mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Semantic segmentation sample.
This commit is contained in:
parent
f2440ceae6
commit
130546e1d9
@ -3159,7 +3159,7 @@ protected:
|
||||
|
||||
struct Param {
|
||||
enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7,
|
||||
UNSIGNED_INT=8, UINT64=9, UCHAR=11 };
|
||||
UNSIGNED_INT=8, UINT64=9, UCHAR=11, SCALAR=12 };
|
||||
};
|
||||
|
||||
|
||||
@ -3252,6 +3252,14 @@ template<> struct ParamType<uchar>
|
||||
enum { type = Param::UCHAR };
|
||||
};
|
||||
|
||||
template<> struct ParamType<Scalar>
|
||||
{
|
||||
typedef const Scalar& const_param_type;
|
||||
typedef Scalar member_type;
|
||||
|
||||
enum { type = Param::SCALAR };
|
||||
};
|
||||
|
||||
//! @} core_basic
|
||||
|
||||
} //namespace cv
|
||||
|
@ -104,6 +104,12 @@ static void from_str(const String& str, int type, void* dst)
|
||||
ss >> *(double*)dst;
|
||||
else if( type == Param::STRING )
|
||||
*(String*)dst = str;
|
||||
else if( type == Param::SCALAR)
|
||||
{
|
||||
Scalar& scalar = *(Scalar*)dst;
|
||||
for (int i = 0; i < 4 && !ss.eof(); ++i)
|
||||
ss >> scalar[i];
|
||||
}
|
||||
else
|
||||
CV_Error(Error::StsBadArg, "unknown/unsupported parameter type");
|
||||
|
||||
|
20
samples/data/dnn/enet-classes.txt
Normal file
20
samples/data/dnn/enet-classes.txt
Normal file
@ -0,0 +1,20 @@
|
||||
Unlabeled
|
||||
Road
|
||||
Sidewalk
|
||||
Building
|
||||
Wall
|
||||
Fence
|
||||
Pole
|
||||
TrafficLight
|
||||
TrafficSign
|
||||
Vegetation
|
||||
Terrain
|
||||
Sky
|
||||
Person
|
||||
Rider
|
||||
Car
|
||||
Truck
|
||||
Bus
|
||||
Train
|
||||
Motorcycle
|
||||
Bicycle
|
@ -20,7 +20,14 @@
|
||||
| GoogLeNet | `1.0` | `224x224` | `104 117 123` | BGR |
|
||||
| [SqueezeNet](https://github.com/DeepScale/SqueezeNet) | `1.0` | `227x227` | `0 0 0` | BGR |
|
||||
|
||||
### Semantic segmentation
|
||||
| Model | Scale | Size WxH| Mean subtraction | Channels order |
|
||||
|---------------|-------|-----------|--------------------|-------|
|
||||
| [ENet](https://github.com/e-lab/ENet-training) | `0.00392 (1/255)` | `1024x512` | `0 0 0` | RGB |
|
||||
| FCN8s | `1.0` | `500x500` | `0 0 0` | BGR |
|
||||
|
||||
## References
|
||||
* [Models downloading script](https://github.com/opencv/opencv_extra/blob/master/testdata/dnn/download_models.py)
|
||||
* [Configuration files adopted for OpenCV](https://github.com/opencv/opencv_extra/tree/master/testdata/dnn)
|
||||
* [How to import models from TensorFlow Object Detection API](https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API)
|
||||
* [Names of classes from different datasets](https://github.com/opencv/opencv/tree/master/samples/data/dnn)
|
||||
|
@ -1,5 +1,4 @@
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include <opencv2/dnn.hpp>
|
||||
@ -17,17 +16,17 @@ const char* keys =
|
||||
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
|
||||
"{ classes | | Optional path to a text file with names of classes. }"
|
||||
"{ mean | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }"
|
||||
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }"
|
||||
"{ width | -1 | Preprocess input image by resizing to a specific width. }"
|
||||
"{ height | -1 | Preprocess input image by resizing to a specific height. }"
|
||||
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
|
||||
"{ backend | 0 | Choose one of computation backends: "
|
||||
"0: default C++ backend, "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
