mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Added ocl_Mog2
This commit is contained in:
parent
84c29745f2
commit
1391ca1da5
89
modules/video/perf/opencl/perf_bgfg_mog2.cpp
Normal file
89
modules/video/perf/opencl/perf_bgfg_mog2.cpp
Normal file
@ -0,0 +1,89 @@
|
||||
#include "perf_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_perf.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
#if defined(HAVE_XINE) || \
|
||||
defined(HAVE_GSTREAMER) || \
|
||||
defined(HAVE_QUICKTIME) || \
|
||||
defined(HAVE_AVFOUNDATION) || \
|
||||
defined(HAVE_FFMPEG) || \
|
||||
defined(WIN32)
|
||||
|
||||
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 1
|
||||
#else
|
||||
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 0
|
||||
#endif
|
||||
|
||||
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
//////////////////////////// Mog2//////////////////////////
|
||||
|
||||
typedef tuple<string, int> VideoMOG2ParamType;
|
||||
typedef TestBaseWithParam<VideoMOG2ParamType> MOG2_GetBackgroundImage;
|
||||
|
||||
static void cvtFrameFmt(vector<Mat>& input, vector<Mat>& output)
|
||||
{
|
||||
for(int i = 0; i< (int)(input.size()); i++)
|
||||
{
|
||||
cvtColor(input[i], output[i], COLOR_RGB2GRAY);
|
||||
}
|
||||
}
|
||||
|
||||
static void prepareData(VideoCapture& cap, int cn, vector<Mat>& frame_buffer)
|
||||
{
|
||||
cv::Mat frame;
|
||||
std::vector<Mat> frame_buffer_init;
|
||||
int nFrame = (int)frame_buffer.size();
|
||||
for(int i = 0; i < nFrame; i++)
|
||||
{
|
||||
cap >> frame;
|
||||
ASSERT_FALSE(frame.empty());
|
||||
frame_buffer_init.push_back(frame);
|
||||
}
|
||||
|
||||
if(cn == 1)
|
||||
cvtFrameFmt(frame_buffer_init, frame_buffer);
|
||||
else
|
||||
frame_buffer = frame_buffer_init;
|
||||
}
|
||||
|
||||
OCL_PERF_TEST_P(MOG2_GetBackgroundImage, Mog2, Combine(Values("gpu/video/768x576.avi", "gpu/video/1920x1080.avi"), Values(1,3)))
|
||||
{
|
||||
VideoMOG2ParamType params = GetParam();
|
||||
|
||||
const string inputFile = getDataPath(get<0>(params));
|
||||
|
||||
const int cn = get<1>(params);
|
||||
int nFrame = 5;
|
||||
|
||||
vector<Mat> frame_buffer(nFrame);
|
||||
|
||||
cv::VideoCapture cap(inputFile);
|
||||
ASSERT_TRUE(cap.isOpened());
|
||||
prepareData(cap, cn, frame_buffer);
|
||||
|
||||
UMat u_foreground, u_background;
|
||||
|
||||
OCL_TEST_CYCLE()
|
||||
{
|
||||
Ptr<cv::BackgroundSubtractorMOG2> mog2 = createBackgroundSubtractorMOG2();
|
||||
mog2->setDetectShadows(false);
|
||||
u_foreground.release();
|
||||
u_background.release();
|
||||
for (int i = 0; i < nFrame; i++)
|
||||
{
|
||||
mog2->apply(frame_buffer[i], u_foreground);
|
||||
}
|
||||
mog2->getBackgroundImage(u_background);
|
||||
}
|
||||
SANITY_CHECK(u_background);
|
||||
}
|
||||
|
||||
}}// namespace cvtest::ocl
|
||||
|
||||
#endif
|
||||
#endif
|
@ -83,6 +83,7 @@
|
||||
///////////*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencl_kernels.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@ -141,6 +142,8 @@ public:
|
||||
fCT = defaultfCT2;
|
||||
nShadowDetection = defaultnShadowDetection2;
|
||||
fTau = defaultfTau;
|
||||
|
||||
opencl_ON = true;
|
||||
}
|
||||
//! the full constructor that takes the length of the history,
|
||||
// the number of gaussian mixtures, the background ratio parameter and the noise strength
|
||||
@ -165,6 +168,8 @@ public:
|
||||
nShadowDetection = defaultnShadowDetection2;
|
||||
fTau = defaultfTau;
|
||||
name_ = "BackgroundSubtractor.MOG2";
|
||||
|
||||
opencl_ON = true;
|
||||
}
|
||||
//! the destructor
|
||||
~BackgroundSubtractorMOG2Impl() {}
|
||||
@ -184,14 +189,44 @@ public:
|
||||
int nchannels = CV_MAT_CN(frameType);
|
||||
CV_Assert( nchannels <= CV_CN_MAX );
|
||||
|
||||
// for each gaussian mixture of each pixel bg model we store ...
