mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
Doxygen documentation: more fixes and cleanups
This commit is contained in:
parent
f9a83c28e5
commit
1523fdcc1c
@ -146,43 +146,59 @@ if(BUILD_DOCS AND HAVE_SPHINX)
|
||||
endif()
|
||||
|
||||
# ========= Doxygen docs =========
|
||||
|
||||
macro(make_reference result modules_list black_list)
|
||||
set(_res)
|
||||
foreach(m ${${modules_list}})
|
||||
list(FIND ${black_list} ${m} _pos)
|
||||
if(${_pos} EQUAL -1)
|
||||
set(_res "${_res} @ref ${m} | ${m} \n")
|
||||
endif()
|
||||
endforeach()
|
||||
set(${result} ${_res})
|
||||
endmacro()
|
||||
|
||||
if(BUILD_DOCS AND HAVE_DOXYGEN)
|
||||
# documented modules list
|
||||
set(candidates)
|
||||
list(APPEND candidates ${BASE_MODULES} ${EXTRA_MODULES})
|
||||
# blacklisted modules
|
||||
ocv_list_filterout(candidates "^ts$")
|
||||
# not documented modules list
|
||||
list(APPEND blacklist "ts" "java" "python2" "python3" "world")
|
||||
|
||||
# gathering headers
|
||||
set(all_headers) # files and dirs to process
|
||||
set(all_images) # image search paths
|
||||
set(reflist) # modules reference
|
||||
foreach(m ${candidates})
|
||||
set(reflist "${reflist} \n- @subpage ${m}")
|
||||
|
||||
set(header_dir "${OPENCV_MODULE_opencv_${m}_LOCATION}/include")
|
||||
if(EXISTS ${header_dir})
|
||||
set(all_headers ${all_headers} ${header_dir})
|
||||
set(paths_include)
|
||||
set(paths_doc)
|
||||
set(paths_bib)
|
||||
foreach(m ${BASE_MODULES} ${EXTRA_MODULES})
|
||||
list(FIND blacklist ${m} _pos)
|
||||
if(${_pos} EQUAL -1)
|
||||
set(header_dir "${OPENCV_MODULE_opencv_${m}_LOCATION}/include")
|
||||
if(EXISTS "${header_dir}")
|
||||
list(APPEND paths_include "${header_dir}")
|
||||
endif()
|
||||
set(docs_dir "${OPENCV_MODULE_opencv_${m}_LOCATION}/doc")
|
||||
if(EXISTS "${docs_dir}")
|
||||
list(APPEND paths_doc "${docs_dir}")
|
||||
file(GLOB bib_file "${docs_dir}" "*.bib")
|
||||
if(EXISTS "${bib_file}")
|
||||
list(APPEND paths_bib "${bib_file}")
|
||||
endif()
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set(docs_dir "${OPENCV_MODULE_opencv_${m}_LOCATION}/doc")
|
||||
if(EXISTS ${docs_dir})
|
||||
set(all_images ${all_images} ${docs_dir})
|
||||
set(all_headers ${all_headers} ${docs_dir})
|
||||
endif()
|
||||
|
||||
endforeach()
|
||||
|
||||
|
||||
# additional config
|
||||
set(doxyfile "${CMAKE_CURRENT_BINARY_DIR}/Doxyfile")
|
||||
set(rootfile "${CMAKE_CURRENT_BINARY_DIR}/root.markdown")
|
||||
set(all_headers ${all_headers} ${rootfile})
|
||||
string(REGEX REPLACE ";" " \\\\\\n" CMAKE_DOXYGEN_INPUT_LIST "${all_headers}")
|
||||
string(REGEX REPLACE ";" " \\\\\\n" CMAKE_DOXYGEN_IMAGE_PATH "${all_images}")
|
||||
set(bibfile "${CMAKE_CURRENT_SOURCE_DIR}/opencv.bib")
|
||||
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_INPUT_LIST "${rootfile} ; ${paths_include} ; ${paths_doc}")
|
||||
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_IMAGE_PATH "${paths_doc}")
|
||||
string(REPLACE ";" " \\\n" CMAKE_DOXYGEN_EXAMPLE_PATH "${CMAKE_SOURCE_DIR}/samples/cpp ; ${paths_doc}")
|
||||
set(CMAKE_DOXYGEN_LAYOUT "${CMAKE_CURRENT_SOURCE_DIR}/DoxygenLayout.xml")
|
||||
set(CMAKE_DOXYGEN_OUTPUT_PATH "doxygen")
|
||||
set(CMAKE_DOXYGEN_MODULES_REFERENCE "${reflist}")
|
||||
set(CMAKE_DOXYGEN_EXAMPLE_PATH "${CMAKE_SOURCE_DIR}/samples/cpp")
|
||||
set(CMAKE_EXTRA_BIB_FILES "${bibfile} ${paths_bib}")
|
||||
|
||||
# generate references
|
||||
make_reference(CMAKE_DOXYGEN_MAIN_REFERENCE BASE_MODULES blacklist)
|
||||
make_reference(CMAKE_DOXYGEN_EXTRA_REFERENCE EXTRA_MODULES blacklist)
|
||||
|
||||
# writing file
|
||||
configure_file(Doxyfile.in ${doxyfile} @ONLY)
|
||||
|
@ -85,7 +85,7 @@ SHOW_FILES = YES
|
||||
SHOW_NAMESPACES = YES
|
||||
FILE_VERSION_FILTER =
|
||||
LAYOUT_FILE = @CMAKE_DOXYGEN_LAYOUT@
|
||||
CITE_BIB_FILES = @CMAKE_CURRENT_SOURCE_DIR@/opencv.bib
|
||||
CITE_BIB_FILES = @CMAKE_EXTRA_BIB_FILES@
|
||||
QUIET = YES
|
||||
WARNINGS = YES
|
||||
WARN_IF_UNDOCUMENTED = YES
|
||||
@ -222,6 +222,7 @@ INCLUDE_FILE_PATTERNS =
|
||||
PREDEFINED = __cplusplus=1 \
|
||||
HAVE_IPP_A=1 \
|
||||
CVAPI(x)=x \
|
||||
CV_DOXYGEN= \
|
||||
CV_EXPORTS= \
|
||||
CV_EXPORTS_W= \
|
||||
CV_EXPORTS_W_SIMPLE= \
|
||||
|
@ -3,9 +3,14 @@ OpenCV modules {#mainpage}
|
||||
|
||||
@subpage intro
|
||||
|
||||
Module name | Folder
|
||||
------------- | -------------
|
||||
@ref core | core
|
||||
@ref imgproc | imgproc
|
||||
### Main modules
|
||||
|
||||
<!-- @CMAKE_DOXYGEN_MODULES_REFERENCE@ -->
|
||||
Module name | Folder
|
||||
-------------- | -------------
|
||||
@CMAKE_DOXYGEN_MAIN_REFERENCE@
|
||||
|
||||
### Extra modules
|
||||
|
||||
Module name | Folder
|
||||
-------------- | -------------
|
||||
@CMAKE_DOXYGEN_EXTRA_REFERENCE@
|
||||
|
@ -3,6 +3,12 @@
|
||||
|
||||
#include <camera_properties.h>
|
||||
|
||||
/** @defgroup androidcamera Android Camera Support
|
||||
*/
|
||||
|
||||
//! @addtogroup androidcamera
|
||||
//! @{
|
||||
|
||||
class CameraActivity
|
||||
{
|
||||
public:
|
||||
@ -44,4 +50,6 @@ private:
|
||||
int frameHeight;
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
||||
#endif
|
||||
|
@ -1,6 +1,9 @@
|
||||
#ifndef CAMERA_PROPERTIES_H
|
||||
#define CAMERA_PROPERTIES_H
|
||||
|
||||
//! @addtogroup androidcamera
|
||||
//! @{
|
||||
|
||||
enum {
|
||||
ANDROID_CAMERA_PROPERTY_FRAMEWIDTH = 0,
|
||||
ANDROID_CAMERA_PROPERTY_FRAMEHEIGHT = 1,
|
||||
@ -67,4 +70,6 @@ enum {
|
||||
ANDROID_CAMERA_FOCUS_DISTANCE_FAR_INDEX
|
||||
};
|
||||
|
||||
//! @}
|
||||
|
||||
#endif // CAMERA_PROPERTIES_H
|
||||
|
@ -127,19 +127,19 @@ pattern (every view is described by several 3D-2D point correspondences).
|
||||
|
||||
@note
|
||||
- A calibration sample for 3 cameras in horizontal position can be found at
|
||||
opencv\_source\_code/samples/cpp/3calibration.cpp
|
||||
opencv_source_code/samples/cpp/3calibration.cpp
|
||||
- A calibration sample based on a sequence of images can be found at
|
||||
opencv\_source\_code/samples/cpp/calibration.cpp
|
||||
opencv_source_code/samples/cpp/calibration.cpp
|
||||
- A calibration sample in order to do 3D reconstruction can be found at
|
||||
opencv\_source\_code/samples/cpp/build3dmodel.cpp
|
||||
opencv_source_code/samples/cpp/build3dmodel.cpp
|
||||
- A calibration sample of an artificially generated camera and chessboard patterns can be
|
||||
found at opencv\_source\_code/samples/cpp/calibration\_artificial.cpp
|
||||
found at opencv_source_code/samples/cpp/calibration_artificial.cpp
|
||||
- A calibration example on stereo calibration can be found at
|
||||
opencv\_source\_code/samples/cpp/stereo\_calib.cpp
|
||||
opencv_source_code/samples/cpp/stereo_calib.cpp
|
||||
- A calibration example on stereo matching can be found at
|
||||
opencv\_source\_code/samples/cpp/stereo\_match.cpp
|
||||
opencv_source_code/samples/cpp/stereo_match.cpp
|
||||
- (Python) A camera calibration sample can be found at
|
||||
opencv\_source\_code/samples/python2/calibrate.py
|
||||
opencv_source_code/samples/python2/calibrate.py
|
||||
|
||||
@{
|
||||
@defgroup calib3d_fisheye Fisheye camera model
|
||||
@ -257,9 +257,9 @@ CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobi
|
||||
|
||||
/** @brief Finds a perspective transformation between two planes.
|
||||
|
||||
@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV\_32FC2
|
||||
@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
|
||||
or vector\<Point2f\> .
|
||||
@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV\_32FC2 or
|
||||
@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
|
||||
a vector\<Point2f\> .
|
||||
@param method Method used to computed a homography matrix. The following methods are possible:
|
||||
- **0** - a regular method using all the points
|
||||
@ -315,7 +315,7 @@ cannot be estimated, an empty one will be returned.
|
||||
|
||||
@note
|
||||
- A example on calculating a homography for image matching can be found at
|
||||
opencv\_source\_code/samples/cpp/video\_homography.cpp
|
||||
opencv_source_code/samples/cpp/video_homography.cpp
|
||||
|
||||
*/
|
||||
CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
|
||||
@ -485,22 +485,22 @@ the vector is NULL/empty, the zero distortion coefficients are assumed.
|
||||
@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
|
||||
the model coordinate system to the camera coordinate system.
|
||||
@param tvec Output translation vector.
|
||||
@param useExtrinsicGuess Parameter used for SOLVEPNP\_ITERATIVE. If true (1), the function uses
|
||||
@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
|
||||
the provided rvec and tvec values as initial approximations of the rotation and translation
|
||||
vectors, respectively, and further optimizes them.
|
||||
@param flags Method for solving a PnP problem:
|
||||
- **SOLVEPNP\_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In
|
||||
- **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In
|
||||
this case the function finds such a pose that minimizes reprojection error, that is the sum
|
||||
of squared distances between the observed projections imagePoints and the projected (using
|
||||
projectPoints ) objectPoints .
|
||||
- **SOLVEPNP\_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
|
||||
- **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
|
||||
"Complete Solution Classification for the Perspective-Three-Point Problem". In this case the
|
||||
function requires exactly four object and image points.
|
||||
- **SOLVEPNP\_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
|
||||
- **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
|
||||
paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation".
|
||||
- **SOLVEPNP\_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
|
||||
- **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
|
||||
"A Direct Least-Squares (DLS) Method for PnP".
|
||||
- **SOLVEPNP\_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
|
||||
- **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
|
||||
F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
|
||||
Estimation". In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
|
||||
assuming that both have the same value. Then the cameraMatrix is updated with the estimated
|
||||
@ -511,7 +511,7 @@ projections, as well as the camera matrix and the distortion coefficients.
|
||||
|
||||
@note
|
||||
- An example of how to use solvePnP for planar augmented reality can be found at
|
||||
opencv\_source\_code/samples/python2/plane\_ar.py
|
||||
opencv_source_code/samples/python2/plane_ar.py
|
||||
*/
|
||||
CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
|
||||
InputArray cameraMatrix, InputArray distCoeffs,
|
||||
@ -531,7 +531,7 @@ the vector is NULL/empty, the zero distortion coefficients are assumed.
|
||||
@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
|
||||
the model coordinate system to the camera coordinate system.
|
||||
@param tvec Output translation vector.
|
||||
@param useExtrinsicGuess Parameter used for SOLVEPNP\_ITERATIVE. If true (1), the function uses
|
||||
@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
|
||||
the provided rvec and tvec values as initial approximations of the rotation and translation
|
||||
vectors, respectively, and further optimizes them.
|
||||
@param iterationsCount Number of iterations.
|
||||
@ -550,7 +550,7 @@ makes the function resistant to outliers.
|
||||
|
||||
@note
|
||||
- An example of how to use solvePNPRansac for object detection can be found at
|
||||
opencv\_source\_code/samples/cpp/tutorial\_code/calib3d/real\_time\_pose\_estimation/
|
||||
opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
|
||||
*/
|
||||
CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
|
||||
InputArray cameraMatrix, InputArray distCoeffs,
|
||||
@ -582,16 +582,16 @@ CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
|
||||
|
||||
@param image Source chessboard view. It must be an 8-bit grayscale or color image.
|
||||
@param patternSize Number of inner corners per a chessboard row and column
|
||||
( patternSize = cvSize(points\_per\_row,points\_per\_colum) = cvSize(columns,rows) ).
|
||||
( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ).
|
||||
@param corners Output array of detected corners.
|
||||
@param flags Various operation flags that can be zero or a combination of the following values:
|
||||
- **CV\_CALIB\_CB\_ADAPTIVE\_THRESH** Use adaptive thresholding to convert the image to black
|
||||
- **CV_CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
|
||||
and white, rather than a fixed threshold level (computed from the average image brightness).
|
||||
- **CV\_CALIB\_CB\_NORMALIZE\_IMAGE** Normalize the image gamma with equalizeHist before
|
||||
- **CV_CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
|
||||
applying fixed or adaptive thresholding.
|
||||
- **CV\_CALIB\_CB\_FILTER\_QUADS** Use additional criteria (like contour area, perimeter,
|
||||
- **CV_CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
|
||||
square-like shape) to filter out false quads extracted at the contour retrieval stage.
|
||||
- **CALIB\_CB\_FAST\_CHECK** Run a fast check on the image that looks for chessboard corners,
|
||||
- **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
|
||||
and shortcut the call if none is found. This can drastically speed up the call in the
|
||||
degenerate condition when no chessboard is observed.
|
||||
|
||||
@ -637,7 +637,7 @@ CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners,
|
||||
|
||||
@param image Destination image. It must be an 8-bit color image.
|
||||
@param patternSize Number of inner corners per a chessboard row and column
|
||||
(patternSize = cv::Size(points\_per\_row,points\_per\_column)).
|
||||
(patternSize = cv::Size(points_per_row,points_per_column)).
|
||||
@param corners Array of detected corners, the output of findChessboardCorners.
|
||||
@param patternWasFound Parameter indicating whether the complete board was found or not. The
|
||||
return value of findChessboardCorners should be passed here.
|
||||
@ -652,12 +652,12 @@ CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSiz
|
||||
|
||||
@param image grid view of input circles; it must be an 8-bit grayscale or color image.
|
||||
@param patternSize number of circles per row and column
|
||||
( patternSize = Size(points\_per\_row, points\_per\_colum) ).
|
||||
( patternSize = Size(points_per_row, points_per_colum) ).
|
||||
@param centers output array of detected centers.
|
||||
@param flags various operation flags that can be one of the following values:
|
||||
- **CALIB\_CB\_SYMMETRIC\_GRID** uses symmetric pattern of circles.
|
||||
- **CALIB\_CB\_ASYMMETRIC\_GRID** uses asymmetric pattern of circles.
|
||||
- **CALIB\_CB\_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
|
||||
- **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
|
||||
- **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
|
||||
- **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
|
||||
perspective distortions but much more sensitive to background clutter.
|
||||
@param blobDetector feature detector that finds blobs like dark circles on light background.
|
||||
|
||||
@ -703,7 +703,7 @@ together.
|
||||
@param imageSize Size of the image used only to initialize the intrinsic camera matrix.
|
||||
@param cameraMatrix Output 3x3 floating-point camera matrix
|
||||
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
|
||||
and/or CV\_CALIB\_FIX\_ASPECT\_RATIO are specified, some or all of fx, fy, cx, cy must be
|
||||
and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
|
||||
initialized before calling the function.
|
||||
@param distCoeffs Output vector of distortion coefficients
|
||||
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements.
|
||||
@ -714,33 +714,33 @@ space (in which object points are specified) to the world coordinate space, that
|
||||
position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
|
||||
@param tvecs Output vector of translation vectors estimated for each pattern view.
|
||||
@param flags Different flags that may be zero or a combination of the following values:
|
||||
- **CV\_CALIB\_USE\_INTRINSIC\_GUESS** cameraMatrix contains valid initial values of
|
||||
- **CV_CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
|
||||
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
|
||||
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
|
||||
Note, that if intrinsic parameters are known, there is no need to use this function just to
|
||||
estimate extrinsic parameters. Use solvePnP instead.
|
||||
- **CV\_CALIB\_FIX\_PRINCIPAL\_POINT** The principal point is not changed during the global
|
||||
- **CV_CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
|
||||
optimization. It stays at the center or at a different location specified when
|
||||
CV\_CALIB\_USE\_INTRINSIC\_GUESS is set too.
|
||||
- **CV\_CALIB\_FIX\_ASPECT\_RATIO** The functions considers only fy as a free parameter. The
|
||||
CV_CALIB_USE_INTRINSIC_GUESS is set too.
|
||||
- **CV_CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
|
||||
ratio fx/fy stays the same as in the input cameraMatrix . When
|
||||
CV\_CALIB\_USE\_INTRINSIC\_GUESS is not set, the actual input values of fx and fy are
|
||||
CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
|
||||
ignored, only their ratio is computed and used further.
|
||||
- **CV\_CALIB\_ZERO\_TANGENT\_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
|
||||
- **CV_CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
|
||||
to zeros and stay zero.
|
||||
- **CV\_CALIB\_FIX\_K1,...,CV\_CALIB\_FIX\_K6** The corresponding radial distortion
|
||||
coefficient is not changed during the optimization. If CV\_CALIB\_USE\_INTRINSIC\_GUESS is
|
||||
- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** The corresponding radial distortion
|
||||
coefficient is not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is
|
||||
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
|
||||
- **CV\_CALIB\_RATIONAL\_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
|
||||
- **CV_CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
|
||||
backward compatibility, this extra flag should be explicitly specified to make the
|
||||
calibration function use the rational model and return 8 coefficients. If the flag is not
|
||||
set, the function computes and returns only 5 distortion coefficients.
|
||||
- **CALIB\_THIN\_PRISM\_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
|
||||
- **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
|
||||
backward compatibility, this extra flag should be explicitly specified to make the
|
||||
calibration function use the thin prism model and return 12 coefficients. If the flag is not
|
||||
set, the function computes and returns only 5 distortion coefficients.
|
||||
- **CALIB\_FIX\_S1\_S2\_S3\_S4** The thin prism distortion coefficients are not changed during
|
||||
the optimization. If CV\_CALIB\_USE\_INTRINSIC\_GUESS is set, the coefficient from the
|
||||
- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
|
||||
the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
|
||||
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
|
||||
@param criteria Termination criteria for the iterative optimization algorithm.
|
||||
|
||||
@ -750,7 +750,7 @@ points and their corresponding 2D projections in each view must be specified. Th
|
||||
by using an object with a known geometry and easily detectable feature points. Such an object is
|
||||
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
|
||||
a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
|
||||
(when CV\_CALIB\_USE\_INTRINSIC\_GUESS is not set) is only implemented for planar calibration
|
||||
(when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
|
||||
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
|
||||
be used as long as initial cameraMatrix is provided.
|
||||
|
||||
@ -758,7 +758,7 @@ The algorithm performs the following steps:
|
||||
|
||||
- Compute the initial intrinsic parameters (the option only available for planar calibration
|
||||
patterns) or read them from the input parameters. The distortion coefficients are all set to
|
||||
zeros initially unless some of CV\_CALIB\_FIX\_K? are specified.
|
||||
zeros initially unless some of CV_CALIB_FIX_K? are specified.
|
||||
|
||||
- Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
|
||||
done using solvePnP .
|
||||
@ -822,8 +822,8 @@ observed by the first camera.
|
||||
observed by the second camera.
|
||||
@param cameraMatrix1 Input/output first camera matrix:
|
||||
\f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
|
||||
any of CV\_CALIB\_USE\_INTRINSIC\_GUESS , CV\_CALIB\_FIX\_ASPECT\_RATIO ,
|
||||
CV\_CALIB\_FIX\_INTRINSIC , or CV\_CALIB\_FIX\_FOCAL\_LENGTH are specified, some or all of the
|
||||
any of CV_CALIB_USE_INTRINSIC_GUESS , CV_CALIB_FIX_ASPECT_RATIO ,
|
||||
CV_CALIB_FIX_INTRINSIC , or CV_CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
|
||||
matrix components must be initialized. See the flags description for details.
|
||||
@param distCoeffs1 Input/output vector of distortion coefficients
|
||||
\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 ot 12 elements. The
|
||||
@ -837,30 +837,30 @@ is similar to distCoeffs1 .
|
||||
@param E Output essential matrix.
|
||||
@param F Output fundamental matrix.
|
||||
@param flags Different flags that may be zero or a combination of the following values:
|
||||
- **CV\_CALIB\_FIX\_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
|
||||
- **CV_CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
|
||||
matrices are estimated.
|
||||
- **CV\_CALIB\_USE\_INTRINSIC\_GUESS** Optimize some or all of the intrinsic parameters
|
||||
- **CV_CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
|
||||
according to the specified flags. Initial values are provided by the user.
|
||||
- **CV\_CALIB\_FIX\_PRINCIPAL\_POINT** Fix the principal points during the optimization.
|
||||
- **CV\_CALIB\_FIX\_FOCAL\_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
|
||||
- **CV\_CALIB\_FIX\_ASPECT\_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
|
||||
- **CV_CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
|
||||
- **CV_CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
|
||||
- **CV_CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
|
||||
.