"2: Intel's Deep Learning Inference Engine (https://software.seek.intel.com/deep-learning-deployment)}"
|
||||
"{ target | 0 | Choose one of target computation devices: "
|
||||
"0: CPU target (by default),"
|
||||
"1: OpenCL }";
|
||||
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }"
|
||||
"{ width | | Preprocess input image by resizing to a specific width. }"
|
||||
"{ height | | Preprocess input image by resizing to a specific height. }"
|
||||
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
|
||||
"{ backend | 0 | Choose one of computation backends: "
|
||||
"0: default C++ backend, "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
"2: Intel's Deep Learning Inference Engine (https://software.seek.intel.com/deep-learning-deployment)}"
|
||||
"{ target | 0 | Choose one of target computation devices: "
|
||||
"0: CPU target (by default),"
|
||||
"1: OpenCL }";
|
||||
|
||||
using namespace cv;
|
||||
using namespace dnn;
|
||||
@ -45,7 +44,9 @@ int main(int argc, char** argv)
|
||||
}
|
||||
|
||||
float scale = parser.get<float>("scale");
|
||||
Scalar mean = parser.get<Scalar>("mean");
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
CV_Assert(parser.has("width"), parser.has("height"));
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
String model = parser.get<String>("model");
|
||||
@ -54,19 +55,6 @@ int main(int argc, char** argv)
|
||||
int backendId = parser.get<int>("backend");
|
||||
int targetId = parser.get<int>("target");
|
||||
|
||||
// Parse mean values.
|
||||
Scalar mean;
|
||||
if (parser.has("mean"))
|
||||
{
|
||||
std::istringstream meanStr(parser.get<String>("mean"));
|
||||
std::vector<float> meanValues;
|
||||
float val;
|
||||
while (meanStr >> val)
|
||||
meanValues.push_back(val);
|
||||
CV_Assert(meanValues.size() == 3);
|
||||
mean = Scalar(meanValues[0], meanValues[1], meanValues[2]);
|
||||
}
|
||||
|
||||
// Open file with classes names.
|
||||
if (parser.has("classes"))
|
||||
{
|
||||
|
@ -1,138 +0,0 @@
|
||||
#include <opencv2/dnn.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
using namespace cv;
|
||||
using namespace cv::dnn;
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
using namespace std;
|
||||
|
||||
static const string fcnType = "fcn8s";
|
||||
|
||||
static vector<cv::Vec3b> readColors(const string &filename = "pascal-classes.txt")
|
||||
{
|
||||
vector<cv::Vec3b> colors;
|
||||
|
||||
ifstream fp(filename.c_str());
|
||||
if (!fp.is_open())
|
||||
{
|
||||
cerr << "File with colors not found: " << filename << endl;
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
string line;
|
||||
while (!fp.eof())
|
||||
{
|
||||
getline(fp, line);
|
||||
if (line.length())
|
||||
{
|
||||
stringstream ss(line);
|
||||
|
||||
string name; ss >> name;
|
||||
int temp;
|
||||
cv::Vec3b color;
|
||||
ss >> temp; color[0] = (uchar)temp;
|
||||
ss >> temp; color[1] = (uchar)temp;
|
||||
ss >> temp; color[2] = (uchar)temp;
|
||||
colors.push_back(color);
|
||||
}
|
||||
}
|
||||
|
||||
fp.close();
|
||||
return colors;
|
||||
}
|
||||
|
||||
static void colorizeSegmentation(const Mat &score, const vector<cv::Vec3b> &colors, cv::Mat &segm)
|
||||
{
|
||||
const int rows = score.size[2];
|
||||
const int cols = score.size[3];
|
||||
const int chns = score.size[1];
|
||||
|
||||
cv::Mat maxCl=cv::Mat::zeros(rows, cols, CV_8UC1);
|
||||
cv::Mat maxVal(rows, cols, CV_32FC1, cv::Scalar(-FLT_MAX));
|
||||
for (int ch = 0; ch < chns; ch++)
|
||||
{
|
||||
for (int row = 0; row < rows; row++)
