mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 11:10:21 +08:00
refactored video module; use the new-style algorithms now
This commit is contained in:
parent
87563c6638
commit
14a0abbfa9
850
modules/video/src/affineflow.cpp
Normal file
850
modules/video/src/affineflow.cpp
Normal file
@ -0,0 +1,850 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
// to be moved to legacy
|
||||
|
||||
static int icvMinimalPyramidSize( CvSize imgSize )
|
||||
{
|
||||
return cvAlign(imgSize.width,8) * imgSize.height / 3;
|
||||
}
|
||||
|
||||
|
||||
static void
|
||||
icvInitPyramidalAlgorithm( const CvMat* imgA, const CvMat* imgB,
|
||||
CvMat* pyrA, CvMat* pyrB,
|
||||
int level, CvTermCriteria * criteria,
|
||||
int max_iters, int flags,
|
||||
uchar *** imgI, uchar *** imgJ,
|
||||
int **step, CvSize** size,
|
||||
double **scale, cv::AutoBuffer<uchar>* buffer )
|
||||
{
|
||||
const int ALIGN = 8;
|
||||
int pyrBytes, bufferBytes = 0, elem_size;
|
||||
int level1 = level + 1;
|
||||
|
||||
int i;
|
||||
CvSize imgSize, levelSize;
|
||||
|
||||
*imgI = *imgJ = 0;
|
||||
*step = 0;
|
||||
*scale = 0;
|
||||
*size = 0;
|
||||
|
||||
/* check input arguments */
|
||||
if( ((flags & CV_LKFLOW_PYR_A_READY) != 0 && !pyrA) ||
|
||||
((flags & CV_LKFLOW_PYR_B_READY) != 0 && !pyrB) )
|
||||
CV_Error( CV_StsNullPtr, "Some of the precomputed pyramids are missing" );
|
||||
|
||||
if( level < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "The number of pyramid levels is negative" );
|
||||
|
||||
switch( criteria->type )
|
||||
{
|
||||
case CV_TERMCRIT_ITER:
|
||||
criteria->epsilon = 0.f;
|
||||
break;
|
||||
case CV_TERMCRIT_EPS:
|
||||
criteria->max_iter = max_iters;
|
||||
break;
|
||||
case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS:
|
||||
break;
|
||||
default:
|
||||
assert( 0 );
|
||||
CV_Error( CV_StsBadArg, "Invalid termination criteria" );
|
||||
}
|
||||
|
||||
/* compare squared values */
|
||||
criteria->epsilon *= criteria->epsilon;
|
||||
|
||||
/* set pointers and step for every level */
|
||||
pyrBytes = 0;
|
||||
|
||||
imgSize = cvGetSize(imgA);
|
||||
elem_size = CV_ELEM_SIZE(imgA->type);
|
||||
levelSize = imgSize;
|
||||
|
||||
for( i = 1; i < level1; i++ )
|
||||
{
|
||||
levelSize.width = (levelSize.width + 1) >> 1;
|
||||
levelSize.height = (levelSize.height + 1) >> 1;
|
||||
|
||||
int tstep = cvAlign(levelSize.width,ALIGN) * elem_size;
|
||||
pyrBytes += tstep * levelSize.height;
|
||||
}
|
||||
|
||||
assert( pyrBytes <= imgSize.width * imgSize.height * elem_size * 4 / 3 );
|
||||
|
||||
/* buffer_size = <size for patches> + <size for pyramids> */
|
||||
bufferBytes = (int)((level1 >= 0) * ((pyrA->data.ptr == 0) +
|
||||
(pyrB->data.ptr == 0)) * pyrBytes +
|
||||
(sizeof(imgI[0][0]) * 2 + sizeof(step[0][0]) +
|
||||
sizeof(size[0][0]) + sizeof(scale[0][0])) * level1);
|
||||
|
||||
buffer->allocate( bufferBytes );
|
||||
|
||||
*imgI = (uchar **) (uchar*)(*buffer);
|
||||
*imgJ = *imgI + level1;
|
||||
*step = (int *) (*imgJ + level1);
|
||||
*scale = (double *) (*step + level1);
|
||||
*size = (CvSize *)(*scale + level1);
|
||||
|
||||
imgI[0][0] = imgA->data.ptr;
|
||||
imgJ[0][0] = imgB->data.ptr;
|
||||
step[0][0] = imgA->step;
|
||||
scale[0][0] = 1;
|
||||
size[0][0] = imgSize;
|
||||
|
||||
if( level > 0 )
|
||||
{
|
||||
uchar *bufPtr = (uchar *) (*size + level1);
|
||||
uchar *ptrA = pyrA->data.ptr;
|
||||
uchar *ptrB = pyrB->data.ptr;
|
||||
|
||||
if( !ptrA )
|
||||
{
|
||||
ptrA = bufPtr;
|
||||
bufPtr += pyrBytes;
|
||||
}
|
||||
|
||||
if( !ptrB )
|
||||
ptrB = bufPtr;
|
||||
|
||||
levelSize = imgSize;
|
||||
|
||||
/* build pyramids for both frames */
|
||||
for( i = 1; i <= level; i++ )
|
||||
{
|
||||
int levelBytes;
|
||||
CvMat prev_level, next_level;
|
||||
|
||||
levelSize.width = (levelSize.width + 1) >> 1;
|
||||
levelSize.height = (levelSize.height + 1) >> 1;
|
||||
|
||||
size[0][i] = levelSize;
|
||||
step[0][i] = cvAlign( levelSize.width, ALIGN ) * elem_size;
|
||||
scale[0][i] = scale[0][i - 1] * 0.5;
|
||||
|
||||
levelBytes = step[0][i] * levelSize.height;
|
||||
imgI[0][i] = (uchar *) ptrA;
|
||||
ptrA += levelBytes;
|
||||
|
||||
if( !(flags & CV_LKFLOW_PYR_A_READY) )
|
||||
{
|
||||
prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 );
|
||||
next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 );
|
||||
cvSetData( &prev_level, imgI[0][i-1], step[0][i-1] );
|
||||
cvSetData( &next_level, imgI[0][i], step[0][i] );
|
||||
cvPyrDown( &prev_level, &next_level );
|
||||
}
|
||||
|
||||
imgJ[0][i] = (uchar *) ptrB;
|
||||
ptrB += levelBytes;
|
||||
|
||||
if( !(flags & CV_LKFLOW_PYR_B_READY) )
|
||||
{
|
||||