|
||||
- **CV\_CALIB\_SAME\_FOCAL\_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
|
||||
- **CV\_CALIB\_ZERO\_TANGENT\_DIST** Set tangential distortion coefficients for each camera to
|
||||
- **CV_CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
|
||||
- **CV_CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
|
||||
zeros and fix there.
|
||||
- **CV\_CALIB\_FIX\_K1,...,CV\_CALIB\_FIX\_K6** Do not change the corresponding radial
|
||||
distortion coefficient during the optimization. If CV\_CALIB\_USE\_INTRINSIC\_GUESS is set,
|
||||
- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** Do not change the corresponding radial
|
||||
distortion coefficient during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set,
|
||||
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
|
||||
- **CV\_CALIB\_RATIONAL\_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
|
||||
- **CV_CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
|
||||
compatibility, this extra flag should be explicitly specified to make the calibration
|
||||
function use the rational model and return 8 coefficients. If the flag is not set, the
|
||||
function computes and returns only 5 distortion coefficients.
|
||||
- **CALIB\_THIN\_PRISM\_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
|
||||
- **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
|
||||
backward compatibility, this extra flag should be explicitly specified to make the
|
||||
calibration function use the thin prism model and return 12 coefficients. If the flag is not
|
||||
set, the function computes and returns only 5 distortion coefficients.
|
||||
- **CALIB\_FIX\_S1\_S2\_S3\_S4** The thin prism distortion coefficients are not changed during
|
||||
the optimization. If CV\_CALIB\_USE\_INTRINSIC\_GUESS is set, the coefficient from the
|
||||
- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
|
||||
the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
|
||||
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
|
||||
@param criteria Termination criteria for the iterative optimization algorithm.
|
||||
|
||||
@ -888,10 +888,10 @@ Besides the stereo-related information, the function can also perform a full cal
|
||||
two cameras. However, due to the high dimensionality of the parameter space and noise in the input
|
||||
data, the function can diverge from the correct solution. If the intrinsic parameters can be
|
||||
estimated with high accuracy for each of the cameras individually (for example, using
|
||||
calibrateCamera ), you are recommended to do so and then pass CV\_CALIB\_FIX\_INTRINSIC flag to the
|
||||
calibrateCamera ), you are recommended to do so and then pass CV_CALIB_FIX_INTRINSIC flag to the
|
||||
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
|
||||
estimated at once, it makes sense to restrict some parameters, for example, pass
|
||||
CV\_CALIB\_SAME\_FOCAL\_LENGTH and CV\_CALIB\_ZERO\_TANGENT\_DIST flags, which is usually a
|
||||
CV_CALIB_SAME_FOCAL_LENGTH and CV_CALIB_ZERO_TANGENT_DIST flags, which is usually a
|
||||
reasonable assumption.
|
||||
|
||||
Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
|
||||
@ -923,7 +923,7 @@ camera.
|
||||
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
|
||||
camera.
|
||||
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
|
||||
@param flags Operation flags that may be zero or CV\_CALIB\_ZERO\_DISPARITY . If the flag is set,
|
||||
@param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set,
|
||||
the function makes the principal points of each camera have the same pixel coordinates in the
|
||||
rectified views. And if the flag is not set, the function may still shift the images in the
|
||||
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
|
||||
@ -936,7 +936,7 @@ pixels from the original images from the cameras are retained in the rectified i
|
||||
image pixels are lost). Obviously, any intermediate value yields an intermediate result between
|
||||
those two extreme cases.
|
||||
@param newImageSize New image resolution after rectification. The same size should be passed to
|
||||
initUndistortRectifyMap (see the stereo\_calib.cpp sample in OpenCV samples directory). When (0,0)
|
||||
initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
|
||||
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
|
||||
preserve details in the original image, especially when there is a big radial distortion.
|
||||
@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
|
||||
@ -962,7 +962,7 @@ coordinates. The function distinguishes the following two cases:
|
||||
\f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
|
||||
|
||||
where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
|
||||
CV\_CALIB\_ZERO\_DISPARITY is set.
|
||||
CV_CALIB_ZERO_DISPARITY is set.
|
||||
|
||||
- **Vertical stereo**: the first and the second camera views are shifted relative to each other
|
||||
mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
|
||||
@ -972,14 +972,14 @@ coordinates. The function distinguishes the following two cases:
|
||||
|
||||
\f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
|
||||
|
||||
where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB\_ZERO\_DISPARITY is
|
||||
where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is
|
||||
set.
|
||||
|
||||
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
|
||||
matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
|
||||
initialize the rectification map for each camera.
|
||||
|
||||
See below the screenshot from the stereo\_calib.cpp sample. Some red horizontal lines pass through
|
||||
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
|
||||
the corresponding image regions. This means that the images are well rectified, which is what most
|
||||
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
|
||||
their interiors are all valid pixels.
|
||||
@ -1057,7 +1057,7 @@ undistorted image. See roi1, roi2 description in stereoRectify .
|
||||
@param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
|
||||
principal point should be at the image center or not. By default, the principal point is chosen to
|
||||
best fit a subset of the source image (determined by alpha) to the corrected image.
|
||||
@return new\_camera\_matrix Output new camera matrix.
|
||||
@return new_camera_matrix Output new camera matrix.
|
||||
|
||||
The function computes and returns the optimal new camera matrix based on the free scaling parameter.
|
||||
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
|
||||
@ -1111,10 +1111,10 @@ CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
|
||||
floating-point (single or double precision).
|
||||
@param points2 Array of the second image points of the same size and format as points1 .
|
||||
@param method Method for computing a fundamental matrix.
|
||||
- **CV\_FM\_7POINT** for a 7-point algorithm. \f$N = 7\f$
|
||||
- **CV\_FM\_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
|
||||
- **CV\_FM\_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
|
||||
- **CV\_FM\_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
|
||||
- **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$
|
||||
- **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
|
||||
- **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
|
||||
- **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
|
||||
@param param1 Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
|
||||
line in pixels, beyond which the point is considered an outlier and is not used for computing the
|
||||
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
|
||||
@ -1269,7 +1269,7 @@ CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray point
|
||||
|
||||
/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
|
||||
|
||||
@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV\_32FC2 or
|
||||
@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
|
||||
vector\<Point2f\> .
|
||||
@param whichImage Index of the image (1 or 2) that contains the points .
|
||||
@param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
|
||||
@ -1364,16 +1364,16 @@ CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost
|
||||
|
||||
@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
|
||||
floating-point disparity image.
|
||||
@param \_3dImage Output 3-channel floating-point image of the same size as disparity . Each
|
||||
element of \_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
|
||||
@param _3dImage Output 3-channel floating-point image of the same size as disparity . Each
|
||||
element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
|
||||
map.
|
||||
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify.
|
||||
@param handleMissingValues Indicates, whether the function should handle missing values (i.e.
|
||||
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
|
||||
minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
|
||||
to 3D points with a very large Z value (currently set to 10000).
|
||||
@param ddepth The optional output array depth. If it is -1, the output image will have CV\_32F
|
||||
depth. ddepth can also be set to CV\_16S, CV\_32S or CV\_32F.
|
||||
@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
|
||||
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
|
||||
|
||||
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
|
||||
surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it
|
||||
@ -1523,19 +1523,19 @@ public:
|
||||
one as follows:
|
||||
|
||||
- By default, the algorithm is single-pass, which means that you consider only 5 directions
|
||||
instead of 8. Set mode=StereoSGBM::MODE\_HH in createStereoSGBM to run the full variant of the
|
||||
instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
|
||||
algorithm but beware that it may consume a lot of memory.
|
||||
- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
|
||||
blocks to single pixels.
|
||||
- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
|
||||
sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
|
||||
- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
|
||||
example: pre-filtering (StereoBM::PREFILTER\_XSOBEL type) and post-filtering (uniqueness
|
||||
example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
|
||||
check, quadratic interpolation and speckle filtering).
|
||||
|
||||
@note
|
||||
- (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
|
||||
at opencv\_source\_code/samples/python2/stereo\_match.py
|
||||
at opencv_source_code/samples/python2/stereo_match.py
|
||||
*/
|
||||
class CV_EXPORTS_W StereoSGBM : public StereoMatcher
|
||||
{
|
||||
@ -1573,9 +1573,9 @@ public:
|
||||
@param P2 The second parameter controlling the disparity smoothness. The larger the values are,
|
||||
the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
|
||||
between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
|
||||
pixels. The algorithm requires P2 \> P1 . See stereo\_match.cpp sample where some reasonably good
|
||||
P1 and P2 values are shown (like 8\*number\_of\_image\_channels\*SADWindowSize\*SADWindowSize and
|
||||
32\*number\_of\_image\_channels\*SADWindowSize\*SADWindowSize , respectively).
|
||||
pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
|
||||
P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
|
||||
32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
|
||||
@param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
|
||||
disparity check. Set it to a non-positive value to disable the check.
|
||||
@param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
|
||||
@ -1590,7 +1590,7 @@ public:
|
||||
@param speckleRange Maximum disparity variation within each connected component. If you do speckle
|
||||
filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
|
||||
Normally, 1 or 2 is good enough.
|
||||
@param mode Set it to StereoSGBM::MODE\_HH to run the full-scale two-pass dynamic programming
|
||||
@param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
|
||||
algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
|
||||
huge for HD-size pictures. By default, it is set to false .
|
||||
|
||||
@ -1687,7 +1687,7 @@ namespace fisheye
|
||||
1-channel or 1x1 3-channel
|
||||
@param P New camera matrix (3x3) or new projection matrix (3x4)
|
||||
@param size Undistorted image size.
|
||||
@param m1type Type of the first output map that can be CV\_32FC1 or CV\_16SC2 . See convertMaps()
|
||||
@param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
|
||||
for details.
|
||||
@param map1 The first output map.
|
||||
@param map2 The second output map.
|
||||
@ -1712,10 +1712,10 @@ namespace fisheye
|
||||
performed.
|
||||
|
||||
See below the results of undistortImage.
|
||||
- a\) result of undistort of perspective camera model (all possible coefficients (k\_1, k\_2, k\_3,
|
||||
k\_4, k\_5, k\_6) of distortion were optimized under calibration)
|
||||
- b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k\_1, k\_2,
|
||||
k\_3, k\_4) of fisheye distortion were optimized under calibration)
|
||||
- a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
|
||||
k_4, k_5, k_6) of distortion were optimized under calibration)
|
||||
- b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
|
||||
k_3, k_4) of fisheye distortion were optimized under calibration)
|
||||
- c\) original image was captured with fisheye lens
|
||||
|
||||
Pictures a) and b) almost the same. But if we consider points of image located far from the center
|
||||
@ -1749,10 +1749,10 @@ namespace fisheye
|
||||
@param imagePoints vector of vectors of the projections of calibration pattern points.
|
||||
imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
|
||||
objectPoints[i].size() for each i.
|
||||
@param image\_size Size of the image used only to initialize the intrinsic camera matrix.
|
||||
@param image_size Size of the image used only to initialize the intrinsic camera matrix.
|
||||
@param K Output 3x3 floating-point camera matrix
|
||||
\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If
|
||||
fisheye::CALIB\_USE\_INTRINSIC\_GUESS/ is specified, some or all of fx, fy, cx, cy must be
|
||||
fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be
|
||||
initialized before calling the function.
|
||||
@param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
|
||||
@param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
|
||||
@ -1762,14 +1762,14 @@ namespace fisheye
|
||||
position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
|
||||
@param tvecs Output vector of translation vectors estimated for each pattern view.
|
||||
@param flags Different flags that may be zero or a combination of the following values:
|
||||
- **fisheye::CALIB\_USE\_INTRINSIC\_GUESS** cameraMatrix contains valid initial values of
|
||||
- **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
|
||||
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
|
||||
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
|
||||
- **fisheye::CALIB\_RECOMPUTE\_EXTRINSIC** Extrinsic will be recomputed after each iteration
|
||||
- **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
|
||||
of intrinsic optimization.
|
||||
- **fisheye::CALIB\_CHECK\_COND** The functions will check validity of condition number.
|
||||
- **fisheye::CALIB\_FIX\_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
|
||||
- **fisheye::CALIB\_FIX\_K1..4** Selected distortion coefficients are set to zeros and stay
|
||||
- **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
|
||||
- **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
|
||||
- **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
|
||||
zero.
|
||||
@param criteria Termination criteria for the iterative optimization algorithm.
|
||||
*/
|
||||
@ -1794,13 +1794,13 @@ namespace fisheye
|
||||
@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
|
||||
camera.
|
||||
@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
|
||||
@param flags Operation flags that may be zero or CV\_CALIB\_ZERO\_DISPARITY . If the flag is set,
|
||||
@param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set,
|
||||
the function makes the principal points of each camera have the same pixel coordinates in the
|
||||
rectified views. And if the flag is not set, the function may still shift the images in the
|
||||
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
|
||||
useful image area.
|
||||
@param newImageSize New image resolution after rectification. The same size should be passed to
|
||||
initUndistortRectifyMap (see the stereo\_calib.cpp sample in OpenCV samples directory). When (0,0)
|
||||
initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
|
||||
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
|
||||
preserve details in the original image, especially when there is a big radial distortion.
|
||||
@param balance Sets the new focal length in range between the min focal length and the max focal
|
||||
@ -1820,7 +1820,7 @@ namespace fisheye
|
||||
observed by the second camera.
|
||||
@param K1 Input/output first camera matrix:
|
||||
\f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
|
||||
any of fisheye::CALIB\_USE\_INTRINSIC\_GUESS , fisheye::CV\_CALIB\_FIX\_INTRINSIC are specified,
|
||||
any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CV_CALIB_FIX_INTRINSIC are specified,
|
||||
some or all of the matrix components must be initialized.
|
||||
@param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements.
|
||||
@param K2 Input/output second camera matrix. The parameter is similar to K1 .
|
||||
@ -1830,16 +1830,16 @@ namespace fisheye
|
||||
@param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
|
||||
@param T Output translation vector between the coordinate systems of the cameras.
|
||||
@param flags Different flags that may be zero or a combination of the following values:
|
||||
- **fisheye::CV\_CALIB\_FIX\_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
|
||||
- **fisheye::CV_CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
|
||||
are estimated.
|
||||
- **fisheye::CALIB\_USE\_INTRINSIC\_GUESS** K1, K2 contains valid initial values of
|
||||
- **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of
|
||||
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
|
||||
center (imageSize is used), and focal distances are computed in a least-squares fashion.
|
||||
- **fisheye::CALIB\_RECOMPUTE\_EXTRINSIC** Extrinsic will be recomputed after each iteration
|
||||
- **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
|
||||
of intrinsic optimization.
|
||||
- **fisheye::CALIB\_CHECK\_COND** The functions will check validity of condition number.
|
||||
- **fisheye::CALIB\_FIX\_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
|
||||
- **fisheye::CALIB\_FIX\_K1..4** Selected distortion coefficients are set to zeros and stay
|
||||
- **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
|
||||
- **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
|
||||
- **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
|
||||
zero.
|
||||
@param criteria Termination criteria for the iterative optimization algorithm.
|
||||
*/
|
||||
|
@ -326,11 +326,11 @@ CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCou
|
||||
|
||||
Its interface is also Mat-like but with additional memory type parameters.
|
||||
|
||||
- **PAGE\_LOCKED** sets a page locked memory type used commonly for fast and asynchronous
|
||||
- **PAGE_LOCKED** sets a page locked memory type used commonly for fast and asynchronous
|
||||
uploading/downloading data from/to GPU.
|
||||
- **SHARED** specifies a zero copy memory allocation that enables mapping the host memory to GPU
|
||||
address space, if supported.
|
||||
- **WRITE\_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are
|
||||
- **WRITE_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are
|
||||
used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache
|
||||
utilization.
|
||||
|
||||
@ -581,7 +581,7 @@ class CV_EXPORTS TargetArchs
|
||||
public:
|
||||
/** @brief The following method checks whether the module was built with the support of the given feature:
|
||||
|
||||
@param feature\_set Features to be checked. See :ocvcuda::FeatureSet.
|
||||
@param feature_set Features to be checked. See :ocvcuda::FeatureSet.
|
||||
*/
|
||||
static bool builtWith(FeatureSet feature_set);
|
||||
|
||||
@ -611,9 +611,9 @@ public:
|
||||
|
||||
/** @brief The constructors.
|
||||
|
||||
@param device\_id System index of the CUDA device starting with 0.
|
||||
@param device_id System index of the CUDA device starting with 0.
|
||||
|
||||
Constructs the DeviceInfo object for the specified device. If device\_id parameter is missed, it
|
||||
Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it
|
||||
constructs an object for the current device.
|
||||
*/
|
||||
DeviceInfo(int device_id);
|
||||
@ -793,7 +793,7 @@ public:
|
||||
|
||||
/** @brief Provides information on CUDA feature support.
|
||||
|
||||
@param feature\_set Features to be checked. See cuda::FeatureSet.
|
||||
@param feature_set Features to be checked. See cuda::FeatureSet.
|
||||
|
||||
This function returns true if the device has the specified CUDA feature. Otherwise, it returns false
|
||||
*/
|
||||
|
@ -66,7 +66,7 @@ namespace cv
|
||||
class Stream;
|
||||
class Event;
|
||||
|
||||
/** @brief Class that enables getting cudaStream\_t from cuda::Stream
|
||||
/** @brief Class that enables getting cudaStream_t from cuda::Stream
|
||||
|
||||
because it is the only public header that depends on the CUDA Runtime API. Including it
|
||||
brings a dependency to your code.
|
||||
|
@ -83,11 +83,11 @@ as possible.
|
||||
|
||||
@note
|
||||
- An example applying the HOG descriptor for people detection can be found at
|
||||
opencv\_source\_code/samples/cpp/peopledetect.cpp
|
||||
opencv_source_code/samples/cpp/peopledetect.cpp
|
||||
- A CUDA example applying the HOG descriptor for people detection can be found at
|
||||
opencv\_source\_code/samples/gpu/hog.cpp
|
||||
opencv_source_code/samples/gpu/hog.cpp
|
||||
- (Python) An example applying the HOG descriptor for people detection can be found at
|
||||
opencv\_source\_code/samples/python2/peopledetect.py
|
||||
opencv_source_code/samples/python2/peopledetect.py
|
||||
*/
|
||||
struct CV_EXPORTS HOGDescriptor
|
||||
{
|
||||
@ -97,14 +97,14 @@ struct CV_EXPORTS HOGDescriptor
|
||||
|
||||
/** @brief Creates the HOG descriptor and detector.
|
||||
|
||||
@param win\_size Detection window size. Align to block size and block stride.
|
||||
@param block\_size Block size in pixels. Align to cell size. Only (16,16) is supported for now.
|
||||
@param block\_stride Block stride. It must be a multiple of cell size.
|
||||
@param cell\_size Cell size. Only (8, 8) is supported for now.
|
||||
@param win_size Detection window size. Align to block size and block stride.
|
||||
@param block_size Block size in pixels. Align to cell size. Only (16,16) is supported for now.
|
||||
@param block_stride Block stride. It must be a multiple of cell size.
|
||||
@param cell_size Cell size. Only (8, 8) is supported for now.
|
||||
@param nbins Number of bins. Only 9 bins per cell are supported for now.
|
||||
@param win\_sigma Gaussian smoothing window parameter.
|
||||
@param threshold\_L2hys L2-Hys normalization method shrinkage.
|
||||
@param gamma\_correction Flag to specify whether the gamma correction preprocessing is required or
|
||||
@param win_sigma Gaussian smoothing window parameter.
|
||||
@param threshold_L2hys L2-Hys normalization method shrinkage.
|
||||
@param gamma_correction Flag to specify whether the gamma correction preprocessing is required or
|
||||
not.
|
||||
@param nlevels Maximum number of detection window increases.
|
||||
*/
|
||||
@ -137,13 +137,13 @@ struct CV_EXPORTS HOGDescriptor
|
||||
|
||||
/** @brief Performs object detection without a multi-scale window.
|
||||
|
||||
@param img Source image. CV\_8UC1 and CV\_8UC4 types are supported for now.
|
||||
@param found\_locations Left-top corner points of detected objects boundaries.
|
||||
@param hit\_threshold Threshold for the distance between features and SVM classifying plane.
|
||||
@param img Source image. CV_8UC1 and CV_8UC4 types are supported for now.
|
||||
@param found_locations Left-top corner points of detected objects boundaries.
|
||||
@param hit_threshold Threshold for the distance between features and SVM classifying plane.
|
||||
Usually it is 0 and should be specfied in the detector coefficients (as the last free
|
||||
coefficient). But if the free coefficient is omitted (which is allowed), you can specify it
|
||||
manually here.
|
||||
@param win\_stride Window stride. It must be a multiple of block stride.
|
||||
@param win_stride Window stride. It must be a multiple of block stride.
|
||||
@param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0).
|
||||
*/
|
||||
void detect(const GpuMat& img, std::vector<Point>& found_locations,
|
||||
@ -153,13 +153,13 @@ struct CV_EXPORTS HOGDescriptor
|
||||
/** @brief Performs object detection with a multi-scale window.
|
||||
|
||||
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
|
||||
@param found\_locations Detected objects boundaries.
|
||||
@param hit\_threshold Threshold for the distance between features and SVM classifying plane. See
|
||||
@param found_locations Detected objects boundaries.
|
||||
@param hit_threshold Threshold for the distance between features and SVM classifying plane. See
|
||||
cuda::HOGDescriptor::detect for details.
|
||||
@param win\_stride Window stride. It must be a multiple of block stride.
|
||||
@param win_stride Window stride. It must be a multiple of block stride.
|
||||
@param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0).
|
||||
@param scale0 Coefficient of the detection window increase.
|
||||
@param group\_threshold Coefficient to regulate the similarity threshold. When detected, some
|
||||
@param group_threshold Coefficient to regulate the similarity threshold. When detected, some
|
||||
objects can be covered by many rectangles. 0 means not to perform grouping. See groupRectangles .
|
||||
*/
|
||||
void detectMultiScale(const GpuMat& img, std::vector<Rect>& found_locations,
|
||||
@ -177,11 +177,11 @@ struct CV_EXPORTS HOGDescriptor
|
||||
/** @brief Returns block descriptors computed for the whole image.
|
||||
|
||||
@param img Source image. See cuda::HOGDescriptor::detect for type limitations.
|
||||
@param win\_stride Window stride. It must be a multiple of block stride.
|
||||
@param win_stride Window stride. It must be a multiple of block stride.
|
||||
@param descriptors 2D array of descriptors.
|
||||
@param descr\_format Descriptor storage format:
|
||||
- **DESCR\_FORMAT\_ROW\_BY\_ROW** - Row-major order.
|
||||
- **DESCR\_FORMAT\_COL\_BY\_COL** - Column-major order.