|
||||
{
|
||||
const float *ptrScore = score.ptr<float>(0, ch, row);
|
||||
uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
||||
float *ptrMaxVal = maxVal.ptr<float>(row);
|
||||
for (int col = 0; col < cols; col++)
|
||||
{
|
||||
if (ptrScore[col] > ptrMaxVal[col])
|
||||
{
|
||||
ptrMaxVal[col] = ptrScore[col];
|
||||
ptrMaxCl[col] = (uchar)ch;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
segm.create(rows, cols, CV_8UC3);
|
||||
for (int row = 0; row < rows; row++)
|
||||
{
|
||||
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
||||
cv::Vec3b *ptrSegm = segm.ptr<cv::Vec3b>(row);
|
||||
for (int col = 0; col < cols; col++)
|
||||
{
|
||||
ptrSegm[col] = colors[ptrMaxCl[col]];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
String modelTxt = fcnType + "-heavy-pascal.prototxt";
|
||||
String modelBin = fcnType + "-heavy-pascal.caffemodel";
|
||||
String imageFile = (argc > 1) ? argv[1] : "rgb.jpg";
|
||||
|
||||
vector<cv::Vec3b> colors = readColors();
|
||||
|
||||
//! [Initialize network]
|
||||
dnn::Net net = readNetFromCaffe(modelTxt, modelBin);
|
||||
//! [Initialize network]
|
||||
|
||||
if (net.empty())
|
||||
{
|
||||
cerr << "Can't load network by using the following files: " << endl;
|
||||
cerr << "prototxt: " << modelTxt << endl;
|
||||
cerr << "caffemodel: " << modelBin << endl;
|
||||
cerr << fcnType << "-heavy-pascal.caffemodel can be downloaded here:" << endl;
|
||||
cerr << "http://dl.caffe.berkeleyvision.org/" << fcnType << "-heavy-pascal.caffemodel" << endl;
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
//! [Prepare blob]
|
||||
Mat img = imread(imageFile);
|
||||
if (img.empty())
|
||||
{
|
||||
cerr << "Can't read image from the file: " << imageFile << endl;
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
resize(img, img, Size(500, 500), 0, 0, INTER_LINEAR_EXACT); //FCN accepts 500x500 BGR-images
|
||||
Mat inputBlob = blobFromImage(img, 1, Size(), Scalar(), false); //Convert Mat to batch of images
|
||||
//! [Prepare blob]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setInput(inputBlob, "data"); //set the network input
|
||||
//! [Set input blob]
|
||||
|
||||
//! [Make forward pass]
|
||||
double t = (double)cv::getTickCount();
|
||||
Mat score = net.forward("score"); //compute output
|
||||
t = (double)cv::getTickCount() - t;
|
||||
printf("processing time: %.1fms\n", t*1000./getTickFrequency());
|
||||
//! [Make forward pass]
|
||||
|
||||
Mat colorize;
|
||||
colorizeSegmentation(score, colors, colorize);
|
||||
Mat show;
|
||||
addWeighted(img, 0.4, colorize, 0.6, 0.0, show);
|
||||
imshow("show", show);
|
||||
waitKey(0);
|
||||
return 0;
|
||||
} //main
|
@ -1,5 +1,4 @@
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include <opencv2/dnn.hpp>
|
||||
@ -54,23 +53,11 @@ int main(int argc, char** argv)
|
||||
|
||||
confThreshold = parser.get<float>("thr");
|
||||
float scale = parser.get<float>("scale");
|
||||
Scalar mean = parser.get<Scalar>("mean");
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
|
||||
// Parse mean values.
|
||||
Scalar mean;
|
||||
if (parser.has("mean"))
|
||||
{
|
||||
std::istringstream meanStr(parser.get<String>("mean"));
|
||||
std::vector<float> meanValues;
|
||||
float val;
|
||||
while (meanStr >> val)
|
||||
meanValues.push_back(val);
|
||||
CV_Assert(meanValues.size() == 3);
|
||||
mean = Scalar(meanValues[0], meanValues[1], meanValues[2]);
|
||||
}
|
||||
|
||||
// Open file with classes names.