prev_level = cvMat( size[0][i-1].height, size[0][i-1].width, CV_8UC1 );
|
||||
next_level = cvMat( size[0][i].height, size[0][i].width, CV_8UC1 );
|
||||
cvSetData( &prev_level, imgJ[0][i-1], step[0][i-1] );
|
||||
cvSetData( &next_level, imgJ[0][i], step[0][i] );
|
||||
cvPyrDown( &prev_level, &next_level );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* compute dI/dx and dI/dy */
|
||||
static void
|
||||
icvCalcIxIy_32f( const float* src, int src_step, float* dstX, float* dstY, int dst_step,
|
||||
CvSize src_size, const float* smooth_k, float* buffer0 )
|
||||
{
|
||||
int src_width = src_size.width, dst_width = src_size.width-2;
|
||||
int x, height = src_size.height - 2;
|
||||
float* buffer1 = buffer0 + src_width;
|
||||
|
||||
src_step /= sizeof(src[0]);
|
||||
dst_step /= sizeof(dstX[0]);
|
||||
|
||||
for( ; height--; src += src_step, dstX += dst_step, dstY += dst_step )
|
||||
{
|
||||
const float* src2 = src + src_step;
|
||||
const float* src3 = src + src_step*2;
|
||||
|
||||
for( x = 0; x < src_width; x++ )
|
||||
{
|
||||
float t0 = (src3[x] + src[x])*smooth_k[0] + src2[x]*smooth_k[1];
|
||||
float t1 = src3[x] - src[x];
|
||||
buffer0[x] = t0; buffer1[x] = t1;
|
||||
}
|
||||
|
||||
for( x = 0; x < dst_width; x++ )
|
||||
{
|
||||
float t0 = buffer0[x+2] - buffer0[x];
|
||||
float t1 = (buffer1[x] + buffer1[x+2])*smooth_k[0] + buffer1[x+1]*smooth_k[1];
|
||||
dstX[x] = t0; dstY[x] = t1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#undef CV_8TO32F
|
||||
#define CV_8TO32F(a) (a)
|
||||
|
||||
static const void*
|
||||
icvAdjustRect( const void* srcptr, int src_step, int pix_size,
|
||||
CvSize src_size, CvSize win_size,
|
||||
CvPoint ip, CvRect* pRect )
|
||||
{
|
||||
CvRect rect;
|
||||
const char* src = (const char*)srcptr;
|
||||
|
||||
if( ip.x >= 0 )
|
||||
{
|
||||
src += ip.x*pix_size;
|
||||
rect.x = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
rect.x = -ip.x;
|
||||
if( rect.x > win_size.width )
|
||||
rect.x = win_size.width;
|
||||
}
|
||||
|
||||
if( ip.x + win_size.width < src_size.width )
|
||||
rect.width = win_size.width;
|
||||
else
|
||||
{
|
||||
rect.width = src_size.width - ip.x - 1;
|
||||
if( rect.width < 0 )
|
||||
{
|
||||
src += rect.width*pix_size;
|
||||
rect.width = 0;
|
||||
}
|
||||
assert( rect.width <= win_size.width );
|
||||
}
|
||||
|
||||
if( ip.y >= 0 )
|
||||
{
|
||||
src += ip.y * src_step;
|
||||
rect.y = 0;
|
||||
}
|
||||
else
|
||||
rect.y = -ip.y;
|
||||
|
||||
if( ip.y + win_size.height < src_size.height )
|
||||
rect.height = win_size.height;
|
||||
else
|
||||
{
|
||||
rect.height = src_size.height - ip.y - 1;
|
||||
if( rect.height < 0 )
|
||||
{
|
||||
src += rect.height*src_step;
|
||||
rect.height = 0;
|
||||
}
|
||||
}
|
||||
|
||||
*pRect = rect;
|
||||
return src - rect.x*pix_size;
|
||||
}
|
||||
|
||||
|
||||
static CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
|
||||
( const uchar* src, int src_step, CvSize src_size,
|
||||
float* dst, int dst_step, CvSize win_size, CvPoint2D32f center )
|
||||
{
|
||||
CvPoint ip;
|
||||
float a12, a22, b1, b2;
|
||||
float a, b;
|
||||
double s = 0;
|
||||
int i, j;
|
||||
|
||||
center.x -= (win_size.width-1)*0.5f;
|
||||
center.y -= (win_size.height-1)*0.5f;
|
||||
|
||||
ip.x = cvFloor( center.x );
|
||||
ip.y = cvFloor( center.y );
|
||||
|
||||
if( win_size.width <= 0 || win_size.height <= 0 )
|
||||
return CV_BADRANGE_ERR;
|
||||
|
||||
a = center.x - ip.x;
|
||||
b = center.y - ip.y;
|
||||
a = MAX(a,0.0001f);
|
||||
a12 = a*(1.f-b);
|
||||
a22 = a*b;
|
||||
b1 = 1.f - b;
|
||||
b2 = b;
|
||||
s = (1. - a)/a;
|
||||
|
||||
src_step /= sizeof(src[0]);
|
||||
dst_step /= sizeof(dst[0]);
|
||||
|
||||
if( 0 <= ip.x && ip.x + win_size.width < src_size.width &&
|
||||
0 <= ip.y && ip.y + win_size.height < src_size.height )
|
||||
{
|
||||
// extracted rectangle is totally inside the image
|
||||
src += ip.y * src_step + ip.x;
|
||||
|
||||
#if 0
|
||||
if( icvCopySubpix_8u32f_C1R_p &&
|
||||
icvCopySubpix_8u32f_C1R_p( src, src_step, dst,
|
||||
dst_step*sizeof(dst[0]), win_size, a, b ) >= 0 )
|
||||
return CV_OK;
|
||||
#endif
|
||||
|
||||
for( ; win_size.height--; src += src_step, dst += dst_step )
|
||||
{
|
||||
float prev = (1 - a)*(b1*CV_8TO32F(src[0]) + b2*CV_8TO32F(src[src_step]));
|
||||
for( j = 0; j < win_size.width; j++ )
|
||||
{
|
||||
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src[j+1+src_step]);
|
||||
dst[j] = prev + t;
|
||||
prev = (float)(t*s);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
CvRect r;
|
||||
|
||||
src = (const uchar*)icvAdjustRect( src, src_step*sizeof(*src),
|
||||
sizeof(*src), src_size, win_size,ip, &r);