|
||||
@param descr_format Descriptor storage format:
|
||||
- **DESCR_FORMAT_ROW_BY_ROW** - Row-major order.
|
||||
- **DESCR_FORMAT_COL_BY_COL** - Column-major order.
|
||||
|
||||
The function is mainly used to learn the classifier.
|
||||
*/
|
||||
@ -236,9 +236,9 @@ protected:
|
||||
|
||||
@note
|
||||
- A cascade classifier example can be found at
|
||||
opencv\_source\_code/samples/gpu/cascadeclassifier.cpp
|
||||
opencv_source_code/samples/gpu/cascadeclassifier.cpp
|
||||
- A Nvidea API specific cascade classifier example can be found at
|
||||
opencv\_source\_code/samples/gpu/cascadeclassifier\_nvidia\_api.cpp
|
||||
opencv_source_code/samples/gpu/cascadeclassifier_nvidia_api.cpp
|
||||
*/
|
||||
class CV_EXPORTS CascadeClassifier_CUDA
|
||||
{
|
||||
@ -271,7 +271,7 @@ public:
|
||||
int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size());
|
||||
/** @brief Detects objects of different sizes in the input image.
|
||||
|
||||
@param image Matrix of type CV\_8U containing an image where objects should be detected.
|
||||
@param image Matrix of type CV_8U containing an image where objects should be detected.
|
||||
@param objectsBuf Buffer to store detected objects (rectangles). If it is empty, it is allocated
|
||||
with the default size. If not empty, the function searches not more than N objects, where
|
||||
N = sizeof(objectsBufer's data)/sizeof(cv::Rect).
|
||||
@ -364,15 +364,15 @@ CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tve
|
||||
|
||||
@param object Single-row matrix of object points.
|
||||
@param image Single-row matrix of image points.
|
||||
@param camera\_mat 3x3 matrix of intrinsic camera parameters.
|
||||
@param dist\_coef Distortion coefficients. See undistortPoints for details.
|
||||
@param camera_mat 3x3 matrix of intrinsic camera parameters.
|
||||
@param dist_coef Distortion coefficients. See undistortPoints for details.
|
||||
@param rvec Output 3D rotation vector.
|
||||
@param tvec Output 3D translation vector.
|
||||
@param use\_extrinsic\_guess Flag to indicate that the function must use rvec and tvec as an
|
||||
@param use_extrinsic_guess Flag to indicate that the function must use rvec and tvec as an
|
||||
initial transformation guess. It is not supported for now.
|
||||
@param num\_iters Maximum number of RANSAC iterations.
|
||||
@param max\_dist Euclidean distance threshold to detect whether point is inlier or not.
|
||||
@param min\_inlier\_count Flag to indicate that the function must stop if greater or equal number
|
||||
@param num_iters Maximum number of RANSAC iterations.
|
||||
@param max_dist Euclidean distance threshold to detect whether point is inlier or not.
|
||||
@param min_inlier_count Flag to indicate that the function must stop if greater or equal number
|
||||
of inliers is achieved. It is not supported for now.
|
||||
@param inliers Output vector of inlier indices.
|
||||
*/
|
||||
|
@ -216,12 +216,12 @@ CV_EXPORTS void pow(InputArray src, double power, OutputArray dst, Stream& strea
|
||||
@param src2 Second source matrix or scalar.
|
||||
@param dst Destination matrix that has the same size and type as the input array(s).
|
||||
@param cmpop Flag specifying the relation between the elements to be checked:
|
||||
- **CMP\_EQ:** a(.) == b(.)
|
||||
- **CMP\_GT:** a(.) \< b(.)
|
||||
- **CMP\_GE:** a(.) \<= b(.)
|
||||
- **CMP\_LT:** a(.) \< b(.)
|
||||
- **CMP\_LE:** a(.) \<= b(.)
|
||||
- **CMP\_NE:** a(.) != b(.)
|
||||
- **CMP_EQ:** a(.) == b(.)
|
||||
- **CMP_GT:** a(.) \< b(.)
|
||||
- **CMP_GE:** a(.) \<= b(.)
|
||||
- **CMP_LT:** a(.) \< b(.)
|
||||
- **CMP_LE:** a(.) \<= b(.)
|
||||
- **CMP_NE:** a(.) != b(.)
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@sa compare
|
||||
@ -278,7 +278,7 @@ CV_EXPORTS void rshift(InputArray src, Scalar_<int> val, OutputArray dst, Stream
|
||||
|
||||
/** @brief Performs pixel by pixel right left of an image by a constant value.
|
||||
|
||||
@param src Source matrix. Supports 1, 3 and 4 channels images with CV\_8U , CV\_16U or CV\_32S
|
||||
@param src Source matrix. Supports 1, 3 and 4 channels images with CV_8U , CV_16U or CV_32S
|
||||
depth.
|
||||
@param val Constant values, one per channel.
|
||||
@param dst Destination matrix with the same size and type as src .
|
||||
@ -343,8 +343,8 @@ static inline void scaleAdd(InputArray src1, double alpha, InputArray src2, Outp
|
||||
@param src Source array (single-channel).
|
||||
@param dst Destination array with the same size and type as src .
|
||||
@param thresh Threshold value.
|
||||
@param maxval Maximum value to use with THRESH\_BINARY and THRESH\_BINARY\_INV threshold types.
|
||||
@param type Threshold type. For details, see threshold . The THRESH\_OTSU and THRESH\_TRIANGLE
|
||||
@param maxval Maximum value to use with THRESH_BINARY and THRESH_BINARY_INV threshold types.
|
||||
@param type Threshold type. For details, see threshold . The THRESH_OTSU and THRESH_TRIANGLE
|
||||
threshold types are not supported.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@ -354,8 +354,8 @@ CV_EXPORTS double threshold(InputArray src, OutputArray dst, double thresh, doub
|
||||
|
||||
/** @brief Computes magnitudes of complex matrix elements.
|
||||
|
||||
@param xy Source complex matrix in the interleaved format ( CV\_32FC2 ).
|
||||
@param magnitude Destination matrix of float magnitudes ( CV\_32FC1 ).
|
||||
@param xy Source complex matrix in the interleaved format ( CV_32FC2 ).
|
||||
@param magnitude Destination matrix of float magnitudes ( CV_32FC1 ).
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@sa magnitude
|
||||
@ -364,8 +364,8 @@ CV_EXPORTS void magnitude(InputArray xy, OutputArray magnitude, Stream& stream =
|
||||
|
||||
/** @brief Computes squared magnitudes of complex matrix elements.
|
||||
|
||||
@param xy Source complex matrix in the interleaved format ( CV\_32FC2 ).
|
||||
@param magnitude Destination matrix of float magnitude squares ( CV\_32FC1 ).
|
||||
@param xy Source complex matrix in the interleaved format ( CV_32FC2 ).
|
||||
@param magnitude Destination matrix of float magnitude squares ( CV_32FC1 ).
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void magnitudeSqr(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
@ -373,9 +373,9 @@ CV_EXPORTS void magnitudeSqr(InputArray xy, OutputArray magnitude, Stream& strea
|
||||
/** @overload
|
||||
computes magnitude of each (x(i), y(i)) vector
|
||||
supports only floating-point source
|
||||
@param x Source matrix containing real components ( CV\_32FC1 ).
|
||||
@param y Source matrix containing imaginary components ( CV\_32FC1 ).
|
||||
@param magnitude Destination matrix of float magnitudes ( CV\_32FC1 ).
|
||||
@param x Source matrix containing real components ( CV_32FC1 ).
|
||||
@param y Source matrix containing imaginary components ( CV_32FC1 ).
|
||||
@param magnitude Destination matrix of float magnitudes ( CV_32FC1 ).
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void magnitude(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
@ -383,18 +383,18 @@ CV_EXPORTS void magnitude(InputArray x, InputArray y, OutputArray magnitude, Str
|
||||
/** @overload
|
||||
computes squared magnitude of each (x(i), y(i)) vector
|
||||
supports only floating-point source
|
||||
@param x Source matrix containing real components ( CV\_32FC1 ).
|
||||
@param y Source matrix containing imaginary components ( CV\_32FC1 ).
|
||||
@param magnitude Destination matrix of float magnitude squares ( CV\_32FC1 ).
|
||||
@param x Source matrix containing real components ( CV_32FC1 ).
|
||||
@param y Source matrix containing imaginary components ( CV_32FC1 ).
|
||||
@param magnitude Destination matrix of float magnitude squares ( CV_32FC1 ).
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void magnitudeSqr(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Computes polar angles of complex matrix elements.
|
||||
|
||||
@param x Source matrix containing real components ( CV\_32FC1 ).
|
||||
@param y Source matrix containing imaginary components ( CV\_32FC1 ).
|
||||
@param angle Destination matrix of angles ( CV\_32FC1 ).
|
||||
@param x Source matrix containing real components ( CV_32FC1 ).
|
||||
@param y Source matrix containing imaginary components ( CV_32FC1 ).
|
||||
@param angle Destination matrix of angles ( CV_32FC1 ).
|
||||
@param angleInDegrees Flag for angles that must be evaluated in degrees.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@ -404,10 +404,10 @@ CV_EXPORTS void phase(InputArray x, InputArray y, OutputArray angle, bool angleI
|
||||
|
||||
/** @brief Converts Cartesian coordinates into polar.
|
||||
|
||||
@param x Source matrix containing real components ( CV\_32FC1 ).
|
||||
@param y Source matrix containing imaginary components ( CV\_32FC1 ).
|
||||
@param magnitude Destination matrix of float magnitudes ( CV\_32FC1 ).
|
||||
@param angle Destination matrix of angles ( CV\_32FC1 ).
|
||||
@param x Source matrix containing real components ( CV_32FC1 ).
|
||||
@param y Source matrix containing imaginary components ( CV_32FC1 ).
|
||||
@param magnitude Destination matrix of float magnitudes ( CV_32FC1 ).
|
||||
@param angle Destination matrix of angles ( CV_32FC1 ).
|
||||
@param angleInDegrees Flag for angles that must be evaluated in degrees.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@ -417,10 +417,10 @@ CV_EXPORTS void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, O
|
||||
|
||||
/** @brief Converts polar coordinates into Cartesian.
|
||||
|
||||
@param magnitude Source matrix containing magnitudes ( CV\_32FC1 ).
|
||||
@param angle Source matrix containing angles ( CV\_32FC1 ).
|
||||
@param x Destination matrix of real components ( CV\_32FC1 ).
|
||||
@param y Destination matrix of imaginary components ( CV\_32FC1 ).
|
||||
@param magnitude Source matrix containing magnitudes ( CV_32FC1 ).
|
||||
@param angle Source matrix containing angles ( CV_32FC1 ).
|
||||
@param x Destination matrix of real components ( CV_32FC1 ).
|
||||
@param y Destination matrix of imaginary components ( CV_32FC1 ).
|
||||
@param angleInDegrees Flag that indicates angles in degrees.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
@ -468,8 +468,8 @@ CV_EXPORTS void transpose(InputArray src1, OutputArray dst, Stream& stream = Str
|
||||
|
||||
/** @brief Flips a 2D matrix around vertical, horizontal, or both axes.
|
||||
|
||||
@param src Source matrix. Supports 1, 3 and 4 channels images with CV\_8U, CV\_16U, CV\_32S or
|
||||
CV\_32F depth.
|
||||
@param src Source matrix. Supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or
|
||||
CV_32F depth.
|
||||
@param dst Destination matrix.
|
||||
@param flipCode Flip mode for the source:
|
||||
- 0 Flips around x-axis.
|
||||
@ -489,7 +489,7 @@ public:
|
||||
/** @brief Transforms the source matrix into the destination matrix using the given look-up table:
|
||||
dst(I) = lut(src(I)) .
|
||||
|
||||
@param src Source matrix. CV\_8UC1 and CV\_8UC3 matrices are supported for now.
|
||||
@param src Source matrix. CV_8UC1 and CV_8UC3 matrices are supported for now.
|
||||
@param dst Destination matrix.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
@ -498,13 +498,13 @@ public:
|
||||
|
||||
/** @brief Creates implementation for cuda::LookUpTable .
|
||||
|
||||
@param lut Look-up table of 256 elements. It is a continuous CV\_8U matrix.
|
||||
@param lut Look-up table of 256 elements. It is a continuous CV_8U matrix.
|
||||
*/
|
||||
CV_EXPORTS Ptr<LookUpTable> createLookUpTable(InputArray lut);
|
||||
|
||||
/** @brief Forms a border around an image.
|
||||
|
||||
@param src Source image. CV\_8UC1 , CV\_8UC4 , CV\_32SC1 , and CV\_32FC1 types are supported.
|
||||
@param src Source image. CV_8UC1 , CV_8UC4 , CV_32SC1 , and CV_32FC1 types are supported.
|
||||
@param dst Destination image with the same type as src. The size is
|
||||
Size(src.cols+left+right, src.rows+top+bottom) .
|
||||
@param top
|
||||
@ -512,8 +512,8 @@ Size(src.cols+left+right, src.rows+top+bottom) .
|
||||
@param left
|
||||
@param right Number of pixels in each direction from the source image rectangle to extrapolate.
|
||||
For example: top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built.
|
||||
@param borderType Border type. See borderInterpolate for details. BORDER\_REFLECT101 ,
|
||||
BORDER\_REPLICATE , BORDER\_CONSTANT , BORDER\_REFLECT and BORDER\_WRAP are supported for now.
|
||||
@param borderType Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
|
||||
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
|
||||
@param value Border value.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
@ -528,8 +528,8 @@ CV_EXPORTS void copyMakeBorder(InputArray src, OutputArray dst, int top, int bot
|
||||
/** @brief Returns the norm of a matrix (or difference of two matrices).
|
||||
|
||||
@param src1 Source matrix. Any matrices except 64F are supported.
|
||||
@param normType Norm type. NORM\_L1 , NORM\_L2 , and NORM\_INF are supported for now.
|
||||
@param mask optional operation mask; it must have the same size as src1 and CV\_8UC1 type.
|
||||
@param normType Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.
|
||||
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
|
||||
@param buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
@sa norm
|
||||
@ -555,7 +555,7 @@ static inline double norm(InputArray src, int normType, GpuMat& buf)
|
||||
|
||||
@param src1 Source matrix. Any matrices except 64F are supported.
|
||||
@param src2 Second source matrix (if any) with the same size and type as src1.
|
||||
@param normType Norm type. NORM\_L1 , NORM\_L2 , and NORM\_INF are supported for now.
|
||||
@param normType Norm type. NORM_L1 , NORM_L2 , and NORM_INF are supported for now.
|
||||
@param buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
@sa norm
|
||||
@ -572,8 +572,8 @@ static inline double norm(InputArray src1, InputArray src2, int normType=NORM_L2
|
||||
|
||||
/** @brief Returns the sum of matrix elements.
|
||||
|
||||
@param src Source image of any depth except for CV\_64F .
|
||||
@param mask optional operation mask; it must have the same size as src1 and CV\_8UC1 type.
|
||||
@param src Source image of any depth except for CV_64F .
|
||||
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
|
||||
@param buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
@sa sum
|
||||
@ -597,8 +597,8 @@ static inline Scalar sum(InputArray src, GpuMat& buf)
|
||||
|
||||
/** @brief Returns the sum of absolute values for matrix elements.
|
||||
|
||||
@param src Source image of any depth except for CV\_64F .
|
||||
@param mask optional operation mask; it must have the same size as src1 and CV\_8UC1 type.
|
||||
@param src Source image of any depth except for CV_64F .
|
||||
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
|
||||
@param buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
*/
|
||||
CV_EXPORTS Scalar absSum(InputArray src, InputArray mask, GpuMat& buf);
|
||||
@ -620,8 +620,8 @@ static inline Scalar absSum(InputArray src, GpuMat& buf)
|
||||
|
||||
/** @brief Returns the squared sum of matrix elements.
|
||||
|
||||
@param src Source image of any depth except for CV\_64F .
|
||||
@param mask optional operation mask; it must have the same size as src1 and CV\_8UC1 type.
|
||||
@param src Source image of any depth except for CV_64F .
|
||||
@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type.
|
||||
@param buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
*/
|
||||
CV_EXPORTS Scalar sqrSum(InputArray src, InputArray mask, GpuMat& buf);
|
||||
@ -649,7 +649,7 @@ static inline Scalar sqrSum(InputArray src, GpuMat& buf)
|
||||
@param mask Optional mask to select a sub-matrix.
|
||||
@param buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
The function does not work with CV\_64F images on GPUs with the compute capability \< 1.3.
|
||||
The function does not work with CV_64F images on GPUs with the compute capability \< 1.3.
|
||||
|
||||
@sa minMaxLoc
|
||||
*/
|
||||
@ -675,7 +675,7 @@ static inline void minMax(InputArray src, double* minVal, double* maxVal=0, Inpu
|
||||
automatically.
|
||||
@param locbuf Optional locations buffer to avoid extra memory allocations. It is resized
|
||||
automatically.
|
||||
The function does not work with CV\_64F images on GPU with the compute capability \< 1.3.
|
||||
The function does not work with CV_64F images on GPU with the compute capability \< 1.3.
|
||||
|
||||
@sa minMaxLoc
|
||||
*/
|
||||
@ -696,7 +696,7 @@ static inline void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, P
|
||||
@param src Single-channel source image.
|
||||
@param buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
The function does not work with CV\_64F images on GPUs with the compute capability \< 1.3.
|
||||
The function does not work with CV_64F images on GPUs with the compute capability \< 1.3.
|
||||
|
||||
@sa countNonZero
|
||||
*/
|
||||
@ -717,20 +717,20 @@ static inline int countNonZero(const GpuMat& src)
|
||||
@param dim Dimension index along which the matrix is reduced. 0 means that the matrix is reduced
|
||||
to a single row. 1 means that the matrix is reduced to a single column.
|
||||
@param reduceOp Reduction operation that could be one of the following:
|
||||
- **CV\_REDUCE\_SUM** The output is the sum of all rows/columns of the matrix.
|
||||
- **CV\_REDUCE\_AVG** The output is the mean vector of all rows/columns of the matrix.
|
||||
- **CV\_REDUCE\_MAX** The output is the maximum (column/row-wise) of all rows/columns of the
|
||||
- **CV_REDUCE_SUM** The output is the sum of all rows/columns of the matrix.
|
||||
- **CV_REDUCE_AVG** The output is the mean vector of all rows/columns of the matrix.
|
||||
- **CV_REDUCE_MAX** The output is the maximum (column/row-wise) of all rows/columns of the
|
||||
matrix.
|
||||
- **CV\_REDUCE\_MIN** The output is the minimum (column/row-wise) of all rows/columns of the
|
||||
- **CV_REDUCE_MIN** The output is the minimum (column/row-wise) of all rows/columns of the
|
||||
matrix.
|
||||
@param dtype When it is negative, the destination vector will have the same type as the source
|
||||
matrix. Otherwise, its type will be CV\_MAKE\_TYPE(CV\_MAT\_DEPTH(dtype), mtx.channels()) .
|
||||
matrix. Otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), mtx.channels()) .
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of
|
||||
1D vectors and performing the specified operation on the vectors until a single row/column is
|
||||
obtained. For example, the function can be used to compute horizontal and vertical projections of a
|
||||
raster image. In case of CV\_REDUCE\_SUM and CV\_REDUCE\_AVG , the output may have a larger element
|
||||
raster image. In case of CV_REDUCE_SUM and CV_REDUCE_AVG , the output may have a larger element
|
||||
bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction
|
||||
modes.
|
||||
|
||||
@ -740,7 +740,7 @@ CV_EXPORTS void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, i
|
||||
|
||||
/** @brief Computes a mean value and a standard deviation of matrix elements.
|
||||
|
||||
@param mtx Source matrix. CV\_8UC1 matrices are supported for now.
|
||||
@param mtx Source matrix. CV_8UC1 matrices are supported for now.
|
||||
@param mean Mean value.
|
||||
@param stddev Standard deviation value.
|
||||
@param buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
@ -759,8 +759,8 @@ static inline void meanStdDev(InputArray src, Scalar& mean, Scalar& stddev)
|
||||
|
||||
/** @brief Computes a standard deviation of integral images.
|
||||
|
||||
@param src Source image. Only the CV\_32SC1 type is supported.
|
||||
@param sqr Squared source image. Only the CV\_32FC1 type is supported.
|
||||
@param src Source image. Only the CV_32SC1 type is supported.
|
||||
@param sqr Squared source image. Only the CV_32FC1 type is supported.
|
||||
@param dst Destination image with the same type and size as src .
|
||||
@param rect Rectangular window.
|
||||
@param stream Stream for the asynchronous version.
|
||||
@ -775,12 +775,12 @@ CV_EXPORTS void rectStdDev(InputArray src, InputArray sqr, OutputArray dst, Rect
|
||||
normalization.
|
||||
@param beta Upper range boundary in case of the range normalization; it is not used for the norm
|
||||
normalization.
|
||||
@param norm_type Normalization type ( NORM\_MINMAX , NORM\_L2 , NORM\_L1 or NORM\_INF ).
|
||||
@param norm_type Normalization type ( NORM_MINMAX , NORM_L2 , NORM_L1 or NORM_INF ).
|
||||
@param dtype When negative, the output array has the same type as src; otherwise, it has the same
|
||||
number of channels as src and the depth =CV\_MAT\_DEPTH(dtype).
|
||||
number of channels as src and the depth =CV_MAT_DEPTH(dtype).
|
||||
@param mask Optional operation mask.
|
||||
@param norm\_buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
@param cvt\_buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
@param norm_buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
@param cvt_buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
|
||||
@sa normalize
|
||||
*/
|
||||
@ -799,8 +799,8 @@ static inline void normalize(InputArray src, OutputArray dst, double alpha = 1,
|
||||
|
||||
/** @brief Computes an integral image.
|
||||
|
||||
@param src Source image. Only CV\_8UC1 images are supported for now.
|
||||
@param sum Integral image containing 32-bit unsigned integer values packed into CV\_32SC1 .
|
||||
@param src Source image. Only CV_8UC1 images are supported for now.
|
||||
@param sum Integral image containing 32-bit unsigned integer values packed into CV_32SC1 .
|
||||
@param buffer Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@ -822,9 +822,9 @@ static inline void integral(InputArray src, OutputArray sum, Stream& stream = St
|
||||
|
||||
/** @brief Computes a squared integral image.
|
||||
|
||||
@param src Source image. Only CV\_8UC1 images are supported for now.
|
||||
@param src Source image. Only CV_8UC1 images are supported for now.
|
||||
@param sqsum Squared integral image containing 64-bit unsigned integer values packed into
|
||||
CV\_64FC1 .
|
||||
CV_64FC1 .