|
||||
if (parser.has("classes"))
|
||||
{
|
||||
|
237
samples/dnn/segmentation.cpp
Normal file
237
samples/dnn/segmentation.cpp
Normal file
@ -0,0 +1,237 @@
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
#include <opencv2/dnn.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
const char* keys =
|
||||
"{ help h | | Print help message. }"
|
||||
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
||||
"{ model m | | Path to a binary file of model contains trained weights. "
|
||||
"It could be a file with extensions .caffemodel (Caffe), "
|
||||
".pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet) }"
|
||||
"{ config c | | Path to a text file of model contains network configuration. "
|
||||
"It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet) }"
|
||||
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
|
||||
"{ classes | | Optional path to a text file with names of classes. }"
|
||||
"{ colors | | Optional path to a text file with colors for an every class. "
|
||||
"An every color is represented with three values from 0 to 255 in BGR channels order. }"
|
||||
"{ mean | | Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces. }"
|
||||
"{ scale | 1 | Preprocess input image by multiplying on a scale factor. }"
|
||||
"{ width | | Preprocess input image by resizing to a specific width. }"
|
||||
"{ height | | Preprocess input image by resizing to a specific height. }"
|
||||
"{ rgb | | Indicate that model works with RGB input images instead BGR ones. }"
|
||||
"{ backend | 0 | Choose one of computation backends: "
|
||||
"0: default C++ backend, "
|
||||
"1: Halide language (http://halide-lang.org/), "
|
||||
"2: Intel's Deep Learning Inference Engine (https://software.seek.intel.com/deep-learning-deployment)}"
|
||||
"{ target | 0 | Choose one of target computation devices: "
|
||||
"0: CPU target (by default),"
|
||||
"1: OpenCL }";
|
||||
|
||||
using namespace cv;
|
||||
using namespace dnn;
|
||||
|
||||
std::vector<std::string> classes;
|
||||
std::vector<Vec3b> colors;
|
||||
|
||||
void showLegend();
|
||||
|
||||
void colorizeSegmentation(const Mat &score, Mat &segm);
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
parser.about("Use this script to run semantic segmentation deep learning networks using OpenCV.");
|
||||
if (argc == 1 || parser.has("help"))
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
float scale = parser.get<float>("scale");
|
||||
Scalar mean = parser.get<Scalar>("mean");
|
||||
bool swapRB = parser.get<bool>("rgb");
|
||||
CV_Assert(parser.has("width"), parser.has("height"));
|
||||
int inpWidth = parser.get<int>("width");
|
||||
int inpHeight = parser.get<int>("height");
|
||||
String model = parser.get<String>("model");
|
||||
String config = parser.get<String>("config");
|
||||
String framework = parser.get<String>("framework");
|
||||
int backendId = parser.get<int>("backend");
|
||||
int targetId = parser.get<int>("target");
|
||||
|
||||
// Open file with classes names.
|
||||
if (parser.has("classes"))
|
||||
{
|
||||
std::string file = parser.get<String>("classes");
|
||||
std::ifstream ifs(file.c_str());
|
||||
if (!ifs.is_open())
|
||||
CV_Error(Error::StsError, "File " + file + " not found");
|
||||
std::string line;
|
||||
while (std::getline(ifs, line))
|
||||
{
|
||||
classes.push_back(line);
|
||||
}
|
||||
}
|
||||
|
||||
// Open file with colors.
|
||||
if (parser.has("colors"))
|
||||
{
|
||||
std::string file = parser.get<String>("colors");
|
||||
std::ifstream ifs(file.c_str());
|
||||
if (!ifs.is_open())
|
||||
CV_Error(Error::StsError, "File " + file + " not found");
|
||||
std::string line;
|
||||
while (std::getline(ifs, line))
|
||||
{
|
||||
std::istringstream colorStr(line.c_str());
|
||||
|
||||
Vec3b color;
|
||||
for (int i = 0; i < 3 && !colorStr.eof(); ++i)
|
||||
colorStr >> color[i];
|
||||
colors.push_back(color);
|
||||
}
|
||||
}
|
||||
|
||||
CV_Assert(parser.has("model"));
|
||||
//! [Read and initialize network]
|
||||
Net net = readNet(model, config, framework);
|
||||
net.setPreferableBackend(backendId);
|
||||
net.setPreferableTarget(targetId);
|
||||
//! [Read and initialize network]
|
||||
|
||||
// Create a window
|
||||
static const std::string kWinName = "Deep learning semantic segmentation in OpenCV";
|
||||
namedWindow(kWinName, WINDOW_NORMAL);
|
||||
|
||||
//! [Open a video file or an image file or a camera stream]
|
||||
VideoCapture cap;
|
||||
if (parser.has("input"))
|
||||
cap.open(parser.get<String>("input"));
|
||||
else
|
||||
cap.open(0);
|
||||
//! [Open a video file or an image file or a camera stream]
|
||||
|
||||
// Process frames.