|
||||
|
||||
for( i = 0; i < win_size.height; i++, dst += dst_step )
|
||||
{
|
||||
const uchar *src2 = src + src_step;
|
||||
|
||||
if( i < r.y || i >= r.height )
|
||||
src2 -= src_step;
|
||||
|
||||
for( j = 0; j < r.x; j++ )
|
||||
{
|
||||
float s0 = CV_8TO32F(src[r.x])*b1 +
|
||||
CV_8TO32F(src2[r.x])*b2;
|
||||
|
||||
dst[j] = (float)(s0);
|
||||
}
|
||||
|
||||
if( j < r.width )
|
||||
{
|
||||
float prev = (1 - a)*(b1*CV_8TO32F(src[j]) + b2*CV_8TO32F(src2[j]));
|
||||
|
||||
for( ; j < r.width; j++ )
|
||||
{
|
||||
float t = a12*CV_8TO32F(src[j+1]) + a22*CV_8TO32F(src2[j+1]);
|
||||
dst[j] = prev + t;
|
||||
prev = (float)(t*s);
|
||||
}
|
||||
}
|
||||
|
||||
for( ; j < win_size.width; j++ )
|
||||
{
|
||||
float s0 = CV_8TO32F(src[r.width])*b1 +
|
||||
CV_8TO32F(src2[r.width])*b2;
|
||||
|
||||
dst[j] = (float)(s0);
|
||||
}
|
||||
|
||||
if( i < r.height )
|
||||
src = src2;
|
||||
}
|
||||
}
|
||||
|
||||
return CV_OK;
|
||||
}
|
||||
|
||||
|
||||
#define ICV_32F8U(x) ((uchar)cvRound(x))
|
||||
|
||||
#define ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( flavor, srctype, dsttype, \
|
||||
worktype, cast_macro, cvt ) \
|
||||
static CvStatus CV_STDCALL \
|
||||
icvGetQuadrangleSubPix_##flavor##_C1R \
|
||||
( const srctype * src, int src_step, CvSize src_size, \
|
||||
dsttype *dst, int dst_step, CvSize win_size, const float *matrix ) \
|
||||
{ \
|
||||
int x, y; \
|
||||
double dx = (win_size.width - 1)*0.5; \
|
||||
double dy = (win_size.height - 1)*0.5; \
|
||||
double A11 = matrix[0], A12 = matrix[1], A13 = matrix[2]-A11*dx-A12*dy; \
|
||||
double A21 = matrix[3], A22 = matrix[4], A23 = matrix[5]-A21*dx-A22*dy; \
|
||||
\
|
||||
src_step /= sizeof(srctype); \
|
||||
dst_step /= sizeof(dsttype); \
|
||||
\
|
||||
for( y = 0; y < win_size.height; y++, dst += dst_step ) \
|
||||
{ \
|
||||
double xs = A12*y + A13; \
|
||||
double ys = A22*y + A23; \
|
||||
double xe = A11*(win_size.width-1) + A12*y + A13; \
|
||||
double ye = A21*(win_size.width-1) + A22*y + A23; \
|
||||
\
|
||||
if( (unsigned)(cvFloor(xs)-1) < (unsigned)(src_size.width - 3) && \
|
||||
(unsigned)(cvFloor(ys)-1) < (unsigned)(src_size.height - 3) && \
|
||||
(unsigned)(cvFloor(xe)-1) < (unsigned)(src_size.width - 3) && \
|
||||
(unsigned)(cvFloor(ye)-1) < (unsigned)(src_size.height - 3)) \
|
||||
{ \
|
||||
for( x = 0; x < win_size.width; x++ ) \
|
||||
{ \
|
||||
int ixs = cvFloor( xs ); \
|
||||
int iys = cvFloor( ys ); \
|
||||
const srctype *ptr = src + src_step*iys + ixs; \
|
||||
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
|
||||
worktype p0 = cvt(ptr[0])*a1 + cvt(ptr[1])*a; \
|
||||
worktype p1 = cvt(ptr[src_step])*a1 + cvt(ptr[src_step+1])*a;\
|
||||
xs += A11; \
|
||||
ys += A21; \
|
||||
\
|
||||
dst[x] = cast_macro(p0 + b * (p1 - p0)); \
|
||||
} \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
for( x = 0; x < win_size.width; x++ ) \
|
||||
{ \
|
||||
int ixs = cvFloor( xs ), iys = cvFloor( ys ); \
|
||||
double a = xs - ixs, b = ys - iys, a1 = 1.f - a; \
|
||||
const srctype *ptr0, *ptr1; \
|
||||
worktype p0, p1; \
|
||||
xs += A11; ys += A21; \
|
||||
\
|
||||
if( (unsigned)iys < (unsigned)(src_size.height-1) ) \
|
||||
ptr0 = src + src_step*iys, ptr1 = ptr0 + src_step; \
|
||||
else \
|
||||
ptr0 = ptr1 = src + (iys < 0 ? 0 : src_size.height-1)*src_step; \
|
||||
\
|
||||
if( (unsigned)ixs < (unsigned)(src_size.width-1) ) \
|
||||
{ \
|
||||
p0 = cvt(ptr0[ixs])*a1 + cvt(ptr0[ixs+1])*a; \
|
||||
p1 = cvt(ptr1[ixs])*a1 + cvt(ptr1[ixs+1])*a; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ixs = ixs < 0 ? 0 : src_size.width - 1; \
|
||||
p0 = cvt(ptr0[ixs]); p1 = cvt(ptr1[ixs]); \
|
||||
} \
|
||||
dst[x] = cast_macro(p0 + b * (p1 - p0)); \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
\
|
||||
return CV_OK; \
|
||||
}
|
||||
|
||||
ICV_DEF_GET_QUADRANGLE_SUB_PIX_FUNC( 8u32f, uchar, float, double, CV_CAST_32F, CV_8TO32F )
|
||||
|
||||
/* Affine tracking algorithm */
|
||||
|
||||
CV_IMPL void
|
||||
cvCalcAffineFlowPyrLK( const void* arrA, const void* arrB,
|
||||
void* pyrarrA, void* pyrarrB,
|
||||
const CvPoint2D32f * featuresA,
|
||||
CvPoint2D32f * featuresB,
|
||||
float *matrices, int count,
|
||||
CvSize winSize, int level,
|
||||
char *status, float *error,
|
||||
CvTermCriteria criteria, int flags )
|
||||
{
|
||||
const int MAX_ITERS = 100;
|
||||
|
||||
cv::AutoBuffer<char> _status;
|
||||
cv::AutoBuffer<uchar> buffer;
|
||||
cv::AutoBuffer<uchar> pyr_buffer;
|
||||
|
||||
CvMat stubA, *imgA = (CvMat*)arrA;
|
||||
CvMat stubB, *imgB = (CvMat*)arrB;
|
||||
CvMat pstubA, *pyrA = (CvMat*)pyrarrA;
|
||||