|
||||
@param buf Optional buffer to avoid extra memory allocations. It is resized automatically.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
@ -845,8 +845,8 @@ static inline void sqrIntegral(InputArray src, OutputArray sqsum, Stream& stream
|
||||
|
||||
/** @brief Performs generalized matrix multiplication.
|
||||
|
||||
@param src1 First multiplied input matrix that should have CV\_32FC1 , CV\_64FC1 , CV\_32FC2 , or
|
||||
CV\_64FC2 type.
|
||||
@param src1 First multiplied input matrix that should have CV_32FC1 , CV_64FC1 , CV_32FC2 , or
|
||||
CV_64FC2 type.
|
||||
@param src2 Second multiplied input matrix of the same type as src1 .
|
||||
@param alpha Weight of the matrix product.
|
||||
@param src3 Third optional delta matrix added to the matrix product. It should have the same type
|
||||
@ -854,17 +854,17 @@ as src1 and src2 .
|
||||
@param beta Weight of src3 .
|
||||
@param dst Destination matrix. It has the proper size and the same type as input matrices.
|
||||
@param flags Operation flags:
|
||||
- **GEMM\_1\_T** transpose src1
|
||||
- **GEMM\_2\_T** transpose src2
|
||||
- **GEMM\_3\_T** transpose src3
|
||||
- **GEMM_1_T** transpose src1
|
||||
- **GEMM_2_T** transpose src2
|
||||
- **GEMM_3_T** transpose src3
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
The function performs generalized matrix multiplication similar to the gemm functions in BLAS level
|
||||
3. For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM\_1\_T + GEMM\_3\_T) corresponds to
|
||||
3. For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T) corresponds to
|
||||
|
||||
\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f]
|
||||
|
||||
@note Transposition operation doesn't support CV\_64FC2 input type.
|
||||
@note Transposition operation doesn't support CV_64FC2 input type.
|
||||
|
||||
@sa gemm
|
||||
*/
|
||||
@ -881,7 +881,7 @@ CV_EXPORTS void gemm(InputArray src1, InputArray src2, double alpha,
|
||||
multiplication.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
Only full (not packed) CV\_32FC2 complex spectrums in the interleaved format are supported for now.
|
||||
Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
|
||||
|
||||
@sa mulSpectrums
|
||||
*/
|
||||
@ -898,7 +898,7 @@ CV_EXPORTS void mulSpectrums(InputArray src1, InputArray src2, OutputArray dst,
|
||||
multiplication.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
Only full (not packed) CV\_32FC2 complex spectrums in the interleaved format are supported for now.
|
||||
Only full (not packed) CV_32FC2 complex spectrums in the interleaved format are supported for now.
|
||||
|
||||
@sa mulSpectrums
|
||||
*/
|
||||
@ -908,14 +908,14 @@ CV_EXPORTS void mulAndScaleSpectrums(InputArray src1, InputArray src2, OutputArr
|
||||
|
||||
@param src Source matrix (real or complex).
|
||||
@param dst Destination matrix (real or complex).
|
||||
@param dft\_size Size of a discrete Fourier transform.
|
||||
@param dft_size Size of a discrete Fourier transform.
|
||||
@param flags Optional flags:
|
||||
- **DFT\_ROWS** transforms each individual row of the source matrix.
|
||||
- **DFT\_SCALE** scales the result: divide it by the number of elements in the transform
|
||||
(obtained from dft\_size ).
|
||||
- **DFT\_INVERSE** inverts DFT. Use for complex-complex cases (real-complex and complex-real
|
||||
- **DFT_ROWS** transforms each individual row of the source matrix.
|
||||
- **DFT_SCALE** scales the result: divide it by the number of elements in the transform
|
||||
(obtained from dft_size ).
|
||||
- **DFT_INVERSE** inverts DFT. Use for complex-complex cases (real-complex and complex-real
|
||||
cases are always forward and inverse, respectively).
|
||||
- **DFT\_REAL\_OUTPUT** specifies the output as real. The source matrix is the result of
|
||||
- **DFT_REAL_OUTPUT** specifies the output as real. The source matrix is the result of
|
||||
real-complex transform, so the destination matrix must be real.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@ -926,14 +926,14 @@ function chooses an operation mode depending on the flags, size, and channel cou
|
||||
matrix:
|
||||
|
||||
- If the source matrix is complex and the output is not specified as real, the destination
|
||||
matrix is complex and has the dft\_size size and CV\_32FC2 type. The destination matrix
|
||||
matrix is complex and has the dft_size size and CV_32FC2 type. The destination matrix
|
||||
contains a full result of the DFT (forward or inverse).
|
||||
- If the source matrix is complex and the output is specified as real, the function assumes that
|
||||
its input is the result of the forward transform (see the next item). The destination matrix
|
||||
has the dft\_size size and CV\_32FC1 type. It contains the result of the inverse DFT.
|
||||
- If the source matrix is real (its type is CV\_32FC1 ), forward DFT is performed. The result of
|
||||
the DFT is packed into complex ( CV\_32FC2 ) matrix. So, the width of the destination matrix
|
||||
is dft\_size.width / 2 + 1 . But if the source is a single column, the height is reduced
|
||||
has the dft_size size and CV_32FC1 type. It contains the result of the inverse DFT.
|
||||
- If the source matrix is real (its type is CV_32FC1 ), forward DFT is performed. The result of
|
||||
the DFT is packed into complex ( CV_32FC2 ) matrix. So, the width of the destination matrix
|
||||
is dft_size.width / 2 + 1 . But if the source is a single column, the height is reduced
|
||||
instead of the width.
|
||||
|
||||
@sa dft
|
||||
@ -947,7 +947,7 @@ class CV_EXPORTS Convolution : public Algorithm
|
||||
public:
|
||||
/** @brief Computes a convolution (or cross-correlation) of two images.
|
||||
|
||||
@param image Source image. Only CV\_32FC1 images are supported for now.
|
||||
@param image Source image. Only CV_32FC1 images are supported for now.
|
||||
@param templ Template image. The size is not greater than the image size. The type is the same as
|
||||
image .
|
||||
@param result Result image. If image is *W x H* and templ is *w x h*, then result must be *W-w+1 x
|
||||
@ -960,8 +960,8 @@ public:
|
||||
|
||||
/** @brief Creates implementation for cuda::Convolution .
|
||||
|
||||
@param user\_block\_size Block size. If you leave default value Size(0,0) then automatic
|
||||
estimation of block size will be used (which is optimized for speed). By varying user\_block\_size
|
||||
@param user_block_size Block size. If you leave default value Size(0,0) then automatic
|
||||
estimation of block size will be used (which is optimized for speed). By varying user_block_size
|
||||
you can reduce memory requirements at the cost of speed.
|
||||
*/
|
||||
CV_EXPORTS Ptr<Convolution> createConvolution(Size user_block_size = Size());
|
||||
|
@ -75,7 +75,7 @@ class implements algorithm described in @cite MOG2001.
|
||||
|
||||
@note
|
||||
- An example on gaussian mixture based background/foreground segmantation can be found at
|
||||
opencv\_source\_code/samples/gpu/bgfg\_segm.cpp
|
||||
opencv_source_code/samples/gpu/bgfg_segm.cpp
|
||||
*/
|
||||
class CV_EXPORTS BackgroundSubtractorMOG : public cv::BackgroundSubtractor
|
||||
{
|
||||
@ -216,7 +216,7 @@ class CV_EXPORTS BackgroundSubtractorFGD : public cv::BackgroundSubtractor
|
||||
public:
|
||||
/** @brief Returns the output foreground regions calculated by findContours.
|
||||
|
||||
@param foreground\_regions Output array (CPU memory).
|
||||
@param foreground_regions Output array (CPU memory).
|
||||
*/
|
||||
virtual void getForegroundRegions(OutputArrayOfArrays foreground_regions) = 0;
|
||||
};
|
||||
|
@ -170,7 +170,7 @@ The implementation uses H264 video codec.
|
||||
|
||||
@note
|
||||
- An example on how to use the videoWriter class can be found at
|
||||
opencv\_source\_code/samples/gpu/video\_writer.cpp
|
||||
opencv_source_code/samples/gpu/video_writer.cpp
|
||||
*/
|
||||
class CV_EXPORTS VideoWriter
|
||||
{
|
||||
@ -195,8 +195,8 @@ public:
|
||||
@param fileName Name of the output video file. Only AVI file format is supported.
|
||||
@param frameSize Size of the input video frames.
|
||||
@param fps Framerate of the created video stream.
|
||||
@param format Surface format of input frames ( SF\_UYVY , SF\_YUY2 , SF\_YV12 , SF\_NV12 ,
|
||||
SF\_IYUV , SF\_BGR or SF\_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
@param format Surface format of input frames ( SF_UYVY , SF_YUY2 , SF_YV12 , SF_NV12 ,
|
||||
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
encoding, frames with other formats will be used as is.
|
||||
|
||||
The constructors initialize video writer. FFMPEG is used to write videos. User can implement own
|
||||
@ -208,8 +208,8 @@ CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const String& fileName, Size frame
|
||||
@param frameSize Size of the input video frames.
|
||||
@param fps Framerate of the created video stream.
|
||||
@param params Encoder parameters. See cudacodec::EncoderParams .
|
||||
@param format Surface format of input frames ( SF\_UYVY , SF\_YUY2 , SF\_YV12 , SF\_NV12 ,
|
||||
SF\_IYUV , SF\_BGR or SF\_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
@param format Surface format of input frames ( SF_UYVY , SF_YUY2 , SF_YV12 , SF_NV12 ,
|
||||
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
encoding, frames with other formats will be used as is.
|
||||
*/
|
||||
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const String& fileName, Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
|
||||
@ -219,8 +219,8 @@ CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const String& fileName, Size frame
|
||||
want to work with raw video stream.
|
||||
@param frameSize Size of the input video frames.
|
||||
@param fps Framerate of the created video stream.
|
||||
@param format Surface format of input frames ( SF\_UYVY , SF\_YUY2 , SF\_YV12 , SF\_NV12 ,
|
||||
SF\_IYUV , SF\_BGR or SF\_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
@param format Surface format of input frames ( SF_UYVY , SF_YUY2 , SF_YV12 , SF_NV12 ,
|
||||
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
encoding, frames with other formats will be used as is.
|
||||
*/
|
||||
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const Ptr<EncoderCallBack>& encoderCallback, Size frameSize, double fps, SurfaceFormat format = SF_BGR);
|
||||
@ -230,8 +230,8 @@ want to work with raw video stream.
|
||||
@param frameSize Size of the input video frames.
|
||||
@param fps Framerate of the created video stream.
|
||||
@param params Encoder parameters. See cudacodec::EncoderParams .
|
||||
@param format Surface format of input frames ( SF\_UYVY , SF\_YUY2 , SF\_YV12 , SF\_NV12 ,
|
||||
SF\_IYUV , SF\_BGR or SF\_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
@param format Surface format of input frames ( SF_UYVY , SF_YUY2 , SF_YV12 , SF_NV12 ,
|
||||
SF_IYUV , SF_BGR or SF_GRAY). BGR or gray frames will be converted to YV12 format before
|
||||
encoding, frames with other formats will be used as is.
|
||||
*/
|
||||
CV_EXPORTS Ptr<VideoWriter> createVideoWriter(const Ptr<EncoderCallBack>& encoderCallback, Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR);
|
||||
@ -282,7 +282,7 @@ struct FormatInfo
|
||||
|
||||
@note
|
||||
- An example on how to use the videoReader class can be found at
|
||||
opencv\_source\_code/samples/gpu/video\_reader.cpp
|
||||
opencv_source_code/samples/gpu/video_reader.cpp
|
||||
*/
|
||||
class CV_EXPORTS VideoReader
|
||||
{
|
||||
|
@ -68,7 +68,7 @@ For each descriptor in the first set, this matcher finds the closest descriptor
|
||||
by trying each one. This descriptor matcher supports masking permissible matches between descriptor
|
||||
sets.
|
||||
|
||||
The class BFMatcher\_CUDA has an interface similar to the class DescriptorMatcher. It has two groups
|
||||
The class BFMatcher_CUDA has an interface similar to the class DescriptorMatcher. It has two groups
|
||||
of match methods: for matching descriptors of one image with another image or with an image set.
|
||||
Also, all functions have an alternative to save results either to the GPU memory or to the CPU
|
||||
memory.
|
||||
@ -250,7 +250,7 @@ public:
|
||||
@param nonmaxSuppression If it is true, non-maximum suppression is applied to detected corners
|
||||
(keypoints).
|
||||
@param keypointsRatio Inner buffer size for keypoints store is determined as (keypointsRatio \*
|
||||
image\_width \* image\_height).
|
||||
image_width \* image_height).
|
||||
*/
|
||||
explicit FAST_CUDA(int threshold, bool nonmaxSuppression = true, double keypointsRatio = 0.05);
|
||||
|
||||
@ -261,8 +261,8 @@ public:
|
||||
@param mask Optional input mask that marks the regions where we should detect features.
|
||||
@param keypoints The output vector of keypoints. Can be stored both in CPU and GPU memory. For GPU
|
||||
memory:
|
||||
- keypoints.ptr\<Vec2s\>(LOCATION\_ROW)[i] will contain location of i'th point
|
||||
- keypoints.ptr\<float\>(RESPONSE\_ROW)[i] will contain response of i'th point (if non-maximum
|
||||
- keypoints.ptr\<Vec2s\>(LOCATION_ROW)[i] will contain location of i'th point
|
||||
- keypoints.ptr\<float\>(RESPONSE_ROW)[i] will contain response of i'th point (if non-maximum
|
||||
suppression is applied)
|
||||
*/
|
||||
void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints);
|
||||
@ -363,12 +363,12 @@ public:
|
||||
@param mask Optional input mask that marks the regions where we should detect features.
|
||||
@param keypoints The input/output vector of keypoints. Can be stored both in CPU and GPU memory.
|
||||
For GPU memory:
|
||||
- keypoints.ptr\<float\>(X\_ROW)[i] contains x coordinate of the i'th feature.
|
||||
- keypoints.ptr\<float\>(Y\_ROW)[i] contains y coordinate of the i'th feature.
|
||||
- keypoints.ptr\<float\>(RESPONSE\_ROW)[i] contains the response of the i'th feature.
|
||||
- keypoints.ptr\<float\>(ANGLE\_ROW)[i] contains orientation of the i'th feature.
|
||||
- keypoints.ptr\<float\>(OCTAVE\_ROW)[i] contains the octave of the i'th feature.
|
||||
- keypoints.ptr\<float\>(SIZE\_ROW)[i] contains the size of the i'th feature.
|
||||
- keypoints.ptr\<float\>(X_ROW)[i] contains x coordinate of the i'th feature.
|
||||
- keypoints.ptr\<float\>(Y_ROW)[i] contains y coordinate of the i'th feature.
|
||||
- keypoints.ptr\<float\>(RESPONSE_ROW)[i] contains the response of the i'th feature.
|
||||
- keypoints.ptr\<float\>(ANGLE_ROW)[i] contains orientation of the i'th feature.
|
||||
- keypoints.ptr\<float\>(OCTAVE_ROW)[i] contains the octave of the i'th feature.
|
||||
- keypoints.ptr\<float\>(SIZE_ROW)[i] contains the size of the i'th feature.
|
||||
@param descriptors Computed descriptors. if blurForDescriptor is true, image will be blurred
|
||||
before descriptors calculation.
|
||||
*/
|
||||
|
@ -60,7 +60,7 @@ filtering operations on 2D images.
|
||||
|
||||
@note
|
||||
- An example containing all basic morphology operators like erode and dilate can be found at
|
||||
opencv\_source\_code/samples/gpu/morphology.cpp
|
||||
opencv_source_code/samples/gpu/morphology.cpp
|
||||
|
||||
@}
|
||||
*/
|
||||
@ -89,7 +89,7 @@ public:
|
||||
|
||||
/** @brief Creates a normalized 2D box filter.
|
||||
|
||||
@param srcType Input image type. Only CV\_8UC1 and CV\_8UC4 are supported for now.
|
||||
@param srcType Input image type. Only CV_8UC1 and CV_8UC4 are supported for now.
|
||||
@param dstType Output image type. Only the same type as src is supported for now.
|
||||
@param ksize Kernel size.
|
||||
@param anchor Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel
|
||||
@ -107,7 +107,7 @@ CV_EXPORTS Ptr<Filter> createBoxFilter(int srcType, int dstType, Size ksize, Poi
|
||||
|
||||
/** @brief Creates a non-separable linear 2D filter.
|
||||
|
||||
@param srcType Input image type. Supports CV\_8U , CV\_16U and CV\_32F one and four channel image.
|
||||
@param srcType Input image type. Supports CV_8U , CV_16U and CV_32F one and four channel image.
|
||||
@param dstType Output image type. Only the same type as src is supported for now.
|
||||
@param kernel 2D array of filter coefficients.
|
||||
@param anchor Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel
|
||||
@ -125,7 +125,7 @@ CV_EXPORTS Ptr<Filter> createLinearFilter(int srcType, int dstType, InputArray k
|
||||
|
||||
/** @brief Creates a Laplacian operator.
|
||||
|
||||
@param srcType Input image type. Supports CV\_8U , CV\_16U and CV\_32F one and four channel image.
|
||||
@param srcType Input image type. Supports CV_8U , CV_16U and CV_32F one and four channel image.
|
||||
@param dstType Output image type. Only the same type as src is supported for now.
|
||||
@param ksize Aperture size used to compute the second-derivative filters (see getDerivKernels). It
|
||||
must be positive and odd. Only ksize = 1 and ksize = 3 are supported.
|
||||
@ -243,14 +243,14 @@ CV_EXPORTS Ptr<Filter> createGaussianFilter(int srcType, int dstType, Size ksize
|
||||
/** @brief Creates a 2D morphological filter.
|
||||
|
||||
@param op Type of morphological operation. The following types are possible:
|
||||
- **MORPH\_ERODE** erode
|
||||
- **MORPH\_DILATE** dilate
|
||||
- **MORPH\_OPEN** opening
|
||||
- **MORPH\_CLOSE** closing
|
||||
- **MORPH\_GRADIENT** morphological gradient
|
||||
- **MORPH\_TOPHAT** "top hat"
|
||||
- **MORPH\_BLACKHAT** "black hat"
|
||||
@param srcType Input/output image type. Only CV\_8UC1 and CV\_8UC4 are supported.
|
||||
- **MORPH_ERODE** erode
|
||||
- **MORPH_DILATE** dilate
|
||||
- **MORPH_OPEN** opening
|
||||
- **MORPH_CLOSE** closing
|
||||
- **MORPH_GRADIENT** morphological gradient
|
||||
- **MORPH_TOPHAT** "top hat"
|
||||
- **MORPH_BLACKHAT** "black hat"
|
||||
@param srcType Input/output image type. Only CV_8UC1 and CV_8UC4 are supported.
|
||||
@param kernel 2D 8-bit structuring element for the morphological operation.
|
||||
@param anchor Anchor position within the structuring element. Negative values mean that the anchor
|
||||
is at the center.
|
||||
@ -265,7 +265,7 @@ CV_EXPORTS Ptr<Filter> createMorphologyFilter(int op, int srcType, InputArray ke
|
||||
|
||||
/** @brief Creates the maximum filter.
|
||||
|
||||
@param srcType Input/output image type. Only CV\_8UC1 and CV\_8UC4 are supported.
|
||||
@param srcType Input/output image type. Only CV_8UC1 and CV_8UC4 are supported.
|
||||
@param ksize Kernel size.
|
||||
@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center.
|
||||
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
|
||||
@ -277,7 +277,7 @@ CV_EXPORTS Ptr<Filter> createBoxMaxFilter(int srcType, Size ksize,
|
||||
|
||||
/** @brief Creates the minimum filter.
|
||||
|
||||
@param srcType Input/output image type. Only CV\_8UC1 and CV\_8UC4 are supported.
|
||||
@param srcType Input/output image type. Only CV_8UC1 and CV_8UC4 are supported.
|
||||
@param ksize Kernel size.
|
||||
@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center.
|
||||
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
|
||||
@ -292,8 +292,8 @@ CV_EXPORTS Ptr<Filter> createBoxMinFilter(int srcType, Size ksize,
|
||||
|
||||
/** @brief Creates a horizontal 1D box filter.
|
||||
|
||||
@param srcType Input image type. Only CV\_8UC1 type is supported for now.
|
||||
@param dstType Output image type. Only CV\_32FC1 type is supported for now.
|
||||
@param srcType Input image type. Only CV_8UC1 type is supported for now.
|
||||
@param dstType Output image type. Only CV_32FC1 type is supported for now.
|
||||
@param ksize Kernel size.
|
||||
@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center.
|
||||
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
|
||||
@ -303,8 +303,8 @@ CV_EXPORTS Ptr<Filter> createRowSumFilter(int srcType, int dstType, int ksize, i
|
||||
|
||||
/** @brief Creates a vertical 1D box filter.
|
||||
|
||||
@param srcType Input image type. Only CV\_8UC1 type is supported for now.
|
||||
@param dstType Output image type. Only CV\_32FC1 type is supported for now.
|
||||
@param srcType Input image type. Only CV_8UC1 type is supported for now.
|
||||
@param dstType Output image type. Only CV_32FC1 type is supported for now.
|
||||
@param ksize Kernel size.
|
||||
@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center.
|
||||
@param borderMode Pixel extrapolation method. For details, see borderInterpolate .
|
||||
|
@ -75,7 +75,7 @@ namespace cv { namespace cuda {
|
||||
|
||||
/** @brief Converts an image from one color space to another.
|
||||
|
||||
@param src Source image with CV\_8U , CV\_16U , or CV\_32F depth and 1, 3, or 4 channels.
|
||||
@param src Source image with CV_8U , CV_16U , or CV_32F depth and 1, 3, or 4 channels.
|
||||
@param dst Destination image.
|
||||
@param code Color space conversion code. For details, see cvtColor .