|
||||
Mat frame, blob;
|
||||
while (waitKey(1) < 0)
|
||||
{
|
||||
cap >> frame;
|
||||
if (frame.empty())
|
||||
{
|
||||
waitKey();
|
||||
break;
|
||||
}
|
||||
|
||||
//! [Create a 4D blob from a frame]
|
||||
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false);
|
||||
//! [Create a 4D blob from a frame]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setInput(blob);
|
||||
//! [Set input blob]
|
||||
//! [Make forward pass]
|
||||
Mat score = net.forward();
|
||||
//! [Make forward pass]
|
||||
|
||||
Mat segm;
|
||||
colorizeSegmentation(score, segm);
|
||||
|
||||
resize(segm, segm, frame.size(), 0, 0, INTER_NEAREST);
|
||||
addWeighted(frame, 0.1, segm, 0.9, 0.0, frame);
|
||||
|
||||
// Put efficiency information.
|
||||
std::vector<double> layersTimes;
|
||||
double freq = getTickFrequency() / 1000;
|
||||
double t = net.getPerfProfile(layersTimes) / freq;
|
||||
std::string label = format("Inference time: %.2f ms", t);
|
||||
putText(frame, label, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
|
||||
|
||||
imshow(kWinName, frame);
|
||||
if (!classes.empty())
|
||||
showLegend();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
void colorizeSegmentation(const Mat &score, Mat &segm)
|
||||
{
|
||||
const int rows = score.size[2];
|
||||
const int cols = score.size[3];
|
||||
const int chns = score.size[1];
|
||||
|
||||
if (colors.empty())
|
||||
{
|
||||
// Generate colors.
|
||||
colors.push_back(Vec3b());
|
||||
for (int i = 1; i < chns; ++i)
|
||||
{
|
||||
Vec3b color;
|
||||
for (int j = 0; j < 3; ++j)
|
||||
color[j] = (colors[i - 1][j] + rand() % 256) / 2;
|
||||
colors.push_back(color);
|
||||
}
|
||||
}
|
||||
else if (chns != (int)colors.size())
|
||||
{
|
||||
CV_Error(Error::StsError, format("Number of output classes does not match "
|
||||
"number of colors (%d != %d)", chns, colors.size()));
|
||||
}
|
||||
|
||||
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1);
|
||||
Mat maxVal(rows, cols, CV_32FC1, score.data);
|
||||
for (int ch = 1; ch < chns; ch++)
|
||||
{
|
||||
for (int row = 0; row < rows; row++)
|
||||
{
|
||||
const float *ptrScore = score.ptr<float>(0, ch, row);
|
||||
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
|
||||
float *ptrMaxVal = maxVal.ptr<float>(row);
|
||||
for (int col = 0; col < cols; col++)
|
||||
{
|
||||
if (ptrScore[col] > ptrMaxVal[col])
|
||||
{
|
||||
ptrMaxVal[col] = ptrScore[col];
|
||||
ptrMaxCl[col] = (uchar)ch;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
segm.create(rows, cols, CV_8UC3);
|
||||
for (int row = 0; row < rows; row++)
|
||||
{
|
||||
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
||||
Vec3b *ptrSegm = segm.ptr<Vec3b>(row);
|
||||
for (int col = 0; col < cols; col++)
|
||||
{
|
||||
ptrSegm[col] = colors[ptrMaxCl[col]];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void showLegend()
|
||||
{
|
||||
static const int kBlockHeight = 30;
|
||||
static Mat legend;
|
||||
if (legend.empty())
|
||||
{
|
||||
const int numClasses = (int)classes.size();
|
||||
if ((int)colors.size() != numClasses)
|
||||
{
|
||||
CV_Error(Error::StsError, format("Number of output classes does not match "
|
||||
"number of labels (%d != %d)", colors.size(), classes.size()));
|
||||
}
|
||||
legend.create(kBlockHeight * numClasses, 200, CV_8UC3);
|
||||
for (int i = 0; i < numClasses; i++)
|
||||
{
|
||||
Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight);
|
||||
block.setTo(colors[i]);
|
||||
putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255));
|
||||
}
|
||||
namedWindow("Legend", WINDOW_NORMAL);
|
||||
imshow("Legend", legend);
|
||||
}
|
||||
}
|
125
samples/dnn/segmentation.py
Normal file
125
samples/dnn/segmentation.py
Normal file
@ -0,0 +1,125 @@
|
||||
import cv2 as cv
|
||||
import argparse
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
||||
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL)
|
||||
|
||||
parser = argparse.ArgumentParser(description='Use this script to run semantic segmentation deep learning networks using OpenCV.')