CvMat pstubB, *pyrB = (CvMat*)pyrarrB;
|
||||
|
||||
static const float smoothKernel[] = { 0.09375, 0.3125, 0.09375 }; /* 3/32, 10/32, 3/32 */
|
||||
|
||||
int bufferBytes = 0;
|
||||
|
||||
uchar **imgI = 0;
|
||||
uchar **imgJ = 0;
|
||||
int *step = 0;
|
||||
double *scale = 0;
|
||||
CvSize* size = 0;
|
||||
|
||||
float *patchI;
|
||||
float *patchJ;
|
||||
float *Ix;
|
||||
float *Iy;
|
||||
|
||||
int i, j, k, l;
|
||||
|
||||
CvSize patchSize = cvSize( winSize.width * 2 + 1, winSize.height * 2 + 1 );
|
||||
int patchLen = patchSize.width * patchSize.height;
|
||||
int patchStep = patchSize.width * sizeof( patchI[0] );
|
||||
|
||||
CvSize srcPatchSize = cvSize( patchSize.width + 2, patchSize.height + 2 );
|
||||
int srcPatchLen = srcPatchSize.width * srcPatchSize.height;
|
||||
int srcPatchStep = srcPatchSize.width * sizeof( patchI[0] );
|
||||
CvSize imgSize;
|
||||
float eps = (float)MIN(winSize.width, winSize.height);
|
||||
|
||||
imgA = cvGetMat( imgA, &stubA );
|
||||
imgB = cvGetMat( imgB, &stubB );
|
||||
|
||||
if( CV_MAT_TYPE( imgA->type ) != CV_8UC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
|
||||
if( !CV_ARE_TYPES_EQ( imgA, imgB ))
|
||||
CV_Error( CV_StsUnmatchedFormats, "" );
|
||||
|
||||
if( !CV_ARE_SIZES_EQ( imgA, imgB ))
|
||||
CV_Error( CV_StsUnmatchedSizes, "" );
|
||||
|
||||
if( imgA->step != imgB->step )
|
||||
CV_Error( CV_StsUnmatchedSizes, "imgA and imgB must have equal steps" );
|
||||
|
||||
if( !matrices )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
imgSize = cvGetMatSize( imgA );
|
||||
|
||||
if( pyrA )
|
||||
{
|
||||
pyrA = cvGetMat( pyrA, &pstubA );
|
||||
|
||||
if( pyrA->step*pyrA->height < icvMinimalPyramidSize( imgSize ) )
|
||||
CV_Error( CV_StsBadArg, "pyramid A has insufficient size" );
|
||||
}
|
||||
else
|
||||
{
|
||||
pyrA = &pstubA;
|
||||
pyrA->data.ptr = 0;
|
||||
}
|
||||
|
||||
if( pyrB )
|
||||
{
|
||||
pyrB = cvGetMat( pyrB, &pstubB );
|
||||
|
||||
if( pyrB->step*pyrB->height < icvMinimalPyramidSize( imgSize ) )
|
||||
CV_Error( CV_StsBadArg, "pyramid B has insufficient size" );
|
||||
}
|
||||
else
|
||||
{
|
||||
pyrB = &pstubB;
|
||||
pyrB->data.ptr = 0;
|
||||
}
|
||||
|
||||
if( count == 0 )
|
||||
return;
|
||||
|
||||
/* check input arguments */
|
||||
if( !featuresA || !featuresB || !matrices )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
if( winSize.width <= 1 || winSize.height <= 1 )
|
||||
CV_Error( CV_StsOutOfRange, "the search window is too small" );
|
||||
|
||||
if( count < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
|
||||
icvInitPyramidalAlgorithm( imgA, imgB,
|
||||
pyrA, pyrB, level, &criteria, MAX_ITERS, flags,
|
||||
&imgI, &imgJ, &step, &size, &scale, &pyr_buffer );
|
||||
|
||||
/* buffer_size = <size for patches> + <size for pyramids> */
|
||||
bufferBytes = (srcPatchLen + patchLen*3)*sizeof(patchI[0]) + (36*2 + 6)*sizeof(double);
|
||||
|
||||
buffer.allocate(bufferBytes);
|
||||
|
||||
if( !status )
|
||||
{
|
||||
_status.allocate(count);
|
||||
status = _status;
|
||||
}
|
||||
|
||||
patchI = (float *)(uchar*)buffer;
|
||||
patchJ = patchI + srcPatchLen;
|
||||
Ix = patchJ + patchLen;
|
||||
Iy = Ix + patchLen;
|
||||
|
||||
if( status )
|
||||
memset( status, 1, count );
|
||||
|
||||
if( !(flags & CV_LKFLOW_INITIAL_GUESSES) )
|
||||
{
|
||||
memcpy( featuresB, featuresA, count * sizeof( featuresA[0] ));
|
||||
for( i = 0; i < count * 4; i += 4 )
|
||||
{
|
||||
matrices[i] = matrices[i + 3] = 1.f;
|
||||
matrices[i + 1] = matrices[i + 2] = 0.f;
|
||||
}
|
||||
}
|
||||
|
||||
for( i = 0; i < count; i++ )
|
||||
{
|
||||
featuresB[i].x = (float)(featuresB[i].x * scale[level] * 0.5);
|
||||
featuresB[i].y = (float)(featuresB[i].y * scale[level] * 0.5);
|
||||
}
|
||||
|
||||
/* do processing from top pyramid level (smallest image)
|
||||
to the bottom (original image) */
|
||||
for( l = level; l >= 0; l-- )
|
||||
{
|
||||
CvSize levelSize = size[l];
|
||||
int levelStep = step[l];
|
||||
|
||||
/* find flow for each given point at the particular level */
|
||||
for( i = 0; i < count; i++ )
|
||||
{
|
||||
CvPoint2D32f u;
|
||||
float Av[6];
|
||||
double G[36];
|
||||
double meanI = 0, meanJ = 0;
|
||||
int x, y;
|
||||
int pt_status = status[i];
|
||||
CvMat mat;
|
||||
|
||||
if( !pt_status )
|
||||
continue;
|
||||
|
||||
Av[0] = matrices[i*4];
|
||||
Av[1] = matrices[i*4+1];
|
||||
Av[3] = matrices[i*4+2];
|
||||
Av[4] = matrices[i*4+3];
|
||||
|
||||
Av[2] = featuresB[i].x += featuresB[i].x;
|
||||
Av[5] = featuresB[i].y += featuresB[i].y;
|
||||
|
||||
u.x = (float) (featuresA[i].x * scale[l]);
|
||||
u.y = (float) (featuresA[i].y * scale[l]);
|
||||
|
||||