|
||||
@param dcn Number of channels in the destination image. If the parameter is 0, the number of the
|
||||
@ -121,15 +121,15 @@ The function can do the following transformations:
|
||||
|
||||
- Demosaicing using bilinear interpolation
|
||||
|
||||
> - COLOR\_BayerBG2GRAY , COLOR\_BayerGB2GRAY , COLOR\_BayerRG2GRAY , COLOR\_BayerGR2GRAY
|
||||
> - COLOR\_BayerBG2BGR , COLOR\_BayerGB2BGR , COLOR\_BayerRG2BGR , COLOR\_BayerGR2BGR
|
||||
> - COLOR_BayerBG2GRAY , COLOR_BayerGB2GRAY , COLOR_BayerRG2GRAY , COLOR_BayerGR2GRAY
|
||||
> - COLOR_BayerBG2BGR , COLOR_BayerGB2BGR , COLOR_BayerRG2BGR , COLOR_BayerGR2BGR
|
||||
|
||||
- Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011)
|
||||
|
||||
> - COLOR\_BayerBG2GRAY\_MHT , COLOR\_BayerGB2GRAY\_MHT , COLOR\_BayerRG2GRAY\_MHT ,
|
||||
> COLOR\_BayerGR2GRAY\_MHT
|
||||
> - COLOR\_BayerBG2BGR\_MHT , COLOR\_BayerGB2BGR\_MHT , COLOR\_BayerRG2BGR\_MHT ,
|
||||
> COLOR\_BayerGR2BGR\_MHT
|
||||
> - COLOR_BayerBG2GRAY_MHT , COLOR_BayerGB2GRAY_MHT , COLOR_BayerRG2GRAY_MHT ,
|
||||
> COLOR_BayerGR2GRAY_MHT
|
||||
> - COLOR_BayerBG2BGR_MHT , COLOR_BayerGB2BGR_MHT , COLOR_BayerRG2BGR_MHT ,
|
||||
> COLOR_BayerGR2BGR_MHT
|
||||
|
||||
@sa cvtColor
|
||||
*/
|
||||
@ -137,7 +137,7 @@ CV_EXPORTS void demosaicing(InputArray src, OutputArray dst, int code, int dcn =
|
||||
|
||||
/** @brief Exchanges the color channels of an image in-place.
|
||||
|
||||
@param image Source image. Supports only CV\_8UC4 type.
|
||||
@param image Source image. Supports only CV_8UC4 type.
|
||||
@param dstOrder Integer array describing how channel values are permutated. The n-th entry of the
|
||||
array contains the number of the channel that is stored in the n-th channel of the output image.
|
||||
E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order.
|
||||
@ -161,28 +161,28 @@ enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA
|
||||
|
||||
/** @brief Composites two images using alpha opacity values contained in each image.
|
||||
|
||||
@param img1 First image. Supports CV\_8UC4 , CV\_16UC4 , CV\_32SC4 and CV\_32FC4 types.
|
||||
@param img1 First image. Supports CV_8UC4 , CV_16UC4 , CV_32SC4 and CV_32FC4 types.
|
||||
@param img2 Second image. Must have the same size and the same type as img1 .
|
||||
@param dst Destination image.
|
||||
@param alpha\_op Flag specifying the alpha-blending operation:
|
||||
- **ALPHA\_OVER**
|
||||
- **ALPHA\_IN**
|
||||
- **ALPHA\_OUT**
|
||||
- **ALPHA\_ATOP**
|
||||
- **ALPHA\_XOR**
|
||||
- **ALPHA\_PLUS**
|
||||
- **ALPHA\_OVER\_PREMUL**
|
||||
- **ALPHA\_IN\_PREMUL**
|
||||
- **ALPHA\_OUT\_PREMUL**
|
||||
- **ALPHA\_ATOP\_PREMUL**
|
||||
- **ALPHA\_XOR\_PREMUL**
|
||||
- **ALPHA\_PLUS\_PREMUL**
|
||||
- **ALPHA\_PREMUL**
|
||||
@param alpha_op Flag specifying the alpha-blending operation:
|
||||
- **ALPHA_OVER**
|
||||
- **ALPHA_IN**
|
||||
- **ALPHA_OUT**
|
||||
- **ALPHA_ATOP**
|
||||
- **ALPHA_XOR**
|
||||
- **ALPHA_PLUS**
|
||||
- **ALPHA_OVER_PREMUL**
|
||||
- **ALPHA_IN_PREMUL**
|
||||
- **ALPHA_OUT_PREMUL**
|
||||
- **ALPHA_ATOP_PREMUL**
|
||||
- **ALPHA_XOR_PREMUL**
|
||||
- **ALPHA_PLUS_PREMUL**
|
||||
- **ALPHA_PREMUL**
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@note
|
||||
- An example demonstrating the use of alphaComp can be found at
|
||||
opencv\_source\_code/samples/gpu/alpha\_comp.cpp
|
||||
opencv_source_code/samples/gpu/alpha_comp.cpp
|
||||
*/
|
||||
CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null());
|
||||
|
||||
@ -195,15 +195,15 @@ CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int
|
||||
|
||||
/** @brief Calculates histogram for one channel 8-bit image.
|
||||
|
||||
@param src Source image with CV\_8UC1 type.
|
||||
@param hist Destination histogram with one row, 256 columns, and the CV\_32SC1 type.
|
||||
@param src Source image with CV_8UC1 type.
|
||||
@param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null());
|
||||
|
||||
/** @brief Equalizes the histogram of a grayscale image.
|
||||
|
||||
@param src Source image with CV\_8UC1 type.
|
||||
@param src Source image with CV_8UC1 type.
|
||||
@param dst Destination image.
|
||||
@param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes).
|
||||
@param stream Stream for the asynchronous version.
|
||||
@ -227,7 +227,7 @@ public:
|
||||
using cv::CLAHE::apply;
|
||||
/** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization.
|
||||
|
||||
@param src Source image with CV\_8UC1 type.
|
||||
@param src Source image with CV_8UC1 type.
|
||||
@param dst Destination image.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
@ -244,7 +244,7 @@ CV_EXPORTS Ptr<cuda::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSi
|
||||
|
||||
/** @brief Computes levels with even distribution.
|
||||
|
||||
@param levels Destination array. levels has 1 row, nLevels columns, and the CV\_32SC1 type.
|
||||
@param levels Destination array. levels has 1 row, nLevels columns, and the CV_32SC1 type.
|
||||
@param nLevels Number of computed levels. nLevels must be at least 2.
|
||||
@param lowerLevel Lower boundary value of the lowest level.
|
||||
@param upperLevel Upper boundary value of the greatest level.
|
||||
@ -253,9 +253,9 @@ CV_EXPORTS void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int
|
||||
|
||||
/** @brief Calculates a histogram with evenly distributed bins.
|
||||
|
||||
@param src Source image. CV\_8U, CV\_16U, or CV\_16S depth and 1 or 4 channels are supported. For
|
||||
@param src Source image. CV_8U, CV_16U, or CV_16S depth and 1 or 4 channels are supported. For
|
||||
a four-channel image, all channels are processed separately.
|
||||
@param hist Destination histogram with one row, histSize columns, and the CV\_32S type.
|
||||
@param hist Destination histogram with one row, histSize columns, and the CV_32S type.
|
||||
@param histSize Size of the histogram.
|
||||
@param lowerLevel Lower boundary of lowest-level bin.
|
||||
@param upperLevel Upper boundary of highest-level bin.
|
||||
@ -283,9 +283,9 @@ static inline void histEven(InputArray src, GpuMat hist[4], int histSize[4], int
|
||||
|
||||
/** @brief Calculates a histogram with bins determined by the levels array.
|
||||
|
||||
@param src Source image. CV\_8U , CV\_16U , or CV\_16S depth and 1 or 4 channels are supported.
|
||||
@param src Source image. CV_8U , CV_16U , or CV_16S depth and 1 or 4 channels are supported.
|
||||
For a four-channel image, all channels are processed separately.
|
||||
@param hist Destination histogram with one row, (levels.cols-1) columns, and the CV\_32SC1 type.
|
||||
@param hist Destination histogram with one row, (levels.cols-1) columns, and the CV_32SC1 type.
|
||||
@param levels Number of levels in the histogram.
|
||||
@param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes).
|
||||
@param stream Stream for the asynchronous version.
|
||||
@ -325,8 +325,8 @@ public:
|
||||
*/
|
||||
virtual void detect(InputArray image, OutputArray edges) = 0;
|
||||
/** @overload
|
||||
@param dx First derivative of image in the vertical direction. Support only CV\_32S type.
|
||||
@param dy First derivative of image in the horizontal direction. Support only CV\_32S type.
|
||||
@param dx First derivative of image in the vertical direction. Support only CV_32S type.
|
||||
@param dy First derivative of image in the horizontal direction. Support only CV_32S type.
|
||||
@param edges Output edge map. It has the same size and type as image .
|
||||
*/
|
||||
virtual void detect(InputArray dx, InputArray dy, OutputArray edges) = 0;
|
||||
@ -346,9 +346,9 @@ public:
|
||||
|
||||
/** @brief Creates implementation for cuda::CannyEdgeDetector .
|
||||
|
||||
@param low\_thresh First threshold for the hysteresis procedure.
|
||||
@param high\_thresh Second threshold for the hysteresis procedure.
|
||||
@param apperture\_size Aperture size for the Sobel operator.
|
||||
@param low_thresh First threshold for the hysteresis procedure.
|
||||
@param high_thresh Second threshold for the hysteresis procedure.
|
||||
@param apperture_size Aperture size for the Sobel operator.
|
||||
@param L2gradient Flag indicating whether a more accurate \f$L_2\f$ norm
|
||||
\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to compute the image gradient magnitude (
|
||||
L2gradient=true ), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( L2gradient=false
|
||||
@ -383,9 +383,9 @@ public:
|
||||
|
||||
/** @brief Downloads results from cuda::HoughLinesDetector::detect to host memory.
|
||||
|
||||
@param d\_lines Result of cuda::HoughLinesDetector::detect .
|
||||
@param h\_lines Output host array.
|
||||
@param h\_votes Optional output array for line's votes.
|
||||
@param d_lines Result of cuda::HoughLinesDetector::detect .
|
||||
@param h_lines Output host array.
|
||||
@param h_votes Optional output array for line's votes.
|
||||
*/
|
||||
virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) = 0;
|
||||
|
||||
@ -547,7 +547,7 @@ public:
|
||||
|
||||
@param src Source image.
|
||||
@param dst Destination image containing cornerness values. It will have the same size as src and
|
||||
CV\_32FC1 type.
|
||||
CV_32FC1 type.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0;
|
||||
@ -555,11 +555,11 @@ public:
|
||||
|
||||
/** @brief Creates implementation for Harris cornerness criteria.
|
||||
|
||||
@param srcType Input source type. Only CV\_8UC1 and CV\_32FC1 are supported for now.
|
||||
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
|
||||
@param blockSize Neighborhood size.
|
||||
@param ksize Aperture parameter for the Sobel operator.
|
||||
@param k Harris detector free parameter.
|
||||
@param borderType Pixel extrapolation method. Only BORDER\_REFLECT101 and BORDER\_REPLICATE are
|
||||
@param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
|
||||
supported for now.
|
||||
|
||||
@sa cornerHarris
|
||||
@ -569,10 +569,10 @@ CV_EXPORTS Ptr<CornernessCriteria> createHarrisCorner(int srcType, int blockSize
|
||||
/** @brief Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the
|
||||
cornerness criteria).
|
||||
|
||||
@param srcType Input source type. Only CV\_8UC1 and CV\_32FC1 are supported for now.
|
||||
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
|
||||
@param blockSize Neighborhood size.
|
||||
@param ksize Aperture parameter for the Sobel operator.
|
||||
@param borderType Pixel extrapolation method. Only BORDER\_REFLECT101 and BORDER\_REPLICATE are
|
||||
@param borderType Pixel extrapolation method. Only BORDER_REFLECT101 and BORDER_REPLICATE are
|
||||
supported for now.
|
||||
|
||||
@sa cornerMinEigenVal
|
||||
@ -589,17 +589,17 @@ public:
|
||||
/** @brief Determines strong corners on an image.
|
||||
|
||||
@param image Input 8-bit or floating-point 32-bit, single-channel image.
|
||||
@param corners Output vector of detected corners (1-row matrix with CV\_32FC2 type with corners
|
||||
@param corners Output vector of detected corners (1-row matrix with CV_32FC2 type with corners
|
||||
positions).
|
||||
@param mask Optional region of interest. If the image is not empty (it needs to have the type
|
||||
CV\_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
|
||||
CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
|
||||
*/
|
||||
virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray()) = 0;
|
||||
};
|
||||
|
||||
/** @brief Creates implementation for cuda::CornersDetector .
|
||||
|
||||
@param srcType Input source type. Only CV\_8UC1 and CV\_32FC1 are supported for now.
|
||||
@param srcType Input source type. Only CV_8UC1 and CV_32FC1 are supported for now.
|
||||
@param maxCorners Maximum number of corners to return. If there are more corners than are found,
|
||||
the strongest of them is returned.
|
||||
@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
|
||||
@ -624,7 +624,7 @@ CV_EXPORTS Ptr<CornersDetector> createGoodFeaturesToTrackDetector(int srcType, i
|
||||
|
||||
/** @brief Performs mean-shift filtering for each point of the source image.
|
||||
|
||||
@param src Source image. Only CV\_8UC4 images are supported for now.
|
||||
@param src Source image. Only CV_8UC4 images are supported for now.
|
||||
@param dst Destination image containing the color of mapped points. It has the same size and type
|
||||
as src .
|
||||
@param sp Spatial window radius.
|
||||
@ -642,11 +642,11 @@ CV_EXPORTS void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int
|
||||
/** @brief Performs a mean-shift procedure and stores information about processed points (their colors and
|
||||
positions) in two images.
|
||||
|
||||
@param src Source image. Only CV\_8UC4 images are supported for now.
|
||||
@param src Source image. Only CV_8UC4 images are supported for now.
|
||||
@param dstr Destination image containing the color of mapped points. The size and type is the same
|
||||
as src .
|
||||
@param dstsp Destination image containing the position of mapped points. The size is the same as
|
||||
src size. The type is CV\_16SC2 .
|
||||
src size. The type is CV_16SC2 .
|
||||
@param sp Spatial window radius.
|
||||
@param sr Color window radius.
|
||||
@param criteria Termination criteria. See TermCriteria.
|
||||
@ -660,7 +660,7 @@ CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dsts
|
||||
|
||||
/** @brief Performs a mean-shift segmentation of the source image and eliminates small segments.
|
||||
|
||||
@param src Source image. Only CV\_8UC4 images are supported for now.
|
||||
@param src Source image. Only CV_8UC4 images are supported for now.
|
||||
@param dst Segmented image with the same size and type as src (host memory).
|
||||
@param sp Spatial window radius.
|
||||
@param sr Color window radius.
|
||||
@ -681,7 +681,7 @@ public:
|
||||
|
||||
@param image Source image.
|
||||
@param templ Template image with the size and type the same as image .
|
||||
@param result Map containing comparison results ( CV\_32FC1 ). If image is *W x H* and templ is *w
|
||||
@param result Map containing comparison results ( CV_32FC1 ). If image is *W x H* and templ is *w
|
||||
x h*, then result must be *W-w+1 x H-h+1*.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
@ -690,27 +690,27 @@ public:
|
||||
|
||||
/** @brief Creates implementation for cuda::TemplateMatching .
|
||||
|
||||
@param srcType Input source type. CV\_32F and CV\_8U depth images (1..4 channels) are supported
|
||||
@param srcType Input source type. CV_32F and CV_8U depth images (1..4 channels) are supported
|
||||
for now.
|
||||
@param method Specifies the way to compare the template with the image.
|
||||
@param user\_block\_size You can use field user\_block\_size to set specific block size. If you
|
||||
@param user_block_size You can use field user_block_size to set specific block size. If you
|
||||
leave its default value Size(0,0) then automatic estimation of block size will be used (which is
|
||||
optimized for speed). By varying user\_block\_size you can reduce memory requirements at the cost
|
||||
optimized for speed). By varying user_block_size you can reduce memory requirements at the cost
|
||||
of speed.
|
||||
|
||||
The following methods are supported for the CV\_8U depth images for now:
|
||||
The following methods are supported for the CV_8U depth images for now:
|
||||
|
||||
- CV\_TM\_SQDIFF
|
||||
- CV\_TM\_SQDIFF\_NORMED
|
||||
- CV\_TM\_CCORR
|
||||
- CV\_TM\_CCORR\_NORMED
|
||||
- CV\_TM\_CCOEFF
|
||||
- CV\_TM\_CCOEFF\_NORMED
|
||||
- CV_TM_SQDIFF
|
||||
- CV_TM_SQDIFF_NORMED
|
||||
- CV_TM_CCORR
|
||||
- CV_TM_CCORR_NORMED
|
||||
- CV_TM_CCOEFF
|
||||
- CV_TM_CCOEFF_NORMED
|
||||
|
||||
The following methods are supported for the CV\_32F images for now:
|
||||
The following methods are supported for the CV_32F images for now:
|
||||
|
||||
- CV\_TM\_SQDIFF
|
||||
- CV\_TM\_CCORR
|
||||
- CV_TM_SQDIFF
|
||||
- CV_TM_CCORR
|
||||
|
||||
@sa matchTemplate
|
||||
*/
|
||||
@ -720,14 +720,14 @@ CV_EXPORTS Ptr<TemplateMatching> createTemplateMatching(int srcType, int method,
|
||||
|
||||
/** @brief Performs bilateral filtering of passed image
|
||||
|
||||
@param src Source image. Supports only (channles != 2 && depth() != CV\_8S && depth() != CV\_32S
|
||||
&& depth() != CV\_64F).
|
||||
@param src Source image. Supports only (channles != 2 && depth() != CV_8S && depth() != CV_32S
|
||||
&& depth() != CV_64F).
|
||||
@param dst Destination imagwe.
|
||||
@param kernel\_size Kernel window size.
|
||||
@param sigma\_color Filter sigma in the color space.
|
||||
@param sigma\_spatial Filter sigma in the coordinate space.
|
||||
@param borderMode Border type. See borderInterpolate for details. BORDER\_REFLECT101 ,
|
||||
BORDER\_REPLICATE , BORDER\_CONSTANT , BORDER\_REFLECT and BORDER\_WRAP are supported for now.
|
||||
@param kernel_size Kernel window size.
|
||||
@param sigma_color Filter sigma in the color space.
|
||||
@param sigma_spatial Filter sigma in the coordinate space.
|
||||
@param borderMode Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
|
||||
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@sa bilateralFilter
|
||||
@ -739,11 +739,11 @@ CV_EXPORTS void bilateralFilter(InputArray src, OutputArray dst, int kernel_size
|
||||
|
||||
/** @brief Performs linear blending of two images.
|
||||
|
||||
@param img1 First image. Supports only CV\_8U and CV\_32F depth.
|
||||
@param img1 First image. Supports only CV_8U and CV_32F depth.
|
||||
@param img2 Second image. Must have the same size and the same type as img1 .
|
||||
@param weights1 Weights for first image. Must have tha same size as img1 . Supports only CV\_32F
|
||||
@param weights1 Weights for first image. Must have tha same size as img1 . Supports only CV_32F
|
||||
type.
|
||||
@param weights2 Weights for second image. Must have tha same size as img2 . Supports only CV\_32F
|
||||
@param weights2 Weights for second image. Must have tha same size as img2 . Supports only CV_32F
|
||||
type.
|
||||
@param result Destination image.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
@ -110,7 +110,7 @@ iterative Lucas-Kanade method with pyramids.
|
||||
|
||||
@note
|
||||
- An example of the Lucas Kanade optical flow algorithm can be found at
|
||||
opencv\_source\_code/samples/gpu/pyrlk\_optical\_flow.cpp
|
||||
opencv_source_code/samples/gpu/pyrlk_optical_flow.cpp
|
||||
*/
|
||||
class CV_EXPORTS PyrLKOpticalFlow
|
||||
{
|
||||
@ -122,13 +122,13 @@ public:
|
||||
@param prevImg First 8-bit input image (supports both grayscale and color images).
|
||||
@param nextImg Second input image of the same size and the same type as prevImg .
|
||||
@param prevPts Vector of 2D points for which the flow needs to be found. It must be one row matrix
|
||||
with CV\_32FC2 type.
|
||||
with CV_32FC2 type.
|
||||
@param nextPts Output vector of 2D points (with single-precision floating-point coordinates)
|
||||
containing the calculated new positions of input features in the second image. When useInitialFlow
|
||||
is true, the vector must have the same size as in the input.
|
||||
@param status Output status vector (CV\_8UC1 type). Each element of the vector is set to 1 if the
|
||||
@param status Output status vector (CV_8UC1 type). Each element of the vector is set to 1 if the
|
||||
flow for the corresponding features has been found. Otherwise, it is set to 0.
|
||||
@param err Output vector (CV\_32FC1 type) that contains the difference between patches around the
|
||||
@param err Output vector (CV_32FC1 type) that contains the difference between patches around the
|
||||
original and moved points or min eigen value if getMinEigenVals is checked. It can be NULL, if not
|
||||
needed.
|
||||
|
||||
@ -145,7 +145,7 @@ public:
|
||||
floating-point, single-channel
|
||||
@param v Vertical component of the optical flow of the same size as input images, 32-bit
|
||||
floating-point, single-channel
|
||||
@param err Output vector (CV\_32FC1 type) that contains the difference between patches around the
|
||||
@param err Output vector (CV_32FC1 type) that contains the difference between patches around the
|
||||
original and moved points or min eigen value if getMinEigenVals is checked. It can be NULL, if not
|
||||
needed.
|
||||
*/
|
||||
@ -374,7 +374,7 @@ private:
|
||||
@param bv Backward vertical displacement.
|
||||
@param pos New frame position.
|
||||
@param newFrame Output image.
|
||||
@param buf Temporary buffer, will have width x 6\*height size, CV\_32FC1 type and contain 6
|
||||
@param buf Temporary buffer, will have width x 6\*height size, CV_32FC1 type and contain 6
|
||||
GpuMat: occlusion masks for first frame, occlusion masks for second, interpolated forward
|
||||
horizontal flow, interpolated forward vertical flow, interpolated backward horizontal flow,
|
||||
interpolated backward vertical flow.
|
||||
|
@ -106,7 +106,7 @@ The class implements algorithm described in @cite Felzenszwalb2006 . It can comp
|
||||
|
||||
\f[width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 + \dotsm + \frac{1}{4^{levels}})\f]
|
||||
|
||||
width\_step is the number of bytes in a line including padding.
|
||||
width_step is the number of bytes in a line including padding.
|
||||
|
||||
StereoBeliefPropagation uses a truncated linear model for the data cost and discontinuity terms:
|
||||
|
||||
@ -116,8 +116,8 @@ StereoBeliefPropagation uses a truncated linear model for the data cost and disc
|
||||
|
||||
For more details, see @cite Felzenszwalb2006.
|
||||
|
||||
By default, StereoBeliefPropagation uses floating-point arithmetics and the CV\_32FC1 type for
|
||||
messages. But it can also use fixed-point arithmetics and the CV\_16SC1 message type for better
|
||||
By default, StereoBeliefPropagation uses floating-point arithmetics and the CV_32FC1 type for
|
||||
messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better
|
||||
performance. To avoid an overflow in this case, the parameters must satisfy the following
|
||||
requirement:
|
||||
|
||||
@ -135,9 +135,9 @@ public:
|
||||
|
||||
/** @brief Enables the stereo correspondence operator that finds the disparity for the specified data cost.
|
||||
|
||||
@param data User-specified data cost, a matrix of msg\_type type and
|
||||
@param data User-specified data cost, a matrix of msg_type type and
|
||||
Size(\<image columns\>\*ndisp, \<image rows\>) size.
|
||||
@param disparity Output disparity map. If disparity is empty, the output type is CV\_16SC1 .
|
||||
@param disparity Output disparity map. If disparity is empty, the output type is CV_16SC1 .
|
||||
Otherwise, the type is retained.