|
||||
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
||||
parser.add_argument('--model', required=True,
|
||||
help='Path to a binary file of model contains trained weights. '
|
||||
'It could be a file with extensions .caffemodel (Caffe), '
|
||||
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet)')
|
||||
parser.add_argument('--config',
|
||||
help='Path to a text file of model contains network configuration. '
|
||||
'It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet)')
|
||||
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
|
||||
help='Optional name of an origin framework of the model. '
|
||||
'Detect it automatically if it does not set.')
|
||||
parser.add_argument('--classes', help='Optional path to a text file with names of classes.')
|
||||
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
|
||||
'An every color is represented with three values from 0 to 255 in BGR channels order.')
|
||||
parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0],
|
||||
help='Preprocess input image by subtracting mean values. '
|
||||
'Mean values should be in BGR order.')
|
||||
parser.add_argument('--scale', type=float, default=1.0,
|
||||
help='Preprocess input image by multiplying on a scale factor.')
|
||||
parser.add_argument('--width', type=int, required=True,
|
||||
help='Preprocess input image by resizing to a specific width.')
|
||||
parser.add_argument('--height', type=int, required=True,
|
||||
help='Preprocess input image by resizing to a specific height.')
|
||||
parser.add_argument('--rgb', action='store_true',
|
||||
help='Indicate that model works with RGB input images instead BGR ones.')
|
||||
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
||||
help="Choose one of computation backends: "
|
||||
"%d: default C++ backend, "
|
||||
"%d: Halide language (http://halide-lang.org/), "
|
||||
"%d: Intel's Deep Learning Inference Engine (https://software.seek.intel.com/deep-learning-deployment)" % backends)
|
||||
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
||||
help='Choose one of target computation devices: '
|
||||
'%d: CPU target (by default), '
|
||||
'%d: OpenCL' % targets)
|
||||
args = parser.parse_args()
|
||||
|
||||
np.random.seed(324)
|
||||
|
||||
# Load names of classes
|
||||
classes = None
|
||||
if args.classes:
|
||||
with open(args.classes, 'rt') as f:
|
||||
classes = f.read().rstrip('\n').split('\n')
|
||||
|
||||
# Load colors
|
||||
colors = None
|
||||
if args.colors:
|
||||
with open(args.colors, 'rt') as f:
|
||||
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')]
|
||||
|
||||
legend = None
|
||||
def showLegend(classes):
|
||||
global legend
|
||||
if not classes is None and legend is None:
|
||||
blockHeight = 30
|
||||
assert(len(classes) == len(colors))
|
||||
|
||||
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8)
|
||||
for i in range(len(classes)):
|
||||
block = legend[i * blockHeight:(i + 1) * blockHeight]
|
||||
block[:,:] = colors[i]
|
||||
cv.putText(block, classes[i], (0, blockHeight/2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
|
||||
|
||||
cv.namedWindow('Legend', cv.WINDOW_NORMAL)
|
||||
cv.imshow('Legend', legend)
|
||||
classes = None
|
||||
|
||||
# Load a network
|
||||
net = cv.dnn.readNet(args.model, args.config, args.framework)
|
||||
net.setPreferableBackend(args.backend)
|
||||
net.setPreferableTarget(args.target)
|
||||
|
||||
winName = 'Deep learning image classification in OpenCV'
|
||||
cv.namedWindow(winName, cv.WINDOW_NORMAL)
|
||||
|
||||
cap = cv.VideoCapture(args.input if args.input else 0)
|
||||
legend = None
|
||||
while cv.waitKey(1) < 0:
|
||||
hasFrame, frame = cap.read()
|
||||
if not hasFrame:
|
||||
cv.waitKey()