if( u.x < -eps || u.x >= levelSize.width+eps ||
|
||||
u.y < -eps || u.y >= levelSize.height+eps ||
|
||||
icvGetRectSubPix_8u32f_C1R( imgI[l], levelStep,
|
||||
levelSize, patchI, srcPatchStep, srcPatchSize, u ) < 0 )
|
||||
{
|
||||
/* point is outside the image. take the next */
|
||||
if( l == 0 )
|
||||
status[i] = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
icvCalcIxIy_32f( patchI, srcPatchStep, Ix, Iy,
|
||||
(srcPatchSize.width-2)*sizeof(patchI[0]), srcPatchSize,
|
||||
smoothKernel, patchJ );
|
||||
|
||||
/* repack patchI (remove borders) */
|
||||
for( k = 0; k < patchSize.height; k++ )
|
||||
memcpy( patchI + k * patchSize.width,
|
||||
patchI + (k + 1) * srcPatchSize.width + 1, patchStep );
|
||||
|
||||
memset( G, 0, sizeof( G ));
|
||||
|
||||
/* calculate G matrix */
|
||||
for( y = -winSize.height, k = 0; y <= winSize.height; y++ )
|
||||
{
|
||||
for( x = -winSize.width; x <= winSize.width; x++, k++ )
|
||||
{
|
||||
double ixix = ((double) Ix[k]) * Ix[k];
|
||||
double ixiy = ((double) Ix[k]) * Iy[k];
|
||||
double iyiy = ((double) Iy[k]) * Iy[k];
|
||||
|
||||
double xx, xy, yy;
|
||||
|
||||
G[0] += ixix;
|
||||
G[1] += ixiy;
|
||||
G[2] += x * ixix;
|
||||
G[3] += y * ixix;
|
||||
G[4] += x * ixiy;
|
||||
G[5] += y * ixiy;
|
||||
|
||||
// G[6] == G[1]
|
||||
G[7] += iyiy;
|
||||
// G[8] == G[4]
|
||||
// G[9] == G[5]
|
||||
G[10] += x * iyiy;
|
||||
G[11] += y * iyiy;
|
||||
|
||||
xx = x * x;
|
||||
xy = x * y;
|
||||
yy = y * y;
|
||||
|
||||
// G[12] == G[2]
|
||||
// G[13] == G[8] == G[4]
|
||||
G[14] += xx * ixix;
|
||||
G[15] += xy * ixix;
|
||||
G[16] += xx * ixiy;
|
||||
G[17] += xy * ixiy;
|
||||
|
||||
// G[18] == G[3]
|
||||
// G[19] == G[9]
|
||||
// G[20] == G[15]
|
||||
G[21] += yy * ixix;
|
||||
// G[22] == G[17]
|
||||
G[23] += yy * ixiy;
|
||||
|
||||
// G[24] == G[4]
|
||||
// G[25] == G[10]
|
||||
// G[26] == G[16]
|
||||
// G[27] == G[22]
|
||||
G[28] += xx * iyiy;
|
||||
G[29] += xy * iyiy;
|
||||
|
||||
// G[30] == G[5]
|
||||
// G[31] == G[11]
|
||||
// G[32] == G[17]
|
||||
// G[33] == G[23]
|
||||
// G[34] == G[29]
|
||||
G[35] += yy * iyiy;
|
||||
|
||||
meanI += patchI[k];
|
||||
}
|
||||
}
|
||||
|
||||
meanI /= patchSize.width*patchSize.height;
|
||||
|
||||
G[8] = G[4];
|
||||
G[9] = G[5];
|
||||
G[22] = G[17];
|
||||
|
||||
// fill part of G below its diagonal
|
||||
for( y = 1; y < 6; y++ )
|
||||
for( x = 0; x < y; x++ )
|
||||
G[y * 6 + x] = G[x * 6 + y];
|
||||
|
||||
cvInitMatHeader( &mat, 6, 6, CV_64FC1, G );
|
||||
|
||||
if( cvInvert( &mat, &mat, CV_SVD ) < 1e-4 )
|
||||
{
|
||||
/* bad matrix. take the next point */
|
||||
if( l == 0 )
|
||||
status[i] = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
for( j = 0; j < criteria.max_iter; j++ )
|
||||
{
|
||||
double b[6] = {0,0,0,0,0,0}, eta[6];
|
||||
double t0, t1, s = 0;
|
||||
|
||||
if( Av[2] < -eps || Av[2] >= levelSize.width+eps ||
|
||||
Av[5] < -eps || Av[5] >= levelSize.height+eps ||
|
||||
icvGetQuadrangleSubPix_8u32f_C1R( imgJ[l], levelStep,
|
||||
levelSize, patchJ, patchStep, patchSize, Av ) < 0 )
|
||||
{
|
||||
pt_status = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
for( y = -winSize.height, k = 0, meanJ = 0; y <= winSize.height; y++ )
|
||||
for( x = -winSize.width; x <= winSize.width; x++, k++ )
|
||||
meanJ += patchJ[k];
|
||||
|
||||
meanJ = meanJ / (patchSize.width * patchSize.height) - meanI;
|
||||
|
||||
for( y = -winSize.height, k = 0; y <= winSize.height; y++ )
|
||||
{
|
||||
for( x = -winSize.width; x <= winSize.width; x++, k++ )
|
||||
{
|
||||
double t = patchI[k] - patchJ[k] + meanJ;
|
||||
double ixt = Ix[k] * t;
|
||||
double iyt = Iy[k] * t;
|
||||
|
||||
s += t;
|
||||
|
||||
b[0] += ixt;
|
||||
b[1] += iyt;
|
||||
b[2] += x * ixt;
|
||||
b[3] += y * ixt;
|
||||
b[4] += x * iyt;
|
||||
b[5] += y * iyt;
|
||||
}
|
||||
}
|
||||
|
||||
for( k = 0; k < 6; k++ )
|
||||
eta[k] = G[k*6]*b[0] + G[k*6+1]*b[1] + G[k*6+2]*b[2] +
|
||||
G[k*6+3]*b[3] + G[k*6+4]*b[4] + G[k*6+5]*b[5];
|
||||
|
||||
Av[2] = (float)(Av[2] + Av[0] * eta[0] + Av[1] * eta[1]);
|
||||
Av[5] = (float)(Av[5] + Av[3] * eta[0] + Av[4] * eta[1]);
|
||||
|
||||
t0 = Av[0] * (1 + eta[2]) + Av[1] * eta[4];
|
||||
t1 = Av[0] * eta[3] + Av[1] * (1 + eta[5]);
|
||||
Av[0] = (float)t0;
|
||||
Av[1] = (float)t1;
|
||||
|
||||
t0 = Av[3] * (1 + eta[2]) + Av[4] * eta[4];
|
||||
t1 = Av[3] * eta[3] + Av[4] * (1 + eta[5]);
|
||||
Av[3] = (float)t0;
|
||||
Av[4] = (float)t1;
|
||||
|
||||
if( eta[0] * eta[0] + eta[1] * eta[1] < criteria.epsilon )
|
||||
break;
|
||||
}
|
||||
|
||||
if( pt_status != 0 || l == 0 )
|
||||
{
|
||||
status[i] = (char)pt_status;
|
||||