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
@ -182,7 +182,7 @@ public:
|
||||
@param ndisp Number of disparities.
|
||||
@param iters Number of BP iterations on each level.
|
||||
@param levels Number of levels.
|
||||
@param msg\_type Type for messages. CV\_16SC1 and CV\_32FC1 types are supported.
|
||||
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported.
|
||||
*/
|
||||
CV_EXPORTS Ptr<cuda::StereoBeliefPropagation>
|
||||
createStereoBeliefPropagation(int ndisp = 64, int iters = 5, int levels = 5, int msg_type = CV_32F);
|
||||
@ -195,7 +195,7 @@ CV_EXPORTS Ptr<cuda::StereoBeliefPropagation>
|
||||
The class implements algorithm described in @cite Yang2010. StereoConstantSpaceBP supports both local
|
||||
minimum and global minimum data cost initialization algorithms. For more details, see the paper
|
||||
mentioned above. By default, a local algorithm is used. To enable a global algorithm, set
|
||||
use\_local\_init\_data\_cost to false .
|
||||
use_local_init_data_cost to false .
|
||||
|
||||
StereoConstantSpaceBP uses a truncated linear model for the data cost and discontinuity terms:
|
||||
|
||||
@ -205,8 +205,8 @@ StereoConstantSpaceBP uses a truncated linear model for the data cost and discon
|
||||
|
||||
For more details, see @cite Yang2010.
|
||||
|
||||
By default, StereoConstantSpaceBP uses floating-point arithmetics and the CV\_32FC1 type for
|
||||
messages. But it can also use fixed-point arithmetics and the CV\_16SC1 message type for better
|
||||
By default, StereoConstantSpaceBP uses floating-point arithmetics and the CV_32FC1 type for
|
||||
messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better
|
||||
performance. To avoid an overflow in this case, the parameters must satisfy the following
|
||||
requirement:
|
||||
|
||||
@ -234,8 +234,8 @@ public:
|
||||
@param ndisp Number of disparities.
|
||||
@param iters Number of BP iterations on each level.
|
||||
@param levels Number of levels.
|
||||
@param nr\_plane Number of disparity levels on the first level.
|
||||
@param msg\_type Type for messages. CV\_16SC1 and CV\_32FC1 types are supported.
|
||||
@param nr_plane Number of disparity levels on the first level.
|
||||
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported.
|
||||
*/
|
||||
CV_EXPORTS Ptr<cuda::StereoConstantSpaceBP>
|
||||
createStereoConstantSpaceBP(int ndisp = 128, int iters = 8, int levels = 4, int nr_plane = 4, int msg_type = CV_32F);
|
||||
@ -252,8 +252,8 @@ class CV_EXPORTS DisparityBilateralFilter : public cv::Algorithm
|
||||
public:
|
||||
/** @brief Refines a disparity map using joint bilateral filtering.
|
||||
|
||||
@param disparity Input disparity map. CV\_8UC1 and CV\_16SC1 types are supported.
|
||||
@param image Input image. CV\_8UC1 and CV\_8UC3 types are supported.
|
||||
@param disparity Input disparity map. CV_8UC1 and CV_16SC1 types are supported.
|
||||
@param image Input image. CV_8UC1 and CV_8UC3 types are supported.
|
||||
@param dst Destination disparity map. It has the same size and type as disparity .
|
||||
@param stream Stream for the asynchronous version.
|
||||
*/
|
||||
@ -295,12 +295,12 @@ CV_EXPORTS Ptr<cuda::DisparityBilateralFilter>
|
||||
|
||||
/** @brief Reprojects a disparity image to 3D space.
|
||||
|
||||
@param disp Input disparity image. CV\_8U and CV\_16S types are supported.
|
||||
@param disp Input disparity image. CV_8U and CV_16S types are supported.
|
||||
@param xyzw Output 3- or 4-channel floating-point image of the same size as disp . Each element of
|
||||
xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the
|
||||
disparity map.
|
||||
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained via stereoRectify .
|
||||
@param dst\_cn The number of channels for output image. Can be 3 or 4.
|
||||
@param dst_cn The number of channels for output image. Can be 3 or 4.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@sa reprojectImageTo3D
|
||||
@ -309,8 +309,8 @@ CV_EXPORTS void reprojectImageTo3D(InputArray disp, OutputArray xyzw, InputArray
|
||||
|
||||
/** @brief Colors a disparity image.
|
||||
|
||||
@param src\_disp Source disparity image. CV\_8UC1 and CV\_16SC1 types are supported.
|
||||
@param dst\_disp Output disparity image. It has the same size as src\_disp . The type is CV\_8UC4
|
||||
@param src_disp Source disparity image. CV_8UC1 and CV_16SC1 types are supported.
|
||||
@param dst_disp Output disparity image. It has the same size as src_disp . The type is CV_8UC4
|
||||
in BGRA format (alpha = 255).
|
||||
@param ndisp Number of disparities.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
@ -66,12 +66,12 @@ namespace cv { namespace cuda {
|
||||
|
||||
@param src Source image.
|
||||
@param dst Destination image with the size the same as xmap and the type the same as src .
|
||||
@param xmap X values. Only CV\_32FC1 type is supported.
|
||||
@param ymap Y values. Only CV\_32FC1 type is supported.
|
||||
@param interpolation Interpolation method (see resize ). INTER\_NEAREST , INTER\_LINEAR and
|
||||
INTER\_CUBIC are supported for now.
|
||||
@param borderMode Pixel extrapolation method (see borderInterpolate ). BORDER\_REFLECT101 ,
|
||||
BORDER\_REPLICATE , BORDER\_CONSTANT , BORDER\_REFLECT and BORDER\_WRAP are supported for now.
|
||||
@param xmap X values. Only CV_32FC1 type is supported.
|
||||
@param ymap Y values. Only CV_32FC1 type is supported.
|
||||
@param interpolation Interpolation method (see resize ). INTER_NEAREST , INTER_LINEAR and
|
||||
INTER_CUBIC are supported for now.
|
||||
@param borderMode Pixel extrapolation method (see borderInterpolate ). BORDER_REFLECT101 ,
|
||||
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
|
||||
@param borderValue Value used in case of a constant border. By default, it is 0.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@ -99,7 +99,7 @@ Either dsize or both fx and fy must be non-zero.
|
||||
\f[\texttt{(double)dsize.width/src.cols}\f]
|
||||
@param fy Scale factor along the vertical axis. If it is zero, it is computed as:
|
||||
\f[\texttt{(double)dsize.height/src.rows}\f]
|
||||
@param interpolation Interpolation method. INTER\_NEAREST , INTER\_LINEAR and INTER\_CUBIC are
|
||||
@param interpolation Interpolation method. INTER_NEAREST , INTER_LINEAR and INTER_CUBIC are
|
||||
supported for now.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@ -109,14 +109,14 @@ CV_EXPORTS void resize(InputArray src, OutputArray dst, Size dsize, double fx=0,
|
||||
|
||||
/** @brief Applies an affine transformation to an image.
|
||||
|
||||
@param src Source image. CV\_8U , CV\_16U , CV\_32S , or CV\_32F depth and 1, 3, or 4 channels are
|
||||
@param src Source image. CV_8U , CV_16U , CV_32S , or CV_32F depth and 1, 3, or 4 channels are
|
||||
supported.
|
||||
@param dst Destination image with the same type as src . The size is dsize .
|
||||
@param M *2x3* transformation matrix.
|
||||
@param dsize Size of the destination image.
|
||||
@param flags Combination of interpolation methods (see resize) and the optional flag
|
||||
WARP\_INVERSE\_MAP specifying that M is an inverse transformation ( dst=\>src ). Only
|
||||
INTER\_NEAREST , INTER\_LINEAR , and INTER\_CUBIC interpolation methods are supported.
|
||||
WARP_INVERSE_MAP specifying that M is an inverse transformation ( dst=\>src ). Only
|
||||
INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC interpolation methods are supported.
|
||||
@param borderMode
|
||||
@param borderValue
|
||||
@param stream Stream for the asynchronous version.
|
||||
@ -131,8 +131,8 @@ CV_EXPORTS void warpAffine(InputArray src, OutputArray dst, InputArray M, Size d
|
||||
@param M *2x3* transformation matrix.
|
||||
@param inverse Flag specifying that M is an inverse transformation ( dst=\>src ).
|
||||
@param dsize Size of the destination image.
|
||||
@param xmap X values with CV\_32FC1 type.
|
||||
@param ymap Y values with CV\_32FC1 type.
|
||||
@param xmap X values with CV_32FC1 type.
|
||||
@param ymap Y values with CV_32FC1 type.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@sa cuda::warpAffine , cuda::remap
|
||||
@ -141,14 +141,14 @@ CV_EXPORTS void buildWarpAffineMaps(InputArray M, bool inverse, Size dsize, Outp
|
||||
|
||||
/** @brief Applies a perspective transformation to an image.
|
||||
|
||||
@param src Source image. CV\_8U , CV\_16U , CV\_32S , or CV\_32F depth and 1, 3, or 4 channels are
|
||||
@param src Source image. CV_8U , CV_16U , CV_32S , or CV_32F depth and 1, 3, or 4 channels are
|
||||
supported.
|
||||
@param dst Destination image with the same type as src . The size is dsize .
|
||||
@param M *3x3* transformation matrix.
|
||||
@param dsize Size of the destination image.
|
||||
@param flags Combination of interpolation methods (see resize ) and the optional flag
|
||||
WARP\_INVERSE\_MAP specifying that M is the inverse transformation ( dst =\> src ). Only
|
||||
INTER\_NEAREST , INTER\_LINEAR , and INTER\_CUBIC interpolation methods are supported.
|
||||
WARP_INVERSE_MAP specifying that M is the inverse transformation ( dst =\> src ). Only
|
||||
INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC interpolation methods are supported.
|
||||
@param borderMode
|
||||
@param borderValue
|
||||
@param stream Stream for the asynchronous version.
|
||||
@ -163,8 +163,8 @@ CV_EXPORTS void warpPerspective(InputArray src, OutputArray dst, InputArray M, S
|
||||
@param M *3x3* transformation matrix.
|
||||
@param inverse Flag specifying that M is an inverse transformation ( dst=\>src ).
|
||||
@param dsize Size of the destination image.
|
||||
@param xmap X values with CV\_32FC1 type.
|
||||
@param ymap Y values with CV\_32FC1 type.
|
||||
@param xmap X values with CV_32FC1 type.
|
||||
@param ymap Y values with CV_32FC1 type.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
@sa cuda::warpPerspective , cuda::remap
|
||||
@ -188,14 +188,14 @@ CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray K
|
||||
|
||||
/** @brief Rotates an image around the origin (0,0) and then shifts it.
|
||||
|
||||
@param src Source image. Supports 1, 3 or 4 channels images with CV\_8U , CV\_16U or CV\_32F
|
||||
@param src Source image. Supports 1, 3 or 4 channels images with CV_8U , CV_16U or CV_32F
|
||||
depth.
|
||||
@param dst Destination image with the same type as src . The size is dsize .
|
||||
@param dsize Size of the destination image.
|
||||
@param angle Angle of rotation in degrees.
|
||||
@param xShift Shift along the horizontal axis.
|
||||
@param yShift Shift along the vertical axis.
|
||||
@param interpolation Interpolation method. Only INTER\_NEAREST , INTER\_LINEAR , and INTER\_CUBIC
|
||||
@param interpolation Interpolation method. Only INTER_NEAREST , INTER_LINEAR , and INTER_CUBIC
|
||||
are supported.
|
||||
@param stream Stream for the asynchronous version.
|
||||
|
||||
|
@ -59,11 +59,11 @@ implement vector descriptor matchers inherit the DescriptorMatcher interface.
|
||||
|
||||
@note
|
||||
- An example explaining keypoint matching can be found at
|
||||
opencv\_source\_code/samples/cpp/descriptor\_extractor\_matcher.cpp
|
||||
opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp
|
||||
- An example on descriptor matching evaluation can be found at
|
||||
opencv\_source\_code/samples/cpp/detector\_descriptor\_matcher\_evaluation.cpp
|
||||
opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp
|
||||
- An example on one to many image matching can be found at
|
||||
opencv\_source\_code/samples/cpp/matching\_to\_many\_images.cpp
|
||||
opencv_source_code/samples/cpp/matching_to_many_images.cpp
|
||||
|
||||
@defgroup features2d_draw Drawing Function of Keypoints and Matches
|
||||
@defgroup features2d_category Object Categorization
|
||||
@ -72,9 +72,9 @@ This section describes approaches based on local 2D features and used to categor
|
||||
|
||||
@note
|
||||
- A complete Bag-Of-Words sample can be found at
|
||||
opencv\_source\_code/samples/cpp/bagofwords\_classification.cpp
|
||||
opencv_source_code/samples/cpp/bagofwords_classification.cpp
|
||||
- (Python) An example using the features2D framework to perform object categorization can be
|
||||
found at opencv\_source\_code/samples/python2/find\_obj.py
|
||||
found at opencv_source_code/samples/python2/find_obj.py
|
||||
|
||||
@}
|
||||
*/
|
||||
@ -265,22 +265,22 @@ public:
|
||||
will mean that to cover certain scale range you will need more pyramid levels and so the speed
|
||||
will suffer.
|
||||
@param nlevels The number of pyramid levels. The smallest level will have linear size equal to
|
||||
input\_image\_linear\_size/pow(scaleFactor, nlevels).
|
||||
input_image_linear_size/pow(scaleFactor, nlevels).
|
||||
@param edgeThreshold This is size of the border where the features are not detected. It should
|
||||
roughly match the patchSize parameter.
|
||||
@param firstLevel It should be 0 in the current implementation.
|
||||
@param WTA\_K The number of points that produce each element of the oriented BRIEF descriptor. The
|
||||
@param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The
|
||||
default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
|
||||
so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
|
||||
random points (of course, those point coordinates are random, but they are generated from the
|
||||
pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
|
||||
rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
|
||||
output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
|
||||
denoted as NORM\_HAMMING2 (2 bits per bin). When WTA\_K=4, we take 4 random points to compute each
|
||||
denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
|
||||
bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).
|
||||
@param scoreType The default HARRIS\_SCORE means that Harris algorithm is used to rank features
|
||||
@param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features
|
||||
(the score is written to KeyPoint::score and is used to retain best nfeatures features);
|
||||
FAST\_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
|
||||
FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
|
||||
but it is a little faster to compute.
|
||||
@param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
|
||||
pyramid layers the perceived image area covered by a feature will be larger.
|
||||
@ -325,7 +325,7 @@ The class encapsulates all the parameters of the MSER extraction algorithm (see
|
||||
|
||||
@note
|
||||
- (Python) A complete example showing the use of the MSER detector can be found at
|
||||
opencv\_source\_code/samples/python2/mser.py
|
||||
opencv_source_code/samples/python2/mser.py
|
||||
*/
|
||||
class CV_EXPORTS_W MSER : public Feature2D
|
||||
{
|
||||
@ -366,13 +366,13 @@ circle around this pixel.
|
||||
@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
|
||||
(keypoints).
|
||||
@param type one of the three neighborhoods as defined in the paper:
|
||||
FastFeatureDetector::TYPE\_9\_16, FastFeatureDetector::TYPE\_7\_12,
|
||||
FastFeatureDetector::TYPE\_5\_8
|
||||
FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
|
||||
FastFeatureDetector::TYPE_5_8
|
||||
|
||||
Detects corners using the FAST algorithm by @cite Rosten06.
|
||||
|
||||
@note In Python API, types are given as cv2.FAST\_FEATURE\_DETECTOR\_TYPE\_5\_8,
|
||||
cv2.FAST\_FEATURE\_DETECTOR\_TYPE\_7\_12 and cv2.FAST\_FEATURE\_DETECTOR\_TYPE\_9\_16. For corner
|
||||
@note In Python API, types are given as cv2.FAST_FEATURE_DETECTOR_TYPE_5_8,
|
||||
cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner
|
||||
detection, use cv2.FAST.detect() method.
|
||||
*/
|
||||
CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
|
||||
@ -529,8 +529,8 @@ public:
|
||||
@param threshold Detector response threshold to accept point
|
||||
@param nOctaves Maximum octave evolution of the image
|
||||
@param nOctaveLayers Default number of sublevels per scale level
|
||||
@param diffusivity Diffusivity type. DIFF\_PM\_G1, DIFF\_PM\_G2, DIFF\_WEICKERT or
|
||||
DIFF\_CHARBONNIER
|
||||
@param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
|
||||
DIFF_CHARBONNIER
|
||||
*/
|
||||
CV_WRAP static Ptr<KAZE> create(bool extended=false, bool upright=false,
|
||||
float threshold = 0.001f,
|
||||
@ -577,15 +577,15 @@ public:
|
||||
|
||||
/** @brief The AKAZE constructor
|
||||
|
||||
@param descriptor\_type Type of the extracted descriptor: DESCRIPTOR\_KAZE,
|
||||
DESCRIPTOR\_KAZE\_UPRIGHT, DESCRIPTOR\_MLDB or DESCRIPTOR\_MLDB\_UPRIGHT.
|
||||
@param descriptor\_size Size of the descriptor in bits. 0 -\> Full size
|
||||
@param descriptor\_channels Number of channels in the descriptor (1, 2, 3)
|
||||
@param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE,
|
||||
DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
|
||||
@param descriptor_size Size of the descriptor in bits. 0 -\> Full size
|
||||
@param descriptor_channels Number of channels in the descriptor (1, 2, 3)
|
||||
@param threshold Detector response threshold to accept point
|
||||
@param nOctaves Maximum octave evolution of the image
|
||||
@param nOctaveLayers Default number of sublevels per scale level
|
||||
@param diffusivity Diffusivity type. DIFF\_PM\_G1, DIFF\_PM\_G2, DIFF\_WEICKERT or
|
||||
DIFF\_CHARBONNIER
|
||||
@param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
|
||||
DIFF_CHARBONNIER
|
||||
*/
|
||||
CV_WRAP static Ptr<AKAZE> create(int descriptor_type=AKAZE::DESCRIPTOR_MLDB,
|
||||
int descriptor_size = 0, int descriptor_channels = 3,
|
||||
@ -947,9 +947,9 @@ class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
|
||||
public:
|
||||
/** @brief Brute-force matcher constructor.
|
||||
|
||||
@param normType One of NORM\_L1, NORM\_L2, NORM\_HAMMING, NORM\_HAMMING2. L1 and L2 norms are
|
||||
preferable choices for SIFT and SURF descriptors, NORM\_HAMMING should be used with ORB, BRISK and
|
||||
BRIEF, NORM\_HAMMING2 should be used with ORB when WTA\_K==3 or 4 (see ORB::ORB constructor
|
||||
@param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
|
||||
preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
|
||||
BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
|
||||
description).
|
||||
@param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k
|
||||
nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
|
||||
@ -977,7 +977,7 @@ protected:
|
||||
|
||||
/** @brief Flann-based descriptor matcher.
|
||||
|
||||
This matcher trains flann::Index\_ on a train descriptor collection and calls its nearest search
|
||||
This matcher trains flann::Index_ on a train descriptor collection and calls its nearest search
|
||||
methods to find the best matches. So, this matcher may be faster when matching a large train
|
||||
collection than the brute force matcher. FlannBasedMatcher does not support masking permissible
|
||||
matches of descriptor sets because flann::Index does not support this. :
|
||||
@ -1053,9 +1053,9 @@ output image. See possible flags bit values below.
|
||||
DrawMatchesFlags. See details above in drawMatches .
|
||||
|
||||
@note
|
||||
For Python API, flags are modified as cv2.DRAW\_MATCHES\_FLAGS\_DEFAULT,
|
||||
cv2.DRAW\_MATCHES\_FLAGS\_DRAW\_RICH\_KEYPOINTS, cv2.DRAW\_MATCHES\_FLAGS\_DRAW\_OVER\_OUTIMG,
|
||||
cv2.DRAW\_MATCHES\_FLAGS\_NOT\_DRAW\_SINGLE\_POINTS
|
||||
For Python API, flags are modified as cv2.DRAW_MATCHES_FLAGS_DEFAULT,
|
||||
cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
|
||||
cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
|
||||
*/
|
||||
CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
|
||||
const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );
|
||||
|
@ -114,7 +114,7 @@ public:
|
||||
/** @brief Constructs a nearest neighbor search index for a given dataset.
|
||||
|
||||
@param features Matrix of containing the features(points) to index. The size of the matrix is
|
||||
num\_features x feature\_dimensionality and the data type of the elements in the matrix must
|
||||
num_features x feature_dimensionality and the data type of the elements in the matrix must
|
||||
coincide with the type of the index.
|
||||
@param params Structure containing the index parameters. The type of index that will be
|
||||
constructed depends on the type of this parameter. See the description.
|
||||
|
@ -202,10 +202,10 @@ typedef void (*ButtonCallback)(int state, void* userdata);
|
||||
|
||||
@param winname Name of the window in the window caption that may be used as a window identifier.
|
||||
@param flags Flags of the window. The supported flags are:
|
||||
> - **WINDOW\_NORMAL** If this is set, the user can resize the window (no constraint).
|
||||
> - **WINDOW\_AUTOSIZE** If this is set, the window size is automatically adjusted to fit the
|
||||
> - **WINDOW_NORMAL** If this is set, the user can resize the window (no constraint).
|
||||
> - **WINDOW_AUTOSIZE** If this is set, the window size is automatically adjusted to fit the
|
||||
> displayed image (see imshow ), and you cannot change the window size manually.
|
||||
> - **WINDOW\_OPENGL** If this is set, the window will be created with OpenGL support.
|
||||
> - **WINDOW_OPENGL** If this is set, the window will be created with OpenGL support.
|
||||
|
||||
The function namedWindow creates a window that can be used as a placeholder for images and
|
||||
trackbars. Created windows are referred to by their names.
|
||||
@ -219,14 +219,14 @@ resources and windows of the application are closed automatically by the operati
|
||||
@note
|
||||
|
||||
Qt backend supports additional flags:
|
||||
- **CV\_WINDOW\_NORMAL or CV\_WINDOW\_AUTOSIZE:** CV\_WINDOW\_NORMAL enables you to resize the
|
||||
window, whereas CV\_WINDOW\_AUTOSIZE adjusts automatically the window size to fit the
|
||||
- **CV_WINDOW_NORMAL or CV_WINDOW_AUTOSIZE:** CV_WINDOW_NORMAL enables you to resize the
|
||||
window, whereas CV_WINDOW_AUTOSIZE adjusts automatically the window size to fit the
|
||||
displayed image (see imshow ), and you cannot change the window size manually.