|
||||
// the mixture weight (w),
|
||||
// the mean (nchannels values) and
|
||||
// the covariance
|
||||
bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + nchannels), CV_32F );
|
||||
//make the array for keeping track of the used modes per pixel - all zeros at start
|
||||
bgmodelUsedModes.create(frameSize,CV_8U);
|
||||
bgmodelUsedModes = Scalar::all(0);
|
||||
if (ocl::useOpenCL() && opencl_ON)
|
||||
{
|
||||
kernel_apply.create("mog2_kernel", ocl::video::bgfg_mog2_oclsrc, format("-D CN=%d -D NMIXTURES=%d", nchannels, nmixtures));
|
||||
kernel_getBg.create("getBackgroundImage2_kernel", ocl::video::bgfg_mog2_oclsrc, format( "-D CN=%d -D NMIXTURES=%d", nchannels, nmixtures));
|
||||
|
||||
if (kernel_apply.empty() || kernel_getBg.empty())
|
||||
opencl_ON = false;
|
||||
}
|
||||
else opencl_ON = false;
|
||||
|
||||
if (opencl_ON)
|
||||
{
|
||||
u_weight.create(frameSize.height * nmixtures, frameSize.width, CV_32FC1);
|
||||
u_weight.setTo(Scalar::all(0));
|
||||
|
||||
u_variance.create(frameSize.height * nmixtures, frameSize.width, CV_32FC1);
|
||||
u_variance.setTo(Scalar::all(0));
|
||||
|
||||
if (nchannels==3)
|
||||
nchannels=4;
|
||||
u_mean.create(frameSize.height * nmixtures, frameSize.width, CV_32FC(nchannels)); //4 channels
|
||||
u_mean.setTo(Scalar::all(0));
|
||||
|
||||
//make the array for keeping track of the used modes per pixel - all zeros at start
|
||||
u_bgmodelUsedModes.create(frameSize, CV_32FC1);
|
||||
u_bgmodelUsedModes.setTo(cv::Scalar::all(0));
|
||||
}
|
||||
else
|
||||
{
|
||||
// for each gaussian mixture of each pixel bg model we store ...