|
||||
break
|
||||
|
||||
# Create a 4D blob from a frame.
|
||||
blob = cv.dnn.blobFromImage(frame, args.scale, (args.width, args.height), args.mean, args.rgb, crop=False)
|
||||
|
||||
# Run a model
|
||||
net.setInput(blob)
|
||||
score = net.forward()
|
||||
|
||||
numClasses = score.shape[1]
|
||||
height = score.shape[2]
|
||||
width = score.shape[3]
|
||||
|
||||
# Draw segmentation
|
||||
if not colors:
|
||||
# Generate colors
|
||||
colors = [np.array([0, 0, 0], np.uint8)]
|
||||
for i in range(1, numClasses):
|
||||
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2)
|
||||
|
||||
classIds = np.argmax(score[0], axis=0)
|
||||
segm = np.stack([colors[idx] for idx in classIds.flatten()])
|
||||
segm = segm.reshape(height, width, 3)
|
||||
|
||||
segm = cv.resize(segm, (frame.shape[1], frame.shape[0]), interpolation=cv.INTER_NEAREST)
|
||||
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8)
|
||||
|
||||
# Put efficiency information.
|
||||
t, _ = net.getPerfProfile()
|
||||
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
|
||||
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
|
||||
|
||||
showLegend(classes)
|
||||
|
||||
cv.imshow(winName, frame)
|
@ -1,175 +0,0 @@
|
||||
/*
|
||||
Sample of using OpenCV dnn module with Torch ENet model.
|
||||
*/
|
||||
|
||||
#include <opencv2/dnn.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
using namespace cv;
|
||||
using namespace cv::dnn;
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <sstream>
|
||||
using namespace std;
|
||||
|
||||
const String keys =
|
||||
"{help h || Sample app for loading ENet Torch model. "
|
||||
"The model and class names list can be downloaded here: "
|
||||
"https://www.dropbox.com/sh/dywzk3gyb12hpe5/AAD5YkUa8XgMpHs2gCRgmCVCa }"
|
||||
"{model m || path to Torch .net model file (model_best.net) }"
|
||||
"{image i || path to image file }"
|
||||
"{result r || path to save output blob (optional, binary format, NCHW order) }"
|
||||
"{show s || whether to show all output channels or not}"
|
||||
"{o_blob || output blob's name. If empty, last blob's name in net is used}";
|
||||
|
||||
static const int kNumClasses = 20;
|
||||
|
||||
static const String classes[] = {
|
||||
"Background", "Road", "Sidewalk", "Building", "Wall", "Fence", "Pole",
|
||||
"TrafficLight", "TrafficSign", "Vegetation", "Terrain", "Sky", "Person",
|
||||
"Rider", "Car", "Truck", "Bus", "Train", "Motorcycle", "Bicycle"
|
||||
};
|
||||
|
||||
static const Vec3b colors[] = {
|
||||
Vec3b(0, 0, 0), Vec3b(244, 126, 205), Vec3b(254, 83, 132), Vec3b(192, 200, 189),
|
||||
Vec3b(50, 56, 251), Vec3b(65, 199, 228), Vec3b(240, 178, 193), Vec3b(201, 67, 188),
|
||||
Vec3b(85, 32, 33), Vec3b(116, 25, 18), Vec3b(162, 33, 72), Vec3b(101, 150, 210),
|
||||
Vec3b(237, 19, 16), Vec3b(149, 197, 72), Vec3b(80, 182, 21), Vec3b(141, 5, 207),
|
||||
Vec3b(189, 156, 39), Vec3b(235, 170, 186), Vec3b(133, 109, 144), Vec3b(231, 160, 96)
|
||||
};
|
||||
|
||||
static void showLegend();
|
||||
|
||||
static void colorizeSegmentation(const Mat &score, Mat &segm);
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
CommandLineParser parser(argc, argv, keys);
|
||||
|
||||
if (parser.has("help") || argc == 1)
|
||||
{
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
String modelFile = parser.get<String>("model");
|
||||
String imageFile = parser.get<String>("image");
|
||||
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
return 0;
|
||||
}
|
||||