|
||||
- **CV\_WINDOW\_FREERATIO or CV\_WINDOW\_KEEPRATIO:** CV\_WINDOW\_FREERATIO adjusts the image
|
||||
with no respect to its ratio, whereas CV\_WINDOW\_KEEPRATIO keeps the image ratio.
|
||||
- **CV\_GUI\_NORMAL or CV\_GUI\_EXPANDED:** CV\_GUI\_NORMAL is the old way to draw the window
|
||||
without statusbar and toolbar, whereas CV\_GUI\_EXPANDED is a new enhanced GUI.
|
||||
By default, flags == CV\_WINDOW\_AUTOSIZE | CV\_WINDOW\_KEEPRATIO | CV\_GUI\_EXPANDED
|
||||
- **CV_WINDOW_FREERATIO or CV_WINDOW_KEEPRATIO:** CV_WINDOW_FREERATIO adjusts the image
|
||||
with no respect to its ratio, whereas CV_WINDOW_KEEPRATIO keeps the image ratio.
|
||||
- **CV_GUI_NORMAL or CV_GUI_EXPANDED:** CV_GUI_NORMAL is the old way to draw the window
|
||||
without statusbar and toolbar, whereas CV_GUI_EXPANDED is a new enhanced GUI.
|
||||
By default, flags == CV_WINDOW_AUTOSIZE | CV_WINDOW_KEEPRATIO | CV_GUI_EXPANDED
|
||||
*/
|
||||
CV_EXPORTS_W void namedWindow(const String& winname, int flags = WINDOW_AUTOSIZE);
|
||||
|
||||
@ -275,7 +275,7 @@ CV_EXPORTS_W int waitKey(int delay = 0);
|
||||
@param mat Image to be shown.
|
||||
|
||||
The function imshow displays an image in the specified window. If the window was created with the
|
||||
CV\_WINDOW\_AUTOSIZE flag, the image is shown with its original size. Otherwise, the image is scaled
|
||||
CV_WINDOW_AUTOSIZE flag, the image is shown with its original size. Otherwise, the image is scaled
|
||||
to fit the window. The function may scale the image, depending on its depth:
|
||||
|
||||
- If the image is 8-bit unsigned, it is displayed as is.
|
||||
@ -309,7 +309,7 @@ CV_EXPORTS_W void imshow(const String& winname, InputArray mat);
|
||||
@note
|
||||
|
||||
- The specified window size is for the image area. Toolbars are not counted.
|
||||
- Only windows created without CV\_WINDOW\_AUTOSIZE flag can be resized.
|
||||
- Only windows created without CV_WINDOW_AUTOSIZE flag can be resized.
|
||||
*/
|
||||
CV_EXPORTS_W void resizeWindow(const String& winname, int width, int height);
|
||||
|
||||
@ -325,19 +325,19 @@ CV_EXPORTS_W void moveWindow(const String& winname, int x, int y);
|
||||
|
||||
@param winname Name of the window.
|
||||
@param prop_id Window property to edit. The following operation flags are available:
|
||||
- **CV\_WND\_PROP\_FULLSCREEN** Change if the window is fullscreen ( CV\_WINDOW\_NORMAL or
|
||||
CV\_WINDOW\_FULLSCREEN ).
|
||||
- **CV\_WND\_PROP\_AUTOSIZE** Change if the window is resizable (CV\_WINDOW\_NORMAL or
|
||||
CV\_WINDOW\_AUTOSIZE ).
|
||||
- **CV\_WND\_PROP\_ASPECTRATIO** Change if the aspect ratio of the image is preserved (
|
||||
CV\_WINDOW\_FREERATIO or CV\_WINDOW\_KEEPRATIO ).
|
||||
- **CV_WND_PROP_FULLSCREEN** Change if the window is fullscreen ( CV_WINDOW_NORMAL or
|
||||
CV_WINDOW_FULLSCREEN ).
|
||||
- **CV_WND_PROP_AUTOSIZE** Change if the window is resizable (CV_WINDOW_NORMAL or
|
||||
CV_WINDOW_AUTOSIZE ).
|
||||
- **CV_WND_PROP_ASPECTRATIO** Change if the aspect ratio of the image is preserved (
|
||||
CV_WINDOW_FREERATIO or CV_WINDOW_KEEPRATIO ).
|
||||
@param prop_value New value of the window property. The following operation flags are available:
|
||||
- **CV\_WINDOW\_NORMAL** Change the window to normal size or make the window resizable.
|
||||
- **CV\_WINDOW\_AUTOSIZE** Constrain the size by the displayed image. The window is not
|
||||
- **CV_WINDOW_NORMAL** Change the window to normal size or make the window resizable.
|
||||
- **CV_WINDOW_AUTOSIZE** Constrain the size by the displayed image. The window is not
|
||||
resizable.
|
||||
- **CV\_WINDOW\_FULLSCREEN** Change the window to fullscreen.
|
||||
- **CV\_WINDOW\_FREERATIO** Make the window resizable without any ratio constraints.
|
||||
- **CV\_WINDOW\_KEEPRATIO** Make the window resizable, but preserve the proportions of the
|
||||
- **CV_WINDOW_FULLSCREEN** Change the window to fullscreen.
|
||||
- **CV_WINDOW_FREERATIO** Make the window resizable without any ratio constraints.
|
||||
- **CV_WINDOW_KEEPRATIO** Make the window resizable, but preserve the proportions of the
|
||||
displayed image.
|
||||
|
||||
The function setWindowProperty enables changing properties of a window.
|
||||
@ -352,12 +352,12 @@ CV_EXPORTS_W void setWindowTitle(const String& winname, const String& title);
|
||||
|
||||
@param winname Name of the window.
|
||||
@param prop_id Window property to retrieve. The following operation flags are available:
|
||||
- **CV\_WND\_PROP\_FULLSCREEN** Change if the window is fullscreen ( CV\_WINDOW\_NORMAL or
|
||||
CV\_WINDOW\_FULLSCREEN ).
|
||||
- **CV\_WND\_PROP\_AUTOSIZE** Change if the window is resizable (CV\_WINDOW\_NORMAL or
|
||||
CV\_WINDOW\_AUTOSIZE ).
|
||||
- **CV\_WND\_PROP\_ASPECTRATIO** Change if the aspect ratio of the image is preserved
|
||||
(CV\_WINDOW\_FREERATIO or CV\_WINDOW\_KEEPRATIO ).
|
||||
- **CV_WND_PROP_FULLSCREEN** Change if the window is fullscreen ( CV_WINDOW_NORMAL or
|
||||
CV_WINDOW_FULLSCREEN ).
|
||||
- **CV_WND_PROP_AUTOSIZE** Change if the window is resizable (CV_WINDOW_NORMAL or
|
||||
CV_WINDOW_AUTOSIZE ).
|
||||
- **CV_WND_PROP_ASPECTRATIO** Change if the aspect ratio of the image is preserved
|
||||
(CV_WINDOW_FREERATIO or CV_WINDOW_KEEPRATIO ).
|
||||
|
||||
See setWindowProperty to know the meaning of the returned values.
|
||||
|
||||
@ -375,8 +375,8 @@ use the callback.
|
||||
*/
|
||||
CV_EXPORTS void setMouseCallback(const String& winname, MouseCallback onMouse, void* userdata = 0);
|
||||
|
||||
/** @brief Gets the mouse-wheel motion delta, when handling mouse-wheel events EVENT\_MOUSEWHEEL and
|
||||
EVENT\_MOUSEHWHEEL.
|
||||
/** @brief Gets the mouse-wheel motion delta, when handling mouse-wheel events EVENT_MOUSEWHEEL and
|
||||
EVENT_MOUSEHWHEEL.
|
||||
|
||||
@param flags The mouse callback flags parameter.
|
||||
|
||||
@ -385,11 +385,11 @@ a one notch rotation of the wheel or the threshold for action to be taken and on
|
||||
occur for each delta. Some high-precision mice with higher-resolution freely-rotating wheels may
|
||||
generate smaller values.
|
||||
|
||||
For EVENT\_MOUSEWHEEL positive and negative values mean forward and backward scrolling,
|
||||
respectively. For EVENT\_MOUSEHWHEEL, where available, positive and negative values mean right and
|
||||
For EVENT_MOUSEWHEEL positive and negative values mean forward and backward scrolling,
|
||||
respectively. For EVENT_MOUSEHWHEEL, where available, positive and negative values mean right and
|
||||
left scrolling, respectively.
|
||||
|
||||
With the C API, the macro CV\_GET\_WHEEL\_DELTA(flags) can be used alternatively.
|
||||
With the C API, the macro CV_GET_WHEEL_DELTA(flags) can be used alternatively.
|
||||
|
||||
@note
|
||||
|
||||
@ -426,7 +426,7 @@ Clicking the label of each trackbar enables editing the trackbar values manually
|
||||
@note
|
||||
|
||||
- An example of using the trackbar functionality can be found at
|
||||
opencv\_source\_code/samples/cpp/connected\_components.cpp
|
||||
opencv_source_code/samples/cpp/connected_components.cpp
|
||||
*/
|
||||
CV_EXPORTS int createTrackbar(const String& trackbarname, const String& winname,
|
||||
int* value, int count,
|
||||
@ -549,20 +549,20 @@ struct QtFont
|
||||
*Times*). If the font is not found, a default one is used.
|
||||
@param pointSize Size of the font. If not specified, equal zero or negative, the point size of the
|
||||
font is set to a system-dependent default value. Generally, this is 12 points.
|
||||
@param color Color of the font in BGRA where A = 255 is fully transparent. Use the macro CV \_ RGB
|
||||
@param color Color of the font in BGRA where A = 255 is fully transparent. Use the macro CV _ RGB
|
||||
for simplicity.
|
||||
@param weight Font weight. The following operation flags are available:
|
||||
- **CV\_FONT\_LIGHT** Weight of 25
|
||||
- **CV\_FONT\_NORMAL** Weight of 50
|
||||
- **CV\_FONT\_DEMIBOLD** Weight of 63
|
||||
- **CV\_FONT\_BOLD** Weight of 75
|
||||
- **CV\_FONT\_BLACK** Weight of 87
|
||||
- **CV_FONT_LIGHT** Weight of 25
|
||||
- **CV_FONT_NORMAL** Weight of 50
|
||||
- **CV_FONT_DEMIBOLD** Weight of 63
|
||||
- **CV_FONT_BOLD** Weight of 75
|
||||
- **CV_FONT_BLACK** Weight of 87
|
||||
|
||||
You can also specify a positive integer for better control.
|
||||
@param style Font style. The following operation flags are available:
|
||||
- **CV\_STYLE\_NORMAL** Normal font
|
||||
- **CV\_STYLE\_ITALIC** Italic font
|
||||
- **CV\_STYLE\_OBLIQUE** Oblique font
|
||||
- **CV_STYLE_NORMAL** Normal font
|
||||
- **CV_STYLE_ITALIC** Italic font
|
||||
- **CV_STYLE_OBLIQUE** Oblique font
|
||||
@param spacing Spacing between characters. It can be negative or positive.
|
||||
|
||||
The function fontQt creates a CvFont object. This CvFont is not compatible with putText .
|
||||
@ -613,7 +613,7 @@ zero, the text never disappears.
|
||||
|
||||
The function displayOverlay displays useful information/tips on top of the window for a certain
|
||||
amount of time *delayms* . This information is displayed on the window statusbar (the window must be
|
||||
created with the CV\_GUI\_EXPANDED flags).
|
||||
created with the CV_GUI_EXPANDED flags).
|
||||
*/
|
||||
CV_EXPORTS void displayStatusBar(const String& winname, const String& text, int delayms = 0);
|
||||
|
||||
@ -622,7 +622,7 @@ CV_EXPORTS void displayStatusBar(const String& winname, const String& text, int
|
||||
@param windowName Name of the window.
|
||||
|
||||
The function saveWindowParameters saves size, location, flags, trackbars value, zoom and panning
|
||||
location of the window window\_name .
|
||||
location of the window window_name .
|
||||
*/
|
||||
CV_EXPORTS void saveWindowParameters(const String& windowName);
|
||||
|
||||
@ -631,7 +631,7 @@ CV_EXPORTS void saveWindowParameters(const String& windowName);
|
||||
@param windowName Name of the window.
|
||||
|
||||
The function loadWindowParameters loads size, location, flags, trackbars value, zoom and panning
|
||||
location of the window window\_name .
|
||||
location of the window window_name .
|
||||
*/
|
||||
CV_EXPORTS void loadWindowParameters(const String& windowName);
|
||||
|
||||
@ -648,9 +648,9 @@ This function should be prototyped as void Foo(int state,\*void); . *state* is t
|
||||
of the button. It could be -1 for a push button, 0 or 1 for a check/radio box button.
|
||||
@param userdata Pointer passed to the callback function.
|
||||
@param type Optional type of the button.
|
||||
- **CV\_PUSH\_BUTTON** Push button
|
||||
- **CV\_CHECKBOX** Checkbox button
|
||||
- **CV\_RADIOBOX** Radiobox button. The radiobox on the same buttonbar (same line) are
|
||||
- **CV_PUSH_BUTTON** Push button
|
||||
- **CV_CHECKBOX** Checkbox button
|
||||
- **CV_RADIOBOX** Radiobox button. The radiobox on the same buttonbar (same line) are
|
||||
exclusive, that is only one can be selected at a time.
|
||||
@param initial_button_state Default state of the button. Use for checkbox and radiobox. Its
|
||||
value could be 0 or 1. *(Optional)*
|
||||
|
@ -92,10 +92,10 @@ enum { IMWRITE_PNG_STRATEGY_DEFAULT = 0,
|
||||
|
||||
@param filename Name of file to be loaded.
|
||||
@param flags Flags specifying the color type of a loaded image:
|
||||
- CV\_LOAD\_IMAGE\_ANYDEPTH - If set, return 16-bit/32-bit image when the input has the
|
||||
- CV_LOAD_IMAGE_ANYDEPTH - If set, return 16-bit/32-bit image when the input has the
|
||||
corresponding depth, otherwise convert it to 8-bit.
|
||||
- CV\_LOAD\_IMAGE\_COLOR - If set, always convert image to the color one
|
||||
- CV\_LOAD\_IMAGE\_GRAYSCALE - If set, always convert image to the grayscale one
|
||||
- CV_LOAD_IMAGE_COLOR - If set, always convert image to the color one
|
||||
- CV_LOAD_IMAGE_GRAYSCALE - If set, always convert image to the grayscale one
|
||||
- **\>0** Return a 3-channel color image.
|
||||
|
||||
@note In the current implementation the alpha channel, if any, is stripped from the output image.
|
||||
@ -128,7 +128,7 @@ returns an empty matrix ( Mat::data==NULL ). Currently, the following file forma
|
||||
- On Linux\*, BSD flavors and other Unix-like open-source operating systems, OpenCV looks for
|
||||
codecs supplied with an OS image. Install the relevant packages (do not forget the development
|
||||
files, for example, "libjpeg-dev", in Debian\* and Ubuntu\*) to get the codec support or turn
|
||||
on the OPENCV\_BUILD\_3RDPARTY\_LIBS flag in CMake.
|
||||
on the OPENCV_BUILD_3RDPARTY_LIBS flag in CMake.
|
||||
|
||||
@note In the case of color images, the decoded images will have the channels stored in B G R order.
|
||||
*/
|
||||
@ -139,20 +139,20 @@ CV_EXPORTS_W Mat imread( const String& filename, int flags = IMREAD_COLOR );
|
||||
@param filename Name of the file.
|
||||
@param img Image to be saved.
|
||||
@param params Format-specific save parameters encoded as pairs
|
||||
paramId\_1, paramValue\_1, paramId\_2, paramValue\_2, ... . The following parameters are currently
|
||||
paramId_1, paramValue_1, paramId_2, paramValue_2, ... . The following parameters are currently
|
||||
supported:
|
||||
- For JPEG, it can be a quality ( CV\_IMWRITE\_JPEG\_QUALITY ) from 0 to 100 (the higher is
|
||||
- For JPEG, it can be a quality ( CV_IMWRITE_JPEG_QUALITY ) from 0 to 100 (the higher is
|
||||
the better). Default value is 95.
|
||||
- For WEBP, it can be a quality ( CV\_IMWRITE\_WEBP\_QUALITY ) from 1 to 100 (the higher is
|
||||
- For WEBP, it can be a quality ( CV_IMWRITE_WEBP_QUALITY ) from 1 to 100 (the higher is
|
||||
the better). By default (without any parameter) and for quality above 100 the lossless
|
||||
compression is used.
|
||||
- For PNG, it can be the compression level ( CV\_IMWRITE\_PNG\_COMPRESSION ) from 0 to 9. A
|
||||
- For PNG, it can be the compression level ( CV_IMWRITE_PNG_COMPRESSION ) from 0 to 9. A
|
||||
higher value means a smaller size and longer compression time. Default value is 3.
|
||||
- For PPM, PGM, or PBM, it can be a binary format flag ( CV\_IMWRITE\_PXM\_BINARY ), 0 or 1.
|
||||
- For PPM, PGM, or PBM, it can be a binary format flag ( CV_IMWRITE_PXM_BINARY ), 0 or 1.
|
||||
Default value is 1.
|
||||
|
||||
The function imwrite saves the image to the specified file. The image format is chosen based on the
|
||||
filename extension (see imread for the list of extensions). Only 8-bit (or 16-bit unsigned (CV\_16U)
|
||||
filename extension (see imread for the list of extensions). Only 8-bit (or 16-bit unsigned (CV_16U)
|
||||
in case of PNG, JPEG 2000, and TIFF) single-channel or 3-channel (with 'BGR' channel order) images
|
||||
can be saved using this function. If the format, depth or channel order is different, use
|
||||
Mat::convertTo , and cvtColor to convert it before saving. Or, use the universal FileStorage I/O
|
||||
@ -239,7 +239,7 @@ CV_EXPORTS Mat imdecode( InputArray buf, int flags, Mat* dst);
|
||||
The function compresses the image and stores it in the memory buffer that is resized to fit the
|
||||
result. See imwrite for the list of supported formats and flags description.
|
||||
|
||||
@note cvEncodeImage returns single-row matrix of type CV\_8UC1 that contains encoded image as array
|
||||
@note cvEncodeImage returns single-row matrix of type CV_8UC1 that contains encoded image as array
|
||||
of bytes.
|
||||
*/
|
||||
CV_EXPORTS_W bool imencode( const String& ext, InputArray img,
|
||||
|
@ -1361,7 +1361,7 @@ call
|
||||
|
||||
is equivalent to
|
||||
|
||||
\f[\texttt{Sobel(src, dst, ddepth, dx, dy, CV_SCHARR, scale, delta, borderType)} .\f]
|
||||
\f[\texttt{Sobel(src, dst, ddepth, dx, dy, CV\_SCHARR, scale, delta, borderType)} .\f]
|
||||
|
||||
@param src input image.
|
||||
@param dst output image of the same size and the same number of channels as src.
|
||||
|
@ -92,7 +92,7 @@ SVM implementation in OpenCV is based on @cite LibSVM.
|
||||
Prediction with SVM
|
||||
-------------------
|
||||
|
||||
StatModel::predict(samples, results, flags) should be used. Pass flags=StatModel::RAW\_OUTPUT to get
|
||||
StatModel::predict(samples, results, flags) should be used. Pass flags=StatModel::RAW_OUTPUT to get
|
||||
the raw response from SVM (in the case of regression, 1-class or 2-class classification problem).
|
||||
|
||||
@defgroup ml_decsiontrees Decision Trees
|
||||
@ -126,8 +126,8 @@ index is stored in the observed node. The following variables are possible:
|
||||
could take. If it does, the procedure goes to the left. Otherwise, it goes to the right. For
|
||||
example, if the color is green or red, go to the left, else to the right.
|
||||
|
||||
So, in each node, a pair of entities (variable\_index , `decision_rule (threshold/subset)` ) is
|
||||
used. This pair is called a *split* (split on the variable variable\_index ). Once a leaf node is
|
||||
So, in each node, a pair of entities (variable_index , `decision_rule (threshold/subset)` ) is
|
||||
used. This pair is called a *split* (split on the variable variable_index ). Once a leaf node is
|
||||
reached, the value assigned to this node is used as the output of the prediction procedure.
|
||||
|
||||
Sometimes, certain features of the input vector are missed (for example, in the darkness it is
|
||||
@ -232,15 +232,15 @@ the ensemble is increased, a larger number of the training samples are classifie
|
||||
increasing confidence, thereby those samples receive smaller weights on the subsequent iterations.
|
||||
Examples with a very low relative weight have a small impact on the weak classifier training. Thus,
|
||||
such examples may be excluded during the weak classifier training without having much effect on the
|
||||
induced classifier. This process is controlled with the weight\_trim\_rate parameter. Only examples
|
||||
with the summary fraction weight\_trim\_rate of the total weight mass are used in the weak
|
||||
induced classifier. This process is controlled with the weight_trim_rate parameter. Only examples
|
||||
with the summary fraction weight_trim_rate of the total weight mass are used in the weak
|
||||
classifier training. Note that the weights for **all** training examples are recomputed at each
|
||||
training iteration. Examples deleted at a particular iteration may be used again for learning some
|
||||
of the weak classifiers further @cite FHT98.
|
||||
|
||||
Prediction with Boost
|
||||
---------------------
|
||||
StatModel::predict(samples, results, flags) should be used. Pass flags=StatModel::RAW\_OUTPUT to get
|
||||
StatModel::predict(samples, results, flags) should be used. Pass flags=StatModel::RAW_OUTPUT to get
|
||||
the raw sum from Boost classifier.
|
||||
|
||||
@defgroup ml_randomtrees Random Trees
|
||||
@ -260,7 +260,7 @@ randomly select the same number of vectors as in the original set ( =N ). The ve
|
||||
with replacement. That is, some vectors will occur more than once and some will be absent. At each
|
||||
node of each trained tree, not all the variables are used to find the best split, but a random
|
||||
subset of them. With each node a new subset is generated. However, its size is fixed for all the
|
||||
nodes and all the trees. It is a training parameter set to \f$\sqrt{number\_of\_variables}\f$ by
|
||||
nodes and all the trees. It is a training parameter set to \f$\sqrt{number_of_variables}\f$ by
|
||||
default. None of the built trees are pruned.
|
||||
|
||||
In random trees there is no need for any accuracy estimation procedures, such as cross-validation or
|
||||
@ -280,7 +280,7 @@ about N/3 . The classification error is estimated by using this oob-data as foll
|
||||
to all the vectors in the original data. In case of regression, the oob-error is computed as the
|
||||
squared error for oob vectors difference divided by the total number of vectors.
|
||||
|
||||
For the random trees usage example, please, see letter\_recog.cpp sample in OpenCV distribution.