|
||||
// the mixture weight (w),
|
||||
// the mean (nchannels values) and
|
||||
// the covariance
|
||||
bgmodel.create( 1, frameSize.height*frameSize.width*nmixtures*(2 + nchannels), CV_32F );
|
||||
//make the array for keeping track of the used modes per pixel - all zeros at start
|
||||
bgmodelUsedModes.create(frameSize,CV_8U);
|
||||
bgmodelUsedModes = Scalar::all(0);
|
||||
}
|
||||
}
|
||||
|
||||
virtual AlgorithmInfo* info() const { return 0; }
|
||||
@ -271,6 +306,19 @@ protected:
|
||||
int frameType;
|
||||
Mat bgmodel;
|
||||
Mat bgmodelUsedModes;//keep track of number of modes per pixel
|
||||
|
||||
//for OCL
|
||||
|
||||
mutable bool opencl_ON;
|
||||
|
||||
UMat u_weight;
|
||||
UMat u_variance;
|
||||
UMat u_mean;
|
||||
UMat u_bgmodelUsedModes;
|
||||
|
||||
mutable ocl::Kernel kernel_apply;
|
||||
mutable ocl::Kernel kernel_getBg;
|
||||
|
||||
int nframes;
|
||||
int history;
|
||||
int nmixtures;
|
||||
@ -321,6 +369,9 @@ protected:
|
||||
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
|
||||
|
||||
String name_;
|
||||
|
||||
bool ocl_getBackgroundImage(OutputArray backgroundImage) const;
|
||||
bool ocl_apply(InputArray _image, OutputArray _fgmask, bool needToInitialize, double learningRate=-1);
|
||||
};
|
||||
|
||||
struct GaussBGStatModel2Params
|
||||
@ -685,14 +736,78 @@ public:
|
||||
uchar shadowVal;
|
||||
};
|
||||
|
||||
bool BackgroundSubtractorMOG2Impl::ocl_apply(InputArray _image, OutputArray _fgmask, bool needToInitialize, double learningRate)
|
||||
{
|
||||
++nframes;
|
||||
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./std::min( 2*nframes, history );
|
||||
CV_Assert(learningRate >= 0);
|
||||
|
||||
UMat fgmask(_image.size(), CV_32SC1);
|
||||
|
||||
fgmask.setTo(cv::Scalar::all(1));
|
||||
|
||||
const float alpha1 = 1.0f - learningRate;
|
||||
|
||||
int detectShadows_flag = 0;
|
||||
if(bShadowDetection)
|
||||
detectShadows_flag = 1;
|
||||
|
||||
UMat frame = _image.getUMat();
|
||||
|
||||
float varMax = MAX(fVarMin, fVarMax);
|
||||
float varMin = MIN(fVarMin, fVarMax);
|
||||
|
||||
int idxArg = 0;
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadOnly(frame));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_bgmodelUsedModes));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_weight));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_mean));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::ReadWriteNoSize(u_variance));
|
||||
idxArg = kernel_apply.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(fgmask));
|
||||
|
||||
idxArg = kernel_apply.set(idxArg, (float)learningRate); //alphaT
|
||||
idxArg = kernel_apply.set(idxArg, (float)alpha1);
|
||||
idxArg = kernel_apply.set(idxArg, (float)(-learningRate*fCT)); //prune
|
||||
idxArg = kernel_apply.set(idxArg, detectShadows_flag);
|
||||
|
||||
idxArg = kernel_apply.set(idxArg, (float)varThreshold); //c_Tb
|
||||
idxArg = kernel_apply.set(idxArg, backgroundRatio); //c_TB
|
||||
idxArg = kernel_apply.set(idxArg, varThresholdGen); //c_Tg
|
||||
idxArg = kernel_apply.set(idxArg, varMin);
|
||||
idxArg = kernel_apply.set(idxArg, varMax);
|
||||
idxArg = kernel_apply.set(idxArg, fVarInit);
|