featuresB[i].x = Av[2];
|
||||
featuresB[i].y = Av[5];
|
||||
|
||||
matrices[i*4] = Av[0];
|
||||
matrices[i*4+1] = Av[1];
|
||||
matrices[i*4+2] = Av[3];
|
||||
matrices[i*4+3] = Av[4];
|
||||
}
|
||||
|
||||
if( pt_status && l == 0 && error )
|
||||
{
|
||||
/* calc error */
|
||||
double err = 0;
|
||||
|
||||
for( y = 0, k = 0; y < patchSize.height; y++ )
|
||||
{
|
||||
for( x = 0; x < patchSize.width; x++, k++ )
|
||||
{
|
||||
double t = patchI[k] - patchJ[k] + meanJ;
|
||||
err += t * t;
|
||||
}
|
||||
}
|
||||
error[i] = (float)std::sqrt(err);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
388
modules/video/src/compat_video.cpp
Normal file
388
modules/video/src/compat_video.cpp
Normal file
@ -0,0 +1,388 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
|
||||
/////////////////////////// Meanshift & CAMShift ///////////////////////////
|
||||
|
||||
CV_IMPL int
|
||||
cvMeanShift( const void* imgProb, CvRect windowIn,
|
||||
CvTermCriteria criteria, CvConnectedComp* comp )
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(imgProb);
|
||||
cv::Rect window = windowIn;
|
||||
int iters = cv::meanShift(img, window, criteria);
|
||||
|
||||
if( comp )
|
||||
{
|
||||
comp->rect = window;
|
||||
comp->area = cvRound(cv::sum(img(window))[0]);
|
||||
}
|
||||
|
||||
return iters;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int
|
||||
cvCamShift( const void* imgProb, CvRect windowIn,
|
||||
CvTermCriteria criteria,
|
||||
CvConnectedComp* comp,
|
||||
CvBox2D* box )
|
||||
{
|
||||
cv::Mat img = cv::cvarrToMat(imgProb);
|
||||
cv::Rect window = windowIn;
|
||||
cv::RotatedRect rr = cv::CamShift(img, window, criteria);
|
||||
|
||||
if( comp )
|
||||
{
|
||||
comp->rect = window;
|
||||
cv::Rect roi = rr.boundingRect() & cv::Rect(0, 0, img.cols, img.rows);
|
||||
comp->area = cvRound(cv::sum(img(roi))[0]);
|
||||
}
|
||||
|
||||
if( box )
|
||||
*box = rr;
|
||||
|
||||
return rr.size.width*rr.size.height > 0.f ? 1 : -1;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////// Motion Templates ////////////////////////////
|
||||
|
||||
CV_IMPL void
|
||||
cvUpdateMotionHistory( const void* silhouette, void* mhimg,
|
||||
double timestamp, double mhi_duration )
|
||||
{
|
||||
cv::Mat silh = cv::cvarrToMat(silhouette), mhi = cv::cvarrToMat(mhimg);
|
||||
cv::updateMotionHistory(silh, mhi, timestamp, mhi_duration);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvCalcMotionGradient( const CvArr* mhimg, CvArr* maskimg,
|
||||
CvArr* orientation,
|
||||
double delta1, double delta2,
|
||||
int aperture_size )
|
||||
{
|
||||
cv::Mat mhi = cv::cvarrToMat(mhimg);
|
||||
const cv::Mat mask = cv::cvarrToMat(maskimg), orient = cv::cvarrToMat(orientation);
|
||||
cv::calcMotionGradient(mhi, mask, orient, delta1, delta2, aperture_size);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL double
|
||||
cvCalcGlobalOrientation( const void* orientation, const void* maskimg, const void* mhimg,
|
||||
double curr_mhi_timestamp, double mhi_duration )
|
||||
{
|
||||
cv::Mat mhi = cv::cvarrToMat(mhimg);
|
||||
cv::Mat mask = cv::cvarrToMat(maskimg), orient = cv::cvarrToMat(orientation);
|
||||
return cv::calcGlobalOrientation(orient, mask, mhi, curr_mhi_timestamp, mhi_duration);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL CvSeq*
|
||||
cvSegmentMotion( const CvArr* mhimg, CvArr* segmaskimg, CvMemStorage* storage,
|
||||
double timestamp, double segThresh )
|
||||
{
|
||||
cv::Mat mhi = cv::cvarrToMat(mhimg);
|
||||
const cv::Mat segmask = cv::cvarrToMat(segmaskimg);
|
||||
std::vector<cv::Rect> brs;
|
||||
cv::segmentMotion(mhi, segmask, brs, timestamp, segThresh);
|
||||
CvSeq* seq = cvCreateSeq(0, sizeof(CvSeq), sizeof(CvConnectedComp), storage);
|
||||
|
||||
CvConnectedComp comp;
|
||||
memset(&comp, 0, sizeof(comp));
|
||||
for( size_t i = 0; i < brs.size(); i++ )
|
||||
{
|
||||
cv::Rect roi = brs[i];
|
||||
float compLabel = (float)(i+1);
|
||||
int x, y, area = 0;
|
||||
|
||||
cv::Mat part = segmask(roi);
|
||||
for( y = 0; y < roi.height; y++ )
|
||||
{
|
||||
const float* partptr = part.ptr<float>(y);
|
||||
for( x = 0; x < roi.width; x++ )
|
||||
area += partptr[x] == compLabel;
|
||||
}
|
||||
|
||||
comp.value = cv::Scalar(compLabel);
|
||||
comp.rect = roi;
|
||||
comp.area = area;
|
||||
cvSeqPush(seq, &comp);
|
||||
}
|
||||
|
||||
return seq;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////// Kalman ///////////////////////////////
|
||||
|
||||
CV_IMPL CvKalman*
|
||||
cvCreateKalman( int DP, int MP, int CP )
|
||||
{
|
||||
CvKalman *kalman = 0;
|
||||
|
||||
if( DP <= 0 || MP <= 0 )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
