|
||||
| | |
|
||||
| -: | :- |
|
||||
| Original author | Anastasia Murzova |
|
||||
| Compatibility | OpenCV >= 4.5 |
|
||||
|
||||
## Goals
|
||||
In this tutorial you will learn how to:
|
||||
* obtain frozen graphs of TensorFlow (TF) detection models
|
||||
* run converted TensorFlow model with OpenCV Python API
|
||||
|
||||
We will explore the above-listed points by the example of SSD MobileNetV1.
|
||||
|
||||
## Introduction
|
||||
Let's briefly view the key concepts involved in the pipeline of TensorFlow models transition with OpenCV API. The initial step in the conversion of TensorFlow models into cv.dnn.Net
|
||||
is obtaining the frozen TF model graph. A frozen graph defines the combination of the model graph structure with kept values of the required variables, for example, weights. The frozen graph is saved in [protobuf](https://en.wikipedia.org/wiki/Protocol_Buffers) (```.pb```) files.
|
||||
There are special functions for reading ``.pb`` graphs in OpenCV: cv.dnn.readNetFromTensorflow and cv.dnn.readNet.
|
||||
|
||||
## Requirements
|
||||
To be able to experiment with the below code you will need to install a set of libraries. We will use a virtual environment with python3.7+ for this:
|
||||
|
||||
```console
|
||||
virtualenv -p /usr/bin/python3.7 <env_dir_path>
|
||||
source <env_dir_path>/bin/activate
|
||||
```
|
||||
|
||||
For OpenCV-Python building from source, follow the corresponding instructions from the @ref tutorial_py_table_of_contents_setup.
|
||||
|
||||
Before you start the installation of the libraries, you can customize the [requirements.txt](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/requirements.txt), excluding or including (for example, ``opencv-python``) some dependencies.
|
||||
The below line initiates requirements installation into the previously activated virtual environment:
|
||||
|
||||
```console
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
## Practice
|
||||
In this part we are going to cover the following points:
|
||||
1. create a TF classification model conversion pipeline and provide the inference
|
||||
2. provide the inference, process prediction results
|
||||
|
||||
### Model Preparation
|
||||
The code in this subchapter is located in the ``samples/dnn/dnn_model_runner`` module and can be executed with the below line:
|
||||
|
||||
```console
|
||||
python -m dnn_model_runner.dnn_conversion.tf.detection.py_to_py_ssd_mobilenet
|
||||
```
|
||||
|
||||
The following code contains the steps of the TF SSD MobileNetV1 model retrieval:
|
||||
|
||||
```python
|
||||
tf_model_name = 'ssd_mobilenet_v1_coco_2017_11_17'
|
||||
graph_extraction_dir = "./"
|
||||
frozen_graph_path = extract_tf_frozen_graph(tf_model_name, graph_extraction_dir)
|
||||
print("Frozen graph path for {}: {}".format(tf_model_name, frozen_graph_path))
|
||||
```
|
||||
|
||||
In ``extract_tf_frozen_graph`` function we extract the provided in model archive ``frozen_inference_graph.pb`` for its further processing:
|
||||
|
||||
```python
|
||||
# define model archive name
|
||||
tf_model_tar = model_name + '.tar.gz'
|
||||
# define link to retrieve model archive
|
||||
model_link = DETECTION_MODELS_URL + tf_model_tar
|
||||
|
||||
tf_frozen_graph_name = 'frozen_inference_graph'
|
||||
|
||||
try:
|
||||
urllib.request.urlretrieve(model_link, tf_model_tar)
|
||||
except Exception:
|
||||
print("TF {} was not retrieved: {}".format(model_name, model_link))
|
||||
return
|
||||
|
||||
print("TF {} was retrieved.".format(model_name))
|
||||
|
||||
tf_model_tar = tarfile.open(tf_model_tar)
|
||||
frozen_graph_path = ""
|
||||
|
||||
for model_tar_elem in tf_model_tar.getmembers():
|
||||
if tf_frozen_graph_name in os.path.basename(model_tar_elem.name):
|
||||
tf_model_tar.extract(model_tar_elem, extracted_model_path)
|
||||
frozen_graph_path = os.path.join(extracted_model_path, model_tar_elem.name)
|
||||
break
|
||||
tf_model_tar.close()
|
||||
```
|
||||
|
||||
After the successful execution of the above code we will get the following output:
|
||||
|
||||
```console
|
||||
TF ssd_mobilenet_v1_coco_2017_11_17 was retrieved.
|
||||
Frozen graph path for ssd_mobilenet_v1_coco_2017_11_17: ./ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb
|
||||
```
|
||||
|
||||
To provide model inference we will use the below [double-decker bus photo](https://www.pexels.com/photo/bus-and-car-on-one-way-street-3626589/) (under [Pexels](https://www.pexels.com/license/) license):
|
||||
|
||||
![Double-decker bus](images/pexels_double_decker_bus.jpg)
|
||||
|
||||
To initiate the test process we need to provide an appropriate model configuration. We will use [``ssd_mobilenet_v1_coco.config``](https://github.com/tensorflow/models/blob/master/research/object_detection/samples/configs/ssd_mobilenet_v1_coco.config) from [TensorFlow Object Detection API](https://github.com/tensorflow/models/tree/master/research/object_detection#tensorflow-object-detection-api).