||||
idxArg = kernel_apply.set(idxArg, fTau);
|
||||
idxArg = kernel_apply.set(idxArg, nShadowDetection);
|
||||
|
||||
size_t globalsize[] = {frame.cols, frame.rows, 1};
|
||||
|
||||
if (!(kernel_apply.run(2, globalsize, NULL, true)))
|
||||
return false;
|
||||
|
||||
_fgmask.create(_image.size(),CV_8U);
|
||||
UMat temp = _fgmask.getUMat();
|
||||
fgmask.convertTo(temp, CV_8U);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void BackgroundSubtractorMOG2Impl::apply(InputArray _image, OutputArray _fgmask, double learningRate)
|
||||
{
|
||||
Mat image = _image.getMat();
|
||||
bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;
|
||||
bool needToInitialize = nframes == 0 || learningRate >= 1 || _image.size() != frameSize || _image.type() != frameType;
|
||||
|
||||
if( needToInitialize )
|
||||
initialize(image.size(), image.type());
|
||||
initialize(_image.size(), _image.type());
|
||||
|
||||
if (opencl_ON)
|
||||
{
|
||||
if (ocl_apply(_image,_fgmask, needToInitialize, learningRate))
|
||||
return;
|
||||
else
|
||||
initialize(_image.size(), _image.type());
|
||||
}
|
||||
opencl_ON = false;
|
||||
|
||||
Mat image = _image.getMat();
|
||||
_fgmask.create( image.size(), CV_8U );
|
||||
Mat fgmask = _fgmask.getMat();
|
||||
|
||||
@ -712,8 +827,36 @@ void BackgroundSubtractorMOG2Impl::apply(InputArray _image, OutputArray _fgmask,
|
||||
image.total()/(double)(1 << 16));
|
||||
}
|
||||
|
||||
bool BackgroundSubtractorMOG2Impl::ocl_getBackgroundImage(OutputArray _backgroundImage) const
|
||||
{
|
||||
CV_Assert(frameType == CV_8UC1 || frameType == CV_8UC3);
|
||||
|
||||
_backgroundImage.create(frameSize, frameType);
|
||||
UMat dst = _backgroundImage.getUMat();
|
||||
|
||||
int idxArg = 0;
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnly(u_bgmodelUsedModes));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnlyNoSize(u_weight));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::ReadOnlyNoSize(u_mean));
|
||||
idxArg = kernel_getBg.set(idxArg, ocl::KernelArg::WriteOnlyNoSize(dst));
|
||||
idxArg = kernel_getBg.set(idxArg, backgroundRatio);
|
||||
|
||||
size_t globalsize[2] = {u_bgmodelUsedModes.cols, u_bgmodelUsedModes.rows};
|
||||
|
||||
return kernel_getBg.run(2, globalsize, NULL, false);
|
||||
}
|
||||
|
||||
void BackgroundSubtractorMOG2Impl::getBackgroundImage(OutputArray backgroundImage) const
|
||||
{
|
||||
if (opencl_ON)
|
||||
{
|
||||
if (ocl_getBackgroundImage(backgroundImage));
|
||||
return;
|
||||
|
||||
opencl_ON = false;
|
||||
return;
|
||||
}
|
||||
|
||||
int nchannels = CV_MAT_CN(frameType);
|
||||
CV_Assert( nchannels == 3 );
|
||||
Mat meanBackground(frameSize, CV_8UC3, Scalar::all(0));
|
||||
@ -765,7 +908,6 @@ void BackgroundSubtractorMOG2Impl::getBackgroundImage(OutputArray backgroundImag
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Ptr<BackgroundSubtractorMOG2> createBackgroundSubtractorMOG2(int _history, double _varThreshold,
|
||||
bool _bShadowDetection)
|
||||
{
|
||||
@ -774,4 +916,4 @@ Ptr<BackgroundSubtractorMOG2> createBackgroundSubtractorMOG2(int _history, doubl
|
||||
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
/* End of file. */
|
272