"state and measurement vectors must have positive number of dimensions" );
|
||||
|
||||
if( CP < 0 )
|
||||
CP = DP;
|
||||
|
||||
/* allocating memory for the structure */
|
||||
kalman = (CvKalman *)cvAlloc( sizeof( CvKalman ));
|
||||
memset( kalman, 0, sizeof(*kalman));
|
||||
|
||||
kalman->DP = DP;
|
||||
kalman->MP = MP;
|
||||
kalman->CP = CP;
|
||||
|
||||
kalman->state_pre = cvCreateMat( DP, 1, CV_32FC1 );
|
||||
cvZero( kalman->state_pre );
|
||||
|
||||
kalman->state_post = cvCreateMat( DP, 1, CV_32FC1 );
|
||||
cvZero( kalman->state_post );
|
||||
|
||||
kalman->transition_matrix = cvCreateMat( DP, DP, CV_32FC1 );
|
||||
cvSetIdentity( kalman->transition_matrix );
|
||||
|
||||
kalman->process_noise_cov = cvCreateMat( DP, DP, CV_32FC1 );
|
||||
cvSetIdentity( kalman->process_noise_cov );
|
||||
|
||||
kalman->measurement_matrix = cvCreateMat( MP, DP, CV_32FC1 );
|
||||
cvZero( kalman->measurement_matrix );
|
||||
|
||||
kalman->measurement_noise_cov = cvCreateMat( MP, MP, CV_32FC1 );
|
||||
cvSetIdentity( kalman->measurement_noise_cov );
|
||||
|
||||
kalman->error_cov_pre = cvCreateMat( DP, DP, CV_32FC1 );
|
||||
|
||||
kalman->error_cov_post = cvCreateMat( DP, DP, CV_32FC1 );
|
||||
cvZero( kalman->error_cov_post );
|
||||
|
||||
kalman->gain = cvCreateMat( DP, MP, CV_32FC1 );
|
||||
|
||||
if( CP > 0 )
|
||||
{
|
||||
kalman->control_matrix = cvCreateMat( DP, CP, CV_32FC1 );
|
||||
cvZero( kalman->control_matrix );
|
||||
}
|
||||
|
||||
kalman->temp1 = cvCreateMat( DP, DP, CV_32FC1 );
|
||||
kalman->temp2 = cvCreateMat( MP, DP, CV_32FC1 );
|
||||
kalman->temp3 = cvCreateMat( MP, MP, CV_32FC1 );
|
||||
kalman->temp4 = cvCreateMat( MP, DP, CV_32FC1 );
|
||||
kalman->temp5 = cvCreateMat( MP, 1, CV_32FC1 );
|
||||
|
||||
#if 1
|
||||
kalman->PosterState = kalman->state_pre->data.fl;
|
||||
kalman->PriorState = kalman->state_post->data.fl;
|
||||
kalman->DynamMatr = kalman->transition_matrix->data.fl;
|
||||
kalman->MeasurementMatr = kalman->measurement_matrix->data.fl;
|
||||
kalman->MNCovariance = kalman->measurement_noise_cov->data.fl;
|
||||
kalman->PNCovariance = kalman->process_noise_cov->data.fl;
|
||||
kalman->KalmGainMatr = kalman->gain->data.fl;
|
||||
kalman->PriorErrorCovariance = kalman->error_cov_pre->data.fl;
|
||||
kalman->PosterErrorCovariance = kalman->error_cov_post->data.fl;
|
||||
#endif
|
||||
|
||||
return kalman;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvReleaseKalman( CvKalman** _kalman )
|
||||
{
|
||||
CvKalman *kalman;
|
||||
|
||||
if( !_kalman )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
kalman = *_kalman;
|
||||
if( !kalman )
|
||||
return;
|
||||
|
||||
/* freeing the memory */
|
||||
cvReleaseMat( &kalman->state_pre );
|
||||
cvReleaseMat( &kalman->state_post );
|
||||
cvReleaseMat( &kalman->transition_matrix );
|
||||
cvReleaseMat( &kalman->control_matrix );
|
||||
cvReleaseMat( &kalman->measurement_matrix );
|
||||
cvReleaseMat( &kalman->process_noise_cov );
|
||||
cvReleaseMat( &kalman->measurement_noise_cov );
|
||||
cvReleaseMat( &kalman->error_cov_pre );
|
||||
cvReleaseMat( &kalman->gain );
|
||||
cvReleaseMat( &kalman->error_cov_post );
|
||||
cvReleaseMat( &kalman->temp1 );
|
||||
cvReleaseMat( &kalman->temp2 );
|
||||
cvReleaseMat( &kalman->temp3 );
|
||||
cvReleaseMat( &kalman->temp4 );
|
||||
cvReleaseMat( &kalman->temp5 );
|
||||
|
||||
memset( kalman, 0, sizeof(*kalman));
|
||||
|
||||
/* deallocating the structure */
|
||||
cvFree( _kalman );
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL const CvMat*
|
||||
cvKalmanPredict( CvKalman* kalman, const CvMat* control )
|
||||
{
|
||||
if( !kalman )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
/* update the state */
|
||||
/* x'(k) = A*x(k) */
|
||||
cvMatMulAdd( kalman->transition_matrix, kalman->state_post, 0, kalman->state_pre );
|
||||
|
||||
if( control && kalman->CP > 0 )
|
||||
/* x'(k) = x'(k) + B*u(k) */
|
||||
cvMatMulAdd( kalman->control_matrix, control, kalman->state_pre, kalman->state_pre );
|
||||
|
||||
/* update error covariance matrices */
|
||||
/* temp1 = A*P(k) */
|
||||
cvMatMulAdd( kalman->transition_matrix, kalman->error_cov_post, 0, kalman->temp1 );
|
||||
|
||||
/* P'(k) = temp1*At + Q */
|
||||
cvGEMM( kalman->temp1, kalman->transition_matrix, 1, kalman->process_noise_cov, 1,
|
||||
kalman->error_cov_pre, CV_GEMM_B_T );
|
||||
|
||||
/* handle the case when there will be measurement before the next predict */
|
||||
cvCopy(kalman->state_pre, kalman->state_post);
|
||||
|
||||
return kalman->state_pre;
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL const CvMat*
|
||||
cvKalmanCorrect( CvKalman* kalman, const CvMat* measurement )
