Fix HAL documentation

This commit is contained in:
Vladislav Sovrasov 2016-08-10 16:15:14 +03:00
parent f210602d1e
commit 13d2154f9a

View File

@ -582,11 +582,11 @@ Performs \f$LU\f$ decomposition of square matrix \f$A=P*L*U\f$ (where \f$P\f$ is
Function returns the \f$sign\f$ of permutation \f$P\f$ via parameter info.
@param src1 pointer to input matrix \f$A\f$ stored in row major order. After finish of work src1 contains at least \f$U\f$ part of \f$LU\f$
decomposition which is appropriate for determainant calculation: \f$det(A)=sign*\prod_{j=1}^{M}a_{jj}\f$.
@param src1_step number of bytes each matrix \f$A\f$ row occupies.
@param src1_step number of bytes between two consequent rows of matrix \f$A\f$.
@param m size of square matrix \f$A\f$.
@param src2 pointer to \f$M\times N\f$ matrix \f$B\f$ which is the right-hand side of system \f$A*X=B\f$. \f$B\f$ stored in row major order.
If src2 is null pointer only \f$LU\f$ decomposition will be performed. After finish of work src2 contains solution \f$X\f$ of system \f$A*X=B\f$.
@param src2_step number of bytes each matrix \f$B\f$ row occupies.
@param src2_step number of bytes between two consequent rows of matrix \f$B\f$.
@param n number of right-hand vectors in \f$M\times N\f$ matrix \f$B\f$.
@param info indicates success of decomposition. If *info is equals to zero decomposition failed, othervise *info is equals to \f$sign\f$.
*/
@ -599,11 +599,11 @@ inline int hal_ni_LU64f(double* src1, size_t src1_step, int m, double* src2, siz
/**
Performs Cholesky decomposition of matrix \f$A = L*L^T\f$ and solves matrix equation \f$A*X=B\f$.
@param src1 pointer to input matrix \f$A\f$ stored in row major order. After finish of work src1 contains lower triangular matrix \f$L\f$.
@param src1_step number of bytes each matrix \f$A\f$ row occupies.
@param src1_step number of bytes between two consequent rows of matrix \f$A\f$.
@param m size of square matrix \f$A\f$.
@param src2 pointer to \f$M\times N\f$ matrix \f$B\f$ which is the right-hand side of system \f$A*X=B\f$. B stored in row major order.
If src2 is null pointer only Cholesky decomposition will be performed. After finish of work src2 contains solution \f$X\f$ of system \f$A*X=B\f$.
@param src2_step number of bytes each matrix \f$B\f$ row occupies.
@param src2_step number of bytes between two consequent rows of matrix \f$B\f$.
@param n number of right-hand vectors in \f$M\times N\f$ matrix \f$B\f$.
@param info indicates success of decomposition. If *info is false decomposition failed.
*/
@ -618,12 +618,12 @@ inline int hal_ni_Cholesky64f(double* src1, size_t src1_step, int m, double* src
Performs singular value decomposition of \f$M\times N\f$(\f$M>N\f$) matrix \f$A = U*\Sigma*V^T\f$.
@param src pointer to input \f$M\times N\f$ matrix \f$A\f$ stored in column major order.
After finish of work src will be filled with rows of \f$U\f$ or not modified (depends of flag CV_HAL_SVD_MODIFY_A).
@param src_step number of bytes each matrix \f$A\f$ column occupies.
@param src_step number of bytes between two consequent columns of matrix \f$A\f$.
@param w pointer to array for singular values of matrix \f$A\f$ (i. e. first \f$N\f$ diagonal elements of matrix \f$\Sigma\f$).
@param u pointer to output \f$M\times N\f$ or \f$M\times M\f$ matrix \f$U\f$ (size depends of flags). Pointer must be valid if flag CV_HAL_SVD_MODIFY_A not used.
@param u_step number of bytes each matrix \f$U\f$ row occupies.
@param u_step number of bytes between two consequent rows of matrix \f$U\f$.
@param vt pointer to array for \f$N\times N\f$ matrix \f$V^T\f$.
@param vt_step number of bytes each matrix \f$V^T\f$ row occupies.
@param vt_step number of bytes between two consequent rows of matrix \f$V^T\f$.
@param m number fo rows in matrix \f$A\f$.
@param n number of columns in matrix \f$A\f$.
@param flags algorithm options (combination of CV_HAL_SVD_FULL_UV, ...).
@ -651,15 +651,15 @@ The function performs generalized matrix multiplication similar to the gemm func
\f$D = \alpha*AB+\beta*C\f$
@param src1 pointer to input \f$M\times N\f$ matrix \f$A\f$ or \f$A^T\f$ stored in row major order.
@param src1_step number of bytes each matrix \f$A\f$ or \f$A^T\f$ row occupies.
@param src1_step number of bytes between two consequent rows of matrix \f$A\f$ or \f$A^T\f$.
@param src2 pointer to input \f$N\times K\f$ matrix \f$B\f$ or \f$B^T\f$ stored in row major order.
@param src2_step number of bytes each matrix \f$B\f$ or \f$B^T\f$ row occupies.
@param src2_step number of bytes between two consequent rows of matrix \f$B\f$ or \f$B^T\f$.
@param alpha \f$\alpha\f$ multiplier before \f$AB\f$
@param src3 pointer to input \f$M\times K\f$ matrix \f$C\f$ or \f$C^T\f$ stored in row major order.
@param src3_step number of bytes each matrix \f$C\f$ or \f$C^T\f$ row occupies.
@param src3_step number of bytes between two consequent rows of matrix \f$C\f$ or \f$C^T\f$.
@param beta \f$\beta\f$ multiplier before \f$C\f$
@param dst pointer to input \f$M\times K\f$ matrix \f$D\f$ stored in row major order.
@param dst_step number of bytes each matrix \f$D\f$ row occupies.
@param dst_step number of bytes between two consequent rows of matrix \f$D\f$.
@param m number of rows in matrix \f$A\f$ or \f$A^T\f$, equals to number of rows in matrix \f$D\f$
@param n number of columns in matrix \f$A\f$ or \f$A^T\f$
@param k number of columns in matrix \f$B\f$ or \f$B^T\f$, equals to number of columns in matrix \f$D\f$