modules/video/src/opencl/bgfg_mog2.cl
Normal file
272
modules/video/src/opencl/bgfg_mog2.cl
Normal file
@ -0,0 +1,272 @@
|
||||
#if CN==1
|
||||
|
||||
#define T_MEAN float
|
||||
#define F_ZERO (0.0f)
|
||||
#define cnMode 1
|
||||
|
||||
#define frameToMean(a, b) (b) = *(a);
|
||||
#define meanToFrame(a, b) *b = convert_uchar_sat(a);
|
||||
|
||||
inline float sqr(float val)
|
||||
{
|
||||
return val * val;
|
||||
}
|
||||
|
||||
inline float sum(float val)
|
||||
{
|
||||
return val;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
#define T_MEAN float4
|
||||
#define F_ZERO (0.0f, 0.0f, 0.0f, 0.0f)
|
||||
#define cnMode 4
|
||||
|
||||
#define meanToFrame(a, b)\
|
||||
b[0] = convert_uchar_sat(a.x); \
|
||||
b[1] = convert_uchar_sat(a.y); \
|
||||
b[2] = convert_uchar_sat(a.z);
|
||||
|
||||
#define frameToMean(a, b)\
|
||||
b.x = a[0]; \
|
||||
b.y = a[1]; \
|
||||
b.z = a[2]; \
|
||||
b.w = 0.0f;
|
||||
|
||||
inline float sqr(const float4 val)
|
||||
{
|
||||
return val.x * val.x + val.y * val.y + val.z * val.z;
|
||||
}
|
||||
|
||||
inline float sum(const float4 val)
|
||||
{
|
||||
return (val.x + val.y + val.z);
|
||||
}
|
||||
|
||||
inline void swap4(__global float4* ptr, int x, int y, int k, int rows, int ptr_step)
|
||||
{
|
||||
float4 val = ptr[(k * rows + y) * ptr_step + x];
|
||||
ptr[(k * rows + y) * ptr_step + x] = ptr[((k + 1) * rows + y) * ptr_step + x];
|
||||
ptr[((k + 1) * rows + y) * ptr_step + x] = val;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
inline void swap(__global float* ptr, int x, int y, int k, int rows, int ptr_step)
|
||||
{
|
||||
float val = ptr[(k * rows + y) * ptr_step + x];
|
||||
ptr[(k * rows + y) * ptr_step + x] = ptr[((k + 1) * rows + y) * ptr_step + x];
|
||||
ptr[((k + 1) * rows + y) * ptr_step + x] = val;
|
||||
}
|
||||
|
||||
__kernel void mog2_kernel(__global const uchar* frame, int frame_step, int frame_offset, int frame_row, int frame_col, //uchar || uchar3
|
||||
__global uchar* modesUsed, int modesUsed_step, int modesUsed_offset, //int
|
||||
__global uchar* weight, int weight_step, int weight_offset, //float
|
||||
__global uchar* mean, int mean_step, int mean_offset, //T_MEAN=float || float4
|
||||
__global uchar* variance, int var_step, int var_offset, //float
|
||||
__global uchar* fgmask, int fgmask_step, int fgmask_offset, //int
|
||||
float alphaT, float alpha1, float prune,
|
||||
int detectShadows_flag,
|
||||
float c_Tb, float c_TB, float c_Tg, float c_varMin, //constants
|
||||
float c_varMax, float c_varInit, float c_tau, uchar c_shadowVal)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
weight_step/= sizeof(float);
|
||||
var_step /= sizeof(float);
|
||||
mean_step /= (sizeof(float)*cnMode);
|
||||
|
||||
if( x < frame_col && y < frame_row)
|
||||
{
|
||||
__global const uchar* _frame = (frame + mad24( y, frame_step, x*CN + frame_offset));
|
||||
T_MEAN pix;
|
||||
frameToMean(_frame, pix);
|
||||
|
||||
bool background = false; // true - the pixel classified as background
|
||||
|
||||
bool fitsPDF = false; //if it remains zero a new GMM mode will be added
|
||||
|
||||
__global int* _modesUsed = (__global int*)(modesUsed + mad24( y, modesUsed_step, x*(int)(sizeof(int))));
|