|
||||
{
|
||||
if( !kalman || !measurement )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
|
||||
/* temp2 = H*P'(k) */
|
||||
cvMatMulAdd( kalman->measurement_matrix, kalman->error_cov_pre, 0, kalman->temp2 );
|
||||
/* temp3 = temp2*Ht + R */
|
||||
cvGEMM( kalman->temp2, kalman->measurement_matrix, 1,
|
||||
kalman->measurement_noise_cov, 1, kalman->temp3, CV_GEMM_B_T );
|
||||
|
||||
/* temp4 = inv(temp3)*temp2 = Kt(k) */
|
||||
cvSolve( kalman->temp3, kalman->temp2, kalman->temp4, CV_SVD );
|
||||
|
||||
/* K(k) */
|
||||
cvTranspose( kalman->temp4, kalman->gain );
|
||||
|
||||
/* temp5 = z(k) - H*x'(k) */
|
||||
cvGEMM( kalman->measurement_matrix, kalman->state_pre, -1, measurement, 1, kalman->temp5 );
|
||||
|
||||
/* x(k) = x'(k) + K(k)*temp5 */
|
||||
cvMatMulAdd( kalman->gain, kalman->temp5, kalman->state_pre, kalman->state_post );
|
||||
|
||||
/* P(k) = P'(k) - K(k)*temp2 */
|
||||
cvGEMM( kalman->gain, kalman->temp2, -1, kalman->error_cov_pre, 1,
|
||||
kalman->error_cov_post, 0 );
|
||||
|
||||
return kalman->state_post;
|
||||
}
|
||||
|
||||
///////////////////////////////////// Optical Flow ////////////////////////////////
|
||||
|
||||
CV_IMPL void
|
||||
cvCalcOpticalFlowPyrLK( const void* arrA, const void* arrB,
|
||||
void* /*pyrarrA*/, void* /*pyrarrB*/,
|
||||
const CvPoint2D32f * featuresA,
|
||||
CvPoint2D32f * featuresB,
|
||||
int count, CvSize winSize, int level,
|
||||
char *status, float *error,
|
||||
CvTermCriteria criteria, int flags )
|
||||
{
|
||||
if( count <= 0 )
|
||||
return;
|
||||
CV_Assert( featuresA && featuresB );
|
||||
cv::Mat A = cv::cvarrToMat(arrA), B = cv::cvarrToMat(arrB);
|
||||
cv::Mat ptA(count, 1, CV_32FC2, (void*)featuresA);
|
||||
cv::Mat ptB(count, 1, CV_32FC2, (void*)featuresB);
|
||||
cv::Mat st, err;
|
||||
|
||||
if( status )
|
||||
st = cv::Mat(count, 1, CV_8U, (void*)status);
|
||||
if( error )
|
||||
err = cv::Mat(count, 1, CV_32F, (void*)error);
|
||||
cv::calcOpticalFlowPyrLK( A, B, ptA, ptB, st,
|
||||
error ? cv::_OutputArray(err) : cv::noArray(),
|
||||
winSize, level, criteria, flags);
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void cvCalcOpticalFlowFarneback(
|
||||
const CvArr* _prev, const CvArr* _next,
|
||||
CvArr* _flow, double pyr_scale, int levels,
|
||||
int winsize, int iterations, int poly_n,
|
||||
double poly_sigma, int flags )
|
||||
{
|
||||
cv::Mat prev = cv::cvarrToMat(_prev), next = cv::cvarrToMat(_next);
|
||||
cv::Mat flow = cv::cvarrToMat(_flow);
|
||||
CV_Assert( flow.size() == prev.size() && flow.type() == CV_32FC2 );
|
||||
cv::calcOpticalFlowFarneback( prev, next, flow, pyr_scale, levels,
|
||||
winsize, iterations, poly_n, poly_sigma, flags );
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL int
|
||||
cvEstimateRigidTransform( const CvArr* arrA, const CvArr* arrB, CvMat* arrM, int full_affine )
|
||||
{
|
||||
cv::Mat matA = cv::cvarrToMat(arrA), matB = cv::cvarrToMat(arrB);
|
||||
const cv::Mat matM0 = cv::cvarrToMat(arrM);
|
||||
|
||||
cv::Mat matM = cv::estimateRigidTransform(matA, matB, full_affine != 0);
|
||||
if( matM.empty() )
|
||||
{
|
||||
matM = cv::cvarrToMat(arrM);
|
||||
matM.setTo(cv::Scalar::all(0));
|
||||
return 0;
|
||||
}
|
||||
matM.convertTo(matM0, matM0.type());
|
||||
return 1;
|
||||
}
|
@ -1,86 +0,0 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#ifndef __OPENCV_SIMPLEFLOW_H__
|
||||
#define __OPENCV_SIMPLEFLOW_H__
|
||||
|
||||
#include <vector>
|
||||
|
||||
#define MASK_TRUE_VALUE 255
|
||||
#define UNKNOWN_FLOW_THRESH 1e9
|
||||
|
||||
namespace cv {
|
||||
|
||||
inline static float dist(const Vec3b& p1, const Vec3b& p2) {
|
||||
return (float)((p1[0] - p2[0]) * (p1[0] - p2[0]) +
|
||||
(p1[1] - p2[1]) * (p1[1] - p2[1]) +
|
||||
(p1[2] - p2[2]) * (p1[2] - p2[2]));
|
||||
}
|
||||
|
||||
inline static float dist(const Vec2f& p1, const Vec2f& p2) {
|
||||
return (p1[0] - p2[0]) * (p1[0] - p2[0]) +
|
||||
(p1[1] - p2[1]) * (p1[1] - p2[1]);
|
||||
}
|
||||
|
||||
inline static float dist(const Point2f& p1, const Point2f& p2) {
|
||||
return (p1.x - p2.x) * (p1.x - p2.x) +
|
||||
(p1.y - p2.y) * (p1.y - p2.y);
|
||||
}
|
||||
|
||||
inline static float dist(float x1, float y1, float x2, float y2) {
|
||||
return (x1 - x2) * (x1 - x2) +
|
||||
(y1 - y2) * (y1 - y2);
|
||||
}
|
||||
|
||||
inline static int dist(int x1, int y1, int x2, int y2) {
|
||||
return (x1 - x2) * (x1 - x2) +
|
||||
(y1 - y2) * (y1 - y2);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
inline static T min(T t1, T t2, T t3) {
|
||||
return (t1 <= t2 && t1 <= t3) ? t1 : min(t2, t3);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user