|
||||
TensorFlow Object Detection API framework contains helpful mechanisms for object detection model manipulations.
|
||||
|
||||
We will use this configuration to provide a text graph representation. To generate ``.pbtxt`` we will use the corresponding [``samples/dnn/tf_text_graph_ssd.py``](https://github.com/opencv/opencv/blob/master/samples/dnn/tf_text_graph_ssd.py) script:
|
||||
|
||||
```console
|
||||
python tf_text_graph_ssd.py --input ssd_mobilenet_v1_coco_2017_11_17/frozen_inference_graph.pb --config ssd_mobilenet_v1_coco_2017_11_17/ssd_mobilenet_v1_coco.config --output ssd_mobilenet_v1_coco_2017_11_17.pbtxt
|
||||
```
|
||||
|
||||
After successful execution ``ssd_mobilenet_v1_coco_2017_11_17.pbtxt`` will be created.
|
||||
|
||||
Before we run ``object_detection.py``, let's have a look at the default values for the SSD MobileNetV1 test process configuration. They are located in [``models.yml``](https://github.com/opencv/opencv/blob/master/samples/dnn/models.yml):
|
||||
|
||||
```yml
|
||||
ssd_tf:
|
||||
model: "ssd_mobilenet_v1_coco_2017_11_17.pb"
|
||||
config: "ssd_mobilenet_v1_coco_2017_11_17.pbtxt"
|
||||
mean: [0, 0, 0]
|
||||
scale: 1.0
|
||||
width: 300
|
||||
height: 300
|
||||
rgb: true
|
||||
classes: "object_detection_classes_coco.txt"
|
||||
sample: "object_detection"
|
||||
```
|
||||
|
||||
To fetch these values we need to provide frozen graph ``ssd_mobilenet_v1_coco_2017_11_17.pb`` model and text graph ``ssd_mobilenet_v1_coco_2017_11_17.pbtxt``:
|
||||
|
||||
```console
|
||||
python object_detection.py ssd_tf --input ../data/pexels_double_decker_bus.jpg
|
||||
```
|
||||
|
||||
This line is equivalent to:
|
||||
|
||||
```console
|
||||
python object_detection.py --model ssd_mobilenet_v1_coco_2017_11_17.pb --config ssd_mobilenet_v1_coco_2017_11_17.pbtxt --input ../data/pexels_double_decker_bus.jpg --width 300 --height 300 --classes ../data/dnn/object_detection_classes_coco.txt
|
||||
```
|
||||
|
||||
The result is:
|
||||
|
||||
![OpenCV SSD bus result](images/opencv_bus_res.jpg)
|
||||
|
||||
There are several helpful parameters, which can be also customized for result corrections: threshold (``--thr``) and non-maximum suppression (``--nms``) values.
|
@ -20,4 +20,5 @@ In this section you will find the guides, which describe how to run classificati
|
||||
#### TensorFlow models with OpenCV
|
||||
In this section you will find the guides, which describe how to run classification, segmentation and detection TensorFlow DNN models with OpenCV.
|
||||
- @subpage tf_cls_tutorial_dnn_conversion
|
||||
- @subpage tf_det_tutorial_dnn_conversion
|
||||
- @subpage tf_segm_tutorial_dnn_conversion
|
||||
|
@ -0,0 +1,45 @@
|
||||
import os
|
||||
import tarfile
|
||||
import urllib
|
||||
|
||||
DETECTION_MODELS_URL = 'http://download.tensorflow.org/models/object_detection/'
|
||||
|
||||
|
||||
def extract_tf_frozen_graph(model_name, extracted_model_path):
|
||||
# define model archive name
|
||||
tf_model_tar = model_name + '.tar.gz'
|
||||
# define link to retrieve model archive
|
||||
model_link = DETECTION_MODELS_URL + tf_model_tar
|
||||
|
||||
tf_frozen_graph_name = 'frozen_inference_graph'
|
||||
|
||||
try:
|
||||
urllib.request.urlretrieve(model_link, tf_model_tar)
|
||||
except Exception:
|
||||
print("TF {} was not retrieved: {}".format(model_name, model_link))
|
||||
return
|
||||
|
||||
print("TF {} was retrieved.".format(model_name))
|
||||
|
||||
tf_model_tar = tarfile.open(tf_model_tar)
|
||||
frozen_graph_path = ""
|
||||
|
||||
for model_tar_elem in tf_model_tar.getmembers():
|
||||
if tf_frozen_graph_name in os.path.basename(model_tar_elem.name):
|
||||
tf_model_tar.extract(model_tar_elem, extracted_model_path)
|
||||
frozen_graph_path = os.path.join(extracted_model_path, model_tar_elem.name)
|
||||
break
|
||||
tf_model_tar.close()
|
||||
|
||||
return frozen_graph_path
|
||||
|
||||
|
||||
def main():
|
||||
tf_model_name = 'ssd_mobilenet_v1_coco_2017_11_17'
|
||||
graph_extraction_dir = "./"
|
||||
frozen_graph_path = extract_tf_frozen_graph(tf_model_name, graph_extraction_dir)
|
||||
print("Frozen graph path for {}: {}".format(tf_model_name, frozen_graph_path))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user