||||
int nmodes = _modesUsed[0];
|
||||
int nNewModes = nmodes; //current number of modes in GMM
|
||||
|
||||
float totalWeight = 0.0f;
|
||||
|
||||
__global float* _weight = (__global float*)(weight);
|
||||
__global float* _variance = (__global float*)(variance);
|
||||
__global T_MEAN* _mean = (__global T_MEAN*)(mean);
|
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode)
|
||||
{
|
||||
|
||||
float c_weight = alpha1 * _weight[(mode * frame_row + y) * weight_step + x] + prune;
|
||||
|
||||
if (!fitsPDF)
|
||||
{
|
||||
float c_var = _variance[(mode * frame_row + y) * var_step + x];
|
||||
|
||||
T_MEAN c_mean = _mean[(mode * frame_row + y) * mean_step + x];
|
||||
|
||||
T_MEAN diff = c_mean - pix;
|
||||
float dist2 = sqr(diff);
|
||||
|
||||
if (totalWeight < c_TB && dist2 < c_Tb * c_var)
|
||||
background = true;
|
||||
|
||||
if (dist2 < c_Tg * c_var)
|
||||
{
|
||||
fitsPDF = true;
|
||||
c_weight += alphaT;
|
||||
float k = alphaT / c_weight;
|
||||
|
||||
_mean[(mode * frame_row + y) * mean_step + x] = c_mean - k * diff;
|
||||
|
||||
float varnew = c_var + k * (dist2 - c_var);
|
||||
varnew = fmax(varnew, c_varMin);
|
||||
varnew = fmin(varnew, c_varMax);
|
||||
|
||||
_variance[(mode * frame_row + y) * var_step + x] = varnew;
|
||||
for (int i = mode; i > 0; --i)
|
||||
{
|
||||
if (c_weight < _weight[((i - 1) * frame_row + y) * weight_step + x])
|
||||
break;
|
||||
swap(_weight, x, y, i - 1, frame_row, weight_step);
|
||||
swap(_variance, x, y, i - 1, frame_row, var_step);
|
||||
#if (CN==1)
|
||||
swap(_mean, x, y, i - 1, frame_row, mean_step);
|
||||
#else
|
||||
swap4(_mean, x, y, i - 1, frame_row, mean_step);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
} // !fitsPDF
|
||||
|
||||
if (c_weight < -prune)
|
||||
{
|
||||
c_weight = 0.0f;
|
||||
nmodes--;
|
||||
}
|
||||
|
||||
_weight[(mode * frame_row + y) * weight_step + x] = c_weight; //update weight by the calculated value
|
||||
totalWeight += c_weight;
|
||||
}
|
||||
|
||||
totalWeight = 1.f / totalWeight;
|
||||
for (int mode = 0; mode < nmodes; ++mode)
|
||||
_weight[(mode * frame_row + y) * weight_step + x] *= totalWeight;
|
||||
|
||||
nmodes = nNewModes;
|
||||
|
||||
if (!fitsPDF)
|
||||
{
|
||||
int mode = nmodes == (NMIXTURES) ? (NMIXTURES) - 1 : nmodes++;
|
||||
|
||||
if (nmodes == 1)
|
||||
_weight[(mode * frame_row + y) * weight_step + x] = 1.f;
|
||||
else
|
||||
{
|
||||
_weight[(mode * frame_row + y) * weight_step + x] = alphaT;
|
||||
|
||||
for (int i = 0; i < nmodes - 1; ++i)
|
||||
_weight[(i * frame_row + y) * weight_step + x] *= alpha1;
|
||||
}
|
||||
|
||||
_mean[(mode * frame_row + y) * mean_step + x] = pix;
|
||||
_variance[(mode * frame_row + y) * var_step + x] = c_varInit;
|
||||
|
||||
for (int i = nmodes - 1; i > 0; --i)
|
||||
{
|
||||
if (alphaT < _weight[((i - 1) * frame_row + y) * weight_step + x])
|
||||
break;
|
||||
|
||||
swap(_weight, x, y, i - 1, frame_row, weight_step);
|
||||
swap(_variance, x, y, i - 1, frame_row, var_step);
|
||||
#if (CN==1)
|
||||
swap(_mean, x, y, i - 1, frame_row, mean_step);
|
||||
#else
|
||||
swap4(_mean, x, y, i - 1, frame_row, mean_step);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