|
||||
String resultFile = parser.get<String>("result");
|
||||
|
||||
//! [Read model and initialize network]
|
||||
dnn::Net net = dnn::readNetFromTorch(modelFile);
|
||||
|
||||
//! [Prepare blob]
|
||||
Mat img = imread(imageFile), input;
|
||||
if (img.empty())
|
||||
{
|
||||
std::cerr << "Can't read image from the file: " << imageFile << std::endl;
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
Mat inputBlob = blobFromImage(img, 1./255, Size(1024, 512), Scalar(), true, false); //Convert Mat to batch of images
|
||||
//! [Prepare blob]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setInput(inputBlob); //set the network input
|
||||
//! [Set input blob]
|
||||
|
||||
TickMeter tm;
|
||||
|
||||
String oBlob = net.getLayerNames().back();
|
||||
if (!parser.get<String>("o_blob").empty())
|
||||
{
|
||||
oBlob = parser.get<String>("o_blob");
|
||||
}
|
||||
|
||||
//! [Make forward pass]
|
||||
tm.start();
|
||||
Mat result = net.forward(oBlob);
|
||||
tm.stop();
|
||||
|
||||
if (!resultFile.empty()) {
|
||||
CV_Assert(result.isContinuous());
|
||||
|
||||
ofstream fout(resultFile.c_str(), ios::out | ios::binary);
|
||||
fout.write((char*)result.data, result.total() * sizeof(float));
|
||||
fout.close();
|
||||
}
|
||||
|
||||
std::cout << "Output blob: " << result.size[0] << " x " << result.size[1] << " x " << result.size[2] << " x " << result.size[3] << "\n";
|
||||
std::cout << "Inference time, ms: " << tm.getTimeMilli() << std::endl;
|
||||
|
||||
if (parser.has("show"))
|
||||
{
|
||||
Mat segm, show;
|
||||
colorizeSegmentation(result, segm);
|
||||
showLegend();
|
||||
|
||||
cv::resize(segm, segm, img.size(), 0, 0, cv::INTER_NEAREST);
|
||||
addWeighted(img, 0.1, segm, 0.9, 0.0, show);
|
||||
|
||||
imshow("Result", show);
|
||||
waitKey();
|
||||
}
|
||||
return 0;
|
||||
} //main
|
||||
|
||||
static void showLegend()
|
||||
{
|
||||
static const int kBlockHeight = 30;
|
||||
|
||||
cv::Mat legend(kBlockHeight * kNumClasses, 200, CV_8UC3);
|
||||
for(int i = 0; i < kNumClasses; i++)
|
||||
{
|
||||
cv::Mat block = legend.rowRange(i * kBlockHeight, (i + 1) * kBlockHeight);
|
||||
block.setTo(colors[i]);
|
||||
putText(block, classes[i], Point(0, kBlockHeight / 2), FONT_HERSHEY_SIMPLEX, 0.5, Vec3b(255, 255, 255));
|
||||
}
|
||||
imshow("Legend", legend);
|
||||
}
|
||||
|
||||
static void colorizeSegmentation(const Mat &score, Mat &segm)
|
||||
{
|
||||
const int rows = score.size[2];
|
||||
const int cols = score.size[3];
|
||||
const int chns = score.size[1];
|
||||
|
||||
Mat maxCl = Mat::zeros(rows, cols, CV_8UC1);
|
||||
Mat maxVal(rows, cols, CV_32FC1, score.data);
|
||||
for (int ch = 1; ch < chns; ch++)
|
||||
{
|
||||
for (int row = 0; row < rows; row++)
|
||||
{
|
||||
const float *ptrScore = score.ptr<float>(0, ch, row);
|
||||
uint8_t *ptrMaxCl = maxCl.ptr<uint8_t>(row);
|
||||
float *ptrMaxVal = maxVal.ptr<float>(row);
|
||||
for (int col = 0; col < cols; col++)
|
||||
{
|
||||
if (ptrScore[col] > ptrMaxVal[col])
|
||||
{
|
||||
ptrMaxVal[col] = ptrScore[col];
|
||||
ptrMaxCl[col] = (uchar)ch;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
segm.create(rows, cols, CV_8UC3);
|
||||
for (int row = 0; row < rows; row++)
|
||||
{
|
||||
const uchar *ptrMaxCl = maxCl.ptr<uchar>(row);
|
||||
Vec3b *ptrSegm = segm.ptr<Vec3b>(row);
|
||||
for (int col = 0; col < cols; col++)
|
||||
{
|
||||
ptrSegm[col] = colors[ptrMaxCl[col]];
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user