_modesUsed[0] = nmodes;
|
||||
bool isShadow = false;
|
||||
if (detectShadows_flag && !background)
|
||||
{
|
||||
float tWeight = 0.0f;
|
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode)
|
||||
{
|
||||
T_MEAN c_mean = _mean[(mode * frame_row + y) * mean_step + x];
|
||||
|
||||
T_MEAN pix_mean = pix * c_mean;
|
||||
|
||||
float numerator = sum(pix_mean);
|
||||
float denominator = sqr(c_mean);
|
||||
|
||||
if (denominator == 0)
|
||||
break;
|
||||
|
||||
if (numerator <= denominator && numerator >= c_tau * denominator)
|
||||
{
|
||||
float a = numerator / denominator;
|
||||
|
||||
T_MEAN dD = a * c_mean - pix;
|
||||
|
||||
if (sqr(dD) < c_Tb * _variance[(mode * frame_row + y) * var_step + x] * a * a)
|
||||
{
|
||||
isShadow = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
tWeight += _weight[(mode * frame_row + y) * weight_step + x];
|
||||
if (tWeight > c_TB)
|
||||
break;
|
||||
}
|
||||
}
|
||||
__global int* _fgmask = (__global int*)(fgmask + mad24(y, fgmask_step, x*(int)(sizeof(int)) + fgmask_offset));
|
||||
*_fgmask = background ? 0 : isShadow ? c_shadowVal : 255;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void getBackgroundImage2_kernel(__global const uchar* modesUsed, int modesUsed_step, int modesUsed_offset, int modesUsed_row, int modesUsed_col,
|
||||
__global const uchar* weight, int weight_step, int weight_offset,
|
||||
__global const uchar* mean, int mean_step, int mean_offset,
|
||||
__global uchar* dst, int dst_step, int dst_offset,
|
||||
float c_TB)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y = get_global_id(1);
|
||||
|
||||
if(x < modesUsed_col && y < modesUsed_row)
|
||||
{
|
||||
__global int* _modesUsed = (__global int*)(modesUsed + mad24( y, modesUsed_step, x*(int)(sizeof(int))));
|
||||
int nmodes = _modesUsed[0];
|
||||
|
||||
T_MEAN meanVal = (T_MEAN)F_ZERO;
|
||||
|
||||
float totalWeight = 0.0f;
|
||||
|
||||
for (int mode = 0; mode < nmodes; ++mode)
|
||||
{
|
||||
__global const float* _weight = (__global const float*)(weight + mad24(mode * modesUsed_row + y, weight_step, x*(int)(sizeof(float))));
|
||||
float c_weight = _weight[0];
|
||||
|
||||
__global const T_MEAN* _mean = (__global const T_MEAN*)(mean + mad24(mode * modesUsed_row + y, mean_step, x*(int)(sizeof(float))*cnMode));
|
||||
T_MEAN c_mean = _mean[0];
|
||||
meanVal = meanVal + c_weight * c_mean;
|
||||
|
||||
totalWeight += c_weight;
|
||||
|
||||
if(totalWeight > c_TB)
|
||||
break;
|
||||
}
|
||||
|
||||
meanVal = meanVal * (1.f / totalWeight);
|
||||
__global uchar* _dst = dst + y * dst_step + x*CN + dst_offset;
|
||||
meanToFrame(meanVal, _dst);
|
||||
}
|
||||
}
|
125
modules/video/test/ocl/test_bgfg_mog2.cpp
Normal file
125
modules/video/test/ocl/test_bgfg_mog2.cpp
Normal file
@ -0,0 +1,125 @@
|
||||
#include "test_precomp.hpp"
|
||||
#include "opencv2/ts/ocl_test.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
#if defined(HAVE_XINE) || \
|
||||
defined(HAVE_GSTREAMER) || \
|
||||
defined(HAVE_QUICKTIME) || \
|
||||
defined(HAVE_AVFOUNDATION) || \
|
||||
defined(HAVE_FFMPEG) || \
|
||||
defined(WIN32)
|
||||
|
||||
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 1
|
||||
#else
|
||||
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 0
|
||||
#endif
|
||||
|
||||
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
|
||||
////////////////////////// MOG2///////////////////////////////////
|
||||
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(UseGray, bool)
|
||||
IMPLEMENT_PARAM_CLASS(DetectShadow, bool)
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(Mog2, UseGray, DetectShadow, bool)
|
||||
{
|
||||
bool useGray;
|
||||
bool detectShadow;
|
||||
bool useRoi;
|
||||
virtual void SetUp()
|
||||
{
|
||||
useGray = GET_PARAM(0);
|
||||
detectShadow = GET_PARAM(1);
|
||||
useRoi = GET_PARAM(2);
|
||||
}
|
||||
};
|
||||
|
||||
OCL_TEST_P(Mog2, Update)
|
||||
{
|
||||
string inputFile = string(TS::ptr()->get_data_path()) + "video/768x576.avi";
|
||||
VideoCapture cap(inputFile);
|
||||
ASSERT_TRUE(cap.isOpened());
|
||||
|
||||
Ptr<BackgroundSubtractorMOG2> mog2_cpu = createBackgroundSubtractorMOG2();
|
||||
Ptr<BackgroundSubtractorMOG2> mog2_ocl = createBackgroundSubtractorMOG2();
|
||||
|
||||
mog2_cpu->setDetectShadows(detectShadow);
|
||||
mog2_ocl->setDetectShadows(detectShadow);
|
||||
|
||||
Mat frame, foreground;
|
||||
UMat u_foreground;
|
||||
|
||||
for (int i = 0; i < 10; ++i)
|
||||
{
|
||||
cap >> frame;
|
||||
ASSERT_FALSE(frame.empty());
|
||||
|
||||
if (useGray)
|
||||
{
|
||||
Mat temp;
|
||||
cvtColor(frame, temp, COLOR_BGR2GRAY);
|
||||
swap(temp, frame);
|
||||
}
|
||||
|
||||
OCL_OFF(mog2_cpu->apply(frame, foreground));
|
||||
OCL_ON (mog2_ocl->apply(frame, u_foreground));
|
||||
|
||||
if (detectShadow)
|
||||
EXPECT_MAT_SIMILAR(foreground, u_foreground, 15e-3)
|
||||
else
|
||||
EXPECT_MAT_NEAR(foreground, u_foreground, 0);
|
||||
}
|
||||
}
|
||||
|
||||
OCL_TEST_P(Mog2, getBackgroundImage)
|
||||
{
|
||||
if (useGray)
|
||||
return;
|
||||
|
||||
string inputFile = string(TS::ptr()->get_data_path()) + "video/768x576.avi";
|
||||
VideoCapture cap(inputFile);
|
||||
ASSERT_TRUE(cap.isOpened());
|
||||
|
||||
Ptr<BackgroundSubtractorMOG2> mog2_cpu = createBackgroundSubtractorMOG2();
|
||||
Ptr<BackgroundSubtractorMOG2> mog2_ocl = createBackgroundSubtractorMOG2();
|
||||
|
||||
mog2_cpu->setDetectShadows(detectShadow);
|
||||
mog2_ocl->setDetectShadows(detectShadow);
|
||||
|
||||
Mat frame, foreground;
|
||||
UMat u_foreground;
|
||||
|
||||
for (int i = 0; i < 10; ++i)
|
||||
{
|
||||
cap >> frame;
|
||||
ASSERT_FALSE(frame.empty());
|
||||
|
||||
OCL_OFF(mog2_cpu->apply(frame, foreground));
|
||||
OCL_ON (mog2_ocl->apply(frame, u_foreground));
|
||||
}
|
||||
|
||||
Mat background;
|
||||
OCL_OFF(mog2_cpu->getBackgroundImage(background));
|
||||
|
||||
UMat u_background;
|
||||
OCL_ON (mog2_ocl->getBackgroundImage(u_background));
|
||||
|
||||
EXPECT_MAT_NEAR(background, u_background, 1.0);
|
||||
}
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(OCL_Video, Mog2, Combine(
|
||||
Values(UseGray(true), UseGray(false)),
|
||||
Values(DetectShadow(true), DetectShadow(false)),
|
||||
Bool())
|
||||
);
|
||||
}}// namespace cvtest::ocl
|
||||
|
||||
#endif
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user