|
||||
For the random trees usage example, please, see letter_recog.cpp sample in OpenCV distribution.
|
||||
|
||||
**References:**
|
||||
|
||||
@ -373,15 +373,15 @@ computed as:
|
||||
|
||||
Different activation functions may be used. ML implements three standard functions:
|
||||
|
||||
- Identity function ( ANN\_MLP::IDENTITY ): \f$f(x)=x\f$
|
||||
- Identity function ( ANN_MLP::IDENTITY ): \f$f(x)=x\f$
|
||||
|
||||
- Symmetrical sigmoid ( ANN\_MLP::SIGMOID\_SYM ): \f$f(x)=\beta*(1-e^{-\alpha x})/(1+e^{-\alpha x}\f$
|
||||
- Symmetrical sigmoid ( ANN_MLP::SIGMOID_SYM ): \f$f(x)=\beta*(1-e^{-\alpha x})/(1+e^{-\alpha x}\f$
|
||||
), which is the default choice for MLP. The standard sigmoid with \f$\beta =1, \alpha =1\f$ is shown
|
||||
below:
|
||||
|
||||
![image](pics/sigmoid_bipolar.png)
|
||||
|
||||
- Gaussian function ( ANN\_MLP::GAUSSIAN ): \f$f(x)=\beta e^{-\alpha x*x}\f$ , which is not completely
|
||||
- Gaussian function ( ANN_MLP::GAUSSIAN ): \f$f(x)=\beta e^{-\alpha x*x}\f$ , which is not completely
|
||||
supported at the moment.
|
||||
|
||||
In ML, all the neurons have the same activation functions, with the same free parameters (
|
||||
@ -443,18 +443,18 @@ determined by LogisticRegression::Params.alpha. It determines how faster we appr
|
||||
It is a positive real number. Optimization algorithms like Batch Gradient Descent and Mini-Batch
|
||||
Gradient Descent are supported in LogisticRegression. It is important that we mention the number of
|
||||
iterations these optimization algorithms have to run. The number of iterations are mentioned by
|
||||
LogisticRegression::Params.num\_iters. The number of iterations can be thought as number of steps
|
||||
LogisticRegression::Params.num_iters. The number of iterations can be thought as number of steps
|
||||
taken and learning rate specifies if it is a long step or a short step. These two parameters define
|
||||
how fast we arrive at a possible solution. In order to compensate for overfitting regularization is
|
||||
performed, which can be enabled by setting LogisticRegression::Params.regularized to a positive
|
||||
integer (greater than zero). One can specify what kind of regularization has to be performed by
|
||||
setting LogisticRegression::Params.norm to LogisticRegression::REG\_L1 or
|
||||
LogisticRegression::REG\_L2 values. LogisticRegression provides a choice of 2 training methods with
|
||||
setting LogisticRegression::Params.norm to LogisticRegression::REG_L1 or
|
||||
LogisticRegression::REG_L2 values. LogisticRegression provides a choice of 2 training methods with
|
||||
Batch Gradient Descent or the Mini-Batch Gradient Descent. To specify this, set
|
||||
LogisticRegression::Params.train\_method to either LogisticRegression::BATCH or
|
||||
LogisticRegression::MINI\_BATCH. If LogisticRegression::Params is set to
|
||||
LogisticRegression::MINI\_BATCH, the size of the mini batch has to be to a postive integer using
|
||||
LogisticRegression::Params.mini\_batch\_size.
|
||||
LogisticRegression::Params.train_method to either LogisticRegression::BATCH or
|
||||
LogisticRegression::MINI_BATCH. If LogisticRegression::Params is set to
|
||||
LogisticRegression::MINI_BATCH, the size of the mini batch has to be to a postive integer using
|
||||
LogisticRegression::Params.mini_batch_size.
|
||||
|
||||
A sample set of training parameters for the Logistic Regression classifier can be initialized as
|
||||
follows:
|
||||
@ -713,22 +713,22 @@ public:
|
||||
char missch='?');
|
||||
/** @brief Creates training data from in-memory arrays.
|
||||
|
||||
@param samples matrix of samples. It should have CV\_32F type.
|
||||
@param layout it's either ROW\_SAMPLE, which means that each training sample is a row of samples,
|
||||
or COL\_SAMPLE, which means that each training sample occupies a column of samples.
|
||||
@param samples matrix of samples. It should have CV_32F type.
|
||||
@param layout it's either ROW_SAMPLE, which means that each training sample is a row of samples,
|
||||
or COL_SAMPLE, which means that each training sample occupies a column of samples.
|
||||
@param responses matrix of responses. If the responses are scalar, they should be stored as a
|
||||
single row or as a single column. The matrix should have type CV\_32F or CV\_32S (in the former
|
||||
single row or as a single column. The matrix should have type CV_32F or CV_32S (in the former
|
||||
case the responses are considered as ordered by default; in the latter case - as categorical)
|
||||
@param varIdx vector specifying which variables to use for training. It can be an integer vector
|
||||
(CV\_32S) containing 0-based variable indices or byte vector (CV\_8U) containing a mask of active
|
||||
(CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of active
|
||||
variables.
|
||||
@param sampleIdx vector specifying which samples to use for training. It can be an integer vector
|
||||
(CV\_32S) containing 0-based sample indices or byte vector (CV\_8U) containing a mask of training
|
||||
(CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask of training
|
||||
samples.
|
||||
@param sampleWeights optional vector with weights for each sample. It should have CV\_32F type.
|
||||
@param varType optional vector of type CV\_8U and size \<number\_of\_variables\_in\_samples\> +
|
||||
\<number\_of\_variables\_in\_responses\>, containing types of each input and output variable. The
|
||||
ordered variables are denoted by value VAR\_ORDERED, and categorical - by VAR\_CATEGORICAL.
|
||||
@param sampleWeights optional vector with weights for each sample. It should have CV_32F type.
|
||||
@param varType optional vector of type CV_8U and size \<number_of_variables_in_samples\> +
|
||||
\<number_of_variables_in_responses\>, containing types of each input and output variable. The
|
||||
ordered variables are denoted by value VAR_ORDERED, and categorical - by VAR_CATEGORICAL.
|
||||
*/
|
||||
static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
|
||||
InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
|
||||
@ -770,7 +770,7 @@ public:
|
||||
@param trainData training data that can be loaded from file using TrainData::loadFromCSV or
|
||||
created with TrainData::create.
|
||||
@param flags optional flags, depending on the model. Some of the models can be updated with the
|
||||
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN\_MLP).
|
||||
new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
|
||||
|
||||
There are 2 instance methods and 2 static (class) template methods. The first two train the already
|
||||
created model (the very first method must be overwritten in the derived classes). And the latter two
|
||||
@ -779,7 +779,7 @@ public:
|
||||
virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
|
||||
/** @overload
|
||||
@param samples training samples
|
||||
@param layout ROW\_SAMPLE (training samples are the matrix rows) or COL\_SAMPLE (training samples
|
||||
@param layout ROW_SAMPLE (training samples are the matrix rows) or COL_SAMPLE (training samples
|
||||
are the matrix columns)
|
||||
@param responses vector of responses associated with the training samples.
|
||||
*/
|
||||
@ -805,7 +805,7 @@ public:
|
||||
@param samples The input samples, floating-point matrix
|
||||
@param results The optional output matrix of results.
|
||||
@param flags The optional flags, model-dependent. Some models, such as Boost, SVM recognize
|
||||
StatModel::RAW\_OUTPUT flag, which makes the method return the raw results (the sum), not the
|
||||
StatModel::RAW_OUTPUT flag, which makes the method return the raw results (the sum), not the
|
||||
class label.
|
||||
*/
|
||||
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
|
||||
@ -905,11 +905,11 @@ public:
|
||||
|
||||
@note
|
||||
- (Python) An example of digit recognition using KNearest can be found at
|
||||
opencv\_source/samples/python2/digits.py
|
||||
opencv_source/samples/python2/digits.py
|
||||
- (Python) An example of grid search digit recognition using KNearest can be found at
|
||||
opencv\_source/samples/python2/digits\_adjust.py
|
||||
opencv_source/samples/python2/digits_adjust.py
|
||||
- (Python) An example of video digit recognition using KNearest can be found at
|
||||
opencv\_source/samples/python2/digits\_video.py
|
||||
opencv_source/samples/python2/digits_video.py
|
||||
*/
|
||||
class CV_EXPORTS_W KNearest : public StatModel
|
||||
{
|
||||
@ -930,14 +930,14 @@ public:
|
||||
/** @brief Finds the neighbors and predicts responses for input vectors.
|
||||
|
||||
@param samples Input samples stored by rows. It is a single-precision floating-point matrix of
|
||||
\<number\_of\_samples\> \* k size.
|
||||
\<number_of_samples\> \* k size.
|
||||
@param k Number of used nearest neighbors. Should be greater than 1.
|
||||
@param results Vector with results of prediction (regression or classification) for each input
|
||||
sample. It is a single-precision floating-point vector with \<number\_of\_samples\> elements.
|
||||
sample. It is a single-precision floating-point vector with \<number_of_samples\> elements.
|
||||
@param neighborResponses Optional output values for corresponding neighbors. It is a
|
||||
single-precision floating-point matrix of \<number\_of\_samples\> \* k size.
|
||||
single-precision floating-point matrix of \<number_of_samples\> \* k size.
|
||||
@param dist Optional output distances from the input vectors to the corresponding neighbors. It is
|
||||
a single-precision floating-point matrix of \<number\_of\_samples\> \* k size.
|
||||
a single-precision floating-point matrix of \<number_of_samples\> \* k size.
|
||||
|
||||
For each input vector (a row of the matrix samples), the method finds the k nearest neighbors. In
|
||||
case of regression, the predicted result is a mean value of the particular vector's neighbor
|
||||
@ -986,11 +986,11 @@ public:
|
||||
|
||||
@note
|
||||
- (Python) An example of digit recognition using SVM can be found at
|
||||
opencv\_source/samples/python2/digits.py
|
||||
opencv_source/samples/python2/digits.py
|
||||
- (Python) An example of grid search digit recognition using SVM can be found at
|
||||
opencv\_source/samples/python2/digits\_adjust.py
|
||||
opencv_source/samples/python2/digits_adjust.py
|
||||
- (Python) An example of video digit recognition using SVM can be found at
|
||||
opencv\_source/samples/python2/digits\_video.py
|
||||
opencv_source/samples/python2/digits_video.py
|
||||
*/
|
||||
class CV_EXPORTS_W SVM : public StatModel
|
||||
{
|
||||
@ -1006,18 +1006,18 @@ public:
|
||||
/** @brief The constructors
|
||||
|
||||
@param svm_type Type of a SVM formulation. Possible values are:
|
||||
- **SVM::C\_SVC** C-Support Vector Classification. n-class classification (n \f$\geq\f$ 2), allows
|
||||
- **SVM::C_SVC** C-Support Vector Classification. n-class classification (n \f$\geq\f$ 2), allows
|
||||
imperfect separation of classes with penalty multiplier C for outliers.
|
||||
- **SVM::NU\_SVC** \f$\nu\f$-Support Vector Classification. n-class classification with possible
|
||||
- **SVM::NU_SVC** \f$\nu\f$-Support Vector Classification. n-class classification with possible
|
||||
imperfect separation. Parameter \f$\nu\f$ (in the range 0..1, the larger the value, the smoother
|
||||
the decision boundary) is used instead of C.
|
||||
- **SVM::ONE\_CLASS** Distribution Estimation (One-class SVM). All the training data are from
|
||||
- **SVM::ONE_CLASS** Distribution Estimation (One-class SVM). All the training data are from
|
||||
the same class, SVM builds a boundary that separates the class from the rest of the feature
|
||||
space.
|
||||
- **SVM::EPS\_SVR** \f$\epsilon\f$-Support Vector Regression. The distance between feature vectors
|
||||
- **SVM::EPS_SVR** \f$\epsilon\f$-Support Vector Regression. The distance between feature vectors
|
||||
from the training set and the fitting hyper-plane must be less than p. For outliers the
|
||||
penalty multiplier C is used.
|
||||
- **SVM::NU\_SVR** \f$\nu\f$-Support Vector Regression. \f$\nu\f$ is used instead of p.
|
||||
- **SVM::NU_SVR** \f$\nu\f$-Support Vector Regression. \f$\nu\f$ is used instead of p.
|
||||
See @cite LibSVM for details.
|
||||
@param kernel_type Type of a SVM kernel. Possible values are:
|
||||
- **SVM::LINEAR** Linear kernel. No mapping is done, linear discrimination (or regression) is
|
||||
@ -1033,10 +1033,10 @@ public:
|
||||
@param degree Parameter degree of a kernel function (POLY).
|
||||
@param gamma Parameter \f$\gamma\f$ of a kernel function (POLY / RBF / SIGMOID / CHI2).
|
||||
@param coef0 Parameter coef0 of a kernel function (POLY / SIGMOID).
|
||||
@param Cvalue Parameter C of a SVM optimization problem (C\_SVC / EPS\_SVR / NU\_SVR).
|
||||
@param nu Parameter \f$\nu\f$ of a SVM optimization problem (NU\_SVC / ONE\_CLASS / NU\_SVR).
|
||||
@param p Parameter \f$\epsilon\f$ of a SVM optimization problem (EPS\_SVR).
|
||||
@param classWeights Optional weights in the C\_SVC problem , assigned to particular classes. They
|
||||
@param Cvalue Parameter C of a SVM optimization problem (C_SVC / EPS_SVR / NU_SVR).
|
||||
@param nu Parameter \f$\nu\f$ of a SVM optimization problem (NU_SVC / ONE_CLASS / NU_SVR).
|
||||
@param p Parameter \f$\epsilon\f$ of a SVM optimization problem (EPS_SVR).
|
||||
@param classWeights Optional weights in the C_SVC problem , assigned to particular classes. They
|
||||
are multiplied by C so the parameter C of class \#i becomes classWeights(i) \* C. Thus these
|
||||
weights affect the misclassification penalty for different classes. The larger weight, the larger
|
||||
penalty on misclassification of data from the corresponding class.
|
||||
@ -1053,8 +1053,8 @@ public:
|
||||
termCrit = TermCriteria( TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, FLT_EPSILON );
|
||||
}
|
||||
@endcode
|
||||
A comparison of different kernels on the following 2D test case with four classes. Four C\_SVC SVMs
|
||||
have been trained (one against rest) with auto\_train. Evaluation on three different kernels (CHI2,
|
||||
A comparison of different kernels on the following 2D test case with four classes. Four C_SVC SVMs
|
||||
have been trained (one against rest) with auto_train. Evaluation on three different kernels (CHI2,
|
||||
INTER, RBF). The color depicts the class with max score. Bright means max-score \> 0, dark means
|
||||
max-score \< 0.
|
||||
|
||||
@ -1115,16 +1115,16 @@ public:
|
||||
|
||||
If there is no need to optimize a parameter, the corresponding grid step should be set to any value
|
||||
less than or equal to 1. For example, to avoid optimization in gamma, set gammaGrid.step = 0,
|
||||
gammaGrid.minVal, gamma\_grid.maxVal as arbitrary numbers. In this case, the value params.gamma is
|
||||
gammaGrid.minVal, gamma_grid.maxVal as arbitrary numbers. In this case, the value params.gamma is
|
||||
taken for gamma.
|
||||
|
||||
And, finally, if the optimization in a parameter is required but the corresponding grid is unknown,
|
||||
you may call the function SVM::getDefaulltGrid. To generate a grid, for example, for gamma, call
|
||||
SVM::getDefaulltGrid(SVM::GAMMA).
|
||||
|
||||
This function works for the classification (params.svmType=SVM::C\_SVC or
|
||||
params.svmType=SVM::NU\_SVC) as well as for the regression (params.svmType=SVM::EPS\_SVR or
|
||||
params.svmType=SVM::NU\_SVR). If params.svmType=SVM::ONE\_CLASS, no optimization is made and the
|
||||
This function works for the classification (params.svmType=SVM::C_SVC or
|
||||
params.svmType=SVM::NU_SVC) as well as for the regression (params.svmType=SVM::EPS_SVR or
|
||||
params.svmType=SVM::NU_SVR). If params.svmType=SVM::ONE_CLASS, no optimization is made and the
|
||||
usual SVM with parameters specified in params is executed.
|
||||
*/
|
||||
virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
|
||||
@ -1172,7 +1172,7 @@ public:
|
||||
|
||||
/** @brief Generates a grid for SVM parameters.
|
||||
|
||||
@param param\_id SVM parameters IDs that must be one of the following:
|
||||
@param param_id SVM parameters IDs that must be one of the following:
|
||||
- **SVM::C**
|
||||
- **SVM::GAMMA**
|
||||
- **SVM::P**
|
||||
@ -1230,27 +1230,27 @@ public:
|
||||
/** @brief The constructor
|
||||
|
||||
@param nclusters The number of mixture components in the Gaussian mixture model. Default value of
|
||||
the parameter is EM::DEFAULT\_NCLUSTERS=5. Some of EM implementation could determine the optimal
|
||||
the parameter is EM::DEFAULT_NCLUSTERS=5. Some of EM implementation could determine the optimal
|
||||
number of mixtures within a specified value range, but that is not the case in ML yet.
|
||||
@param covMatType Constraint on covariance matrices which defines type of matrices. Possible
|
||||
values are:
|
||||
- **EM::COV\_MAT\_SPHERICAL** A scaled identity matrix \f$\mu_k * I\f$. There is the only
|
||||
- **EM::COV_MAT_SPHERICAL** A scaled identity matrix \f$\mu_k * I\f$. There is the only
|
||||
parameter \f$\mu_k\f$ to be estimated for each matrix. The option may be used in special cases,
|
||||
when the constraint is relevant, or as a first step in the optimization (for example in case
|
||||
when the data is preprocessed with PCA). The results of such preliminary estimation may be
|
||||
passed again to the optimization procedure, this time with
|
||||
covMatType=EM::COV\_MAT\_DIAGONAL.
|
||||
- **EM::COV\_MAT\_DIAGONAL** A diagonal matrix with positive diagonal elements. The number of
|
||||
covMatType=EM::COV_MAT_DIAGONAL.
|
||||
- **EM::COV_MAT_DIAGONAL** A diagonal matrix with positive diagonal elements. The number of
|
||||
free parameters is d for each matrix. This is most commonly used option yielding good
|
||||
estimation results.
|
||||
- **EM::COV\_MAT\_GENERIC** A symmetric positively defined matrix. The number of free
|
||||
- **EM::COV_MAT_GENERIC** A symmetric positively defined matrix. The number of free
|
||||
parameters in each matrix is about \f$d^2/2\f$. It is not recommended to use this option, unless
|
||||
there is pretty accurate initial estimation of the parameters and/or a huge number of
|
||||
training samples.
|
||||
@param termCrit The termination criteria of the EM algorithm. The EM algorithm can be terminated
|
||||
by the number of iterations termCrit.maxCount (number of M-steps) or when relative change of
|
||||
likelihood logarithm is less than termCrit.epsilon. Default maximum number of iterations is
|
||||
EM::DEFAULT\_MAX\_ITERS=100.
|
||||
EM::DEFAULT_MAX_ITERS=100.
|
||||
*/
|
||||
explicit Params(int nclusters=DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
|
||||
const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
|
||||
@ -1286,7 +1286,7 @@ public:
|
||||
@param sample A sample for classification. It should be a one-channel matrix of \f$1 \times dims\f$ or
|
||||
\f$dims \times 1\f$ size.
|
||||
@param probs Optional output matrix that contains posterior probabilities of each component given
|
||||
the sample. It has \f$1 \times nclusters\f$ size and CV\_64FC1 type.
|
||||
the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type.
|
||||
|
||||
The method returns a two-element double vector. Zero element is a likelihood logarithm value for the
|
||||
sample. First element is an index of the most probable mixture component for the given sample.
|
||||
@ -1298,15 +1298,15 @@ public:
|
||||
/** @brief Static methods that estimate the Gaussian mixture parameters from a samples set
|
||||
|
||||
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a
|
||||
one-channel matrix, each row of which is a sample. If the matrix does not have CV\_64F type it
|
||||
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type it
|
||||
will be converted to the inner matrix of such type for the further computing.
|
||||
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
|
||||
each sample. It has \f$nsamples \times 1\f$ size and CV\_64FC1 type.
|
||||
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
|
||||
@param labels The optional output "class label" for each sample:
|
||||
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable mixture
|
||||
component for each sample). It has \f$nsamples \times 1\f$ size and CV\_32SC1 type.
|
||||
component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
|
||||
@param probs The optional output matrix that contains posterior probabilities of each Gaussian
|
||||
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and CV\_64FC1
|
||||
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and CV_64FC1
|
||||
type.
|
||||
@param params The Gaussian mixture params, see EM::Params description
|
||||
@return true if the Gaussian mixture model was trained successfully, otherwise it returns
|
||||
@ -1337,24 +1337,24 @@ public:
|
||||
\f$S_k\f$ of mixture components.
|
||||
|
||||
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a
|
||||
one-channel matrix, each row of which is a sample. If the matrix does not have CV\_64F type it
|
||||
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type it
|
||||
will be converted to the inner matrix of such type for the further computing.
|
||||
@param means0 Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of
|
||||
\f$nclusters \times dims\f$ size. If the matrix does not have CV\_64F type it will be converted to the
|
||||
\f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be converted to the
|
||||
inner matrix of such type for the further computing.
|
||||
@param covs0 The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of
|
||||
covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices do not
|
||||
have CV\_64F type they will be converted to the inner matrices of such type for the further
|
||||
have CV_64F type they will be converted to the inner matrices of such type for the further
|
||||
computing.
|
||||
@param weights0 Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel
|
||||
floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size.
|
||||
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
|
||||
each sample. It has \f$nsamples \times 1\f$ size and CV\_64FC1 type.
|
||||
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
|
||||
@param labels The optional output "class label" for each sample:
|
||||
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable mixture
|
||||
component for each sample). It has \f$nsamples \times 1\f$ size and CV\_32SC1 type.
|
||||
component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
|
||||
@param probs The optional output matrix that contains posterior probabilities of each Gaussian
|
||||
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and CV\_64FC1
|
||||
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and CV_64FC1
|
||||
type.
|
||||
@param params The Gaussian mixture params, see EM::Params description
|
||||
*/
|
||||
@ -1370,16 +1370,16 @@ public:
|
||||
use this option.
|
||||
|
||||
@param samples Samples from which the Gaussian mixture model will be estimated. It should be a
|
||||
one-channel matrix, each row of which is a sample. If the matrix does not have CV\_64F type it
|
||||
one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type it
|
||||
will be converted to the inner matrix of such type for the further computing.
|
||||
@param probs0
|
||||
@param logLikelihoods The optional output matrix that contains a likelihood logarithm value for
|
||||
each sample. It has \f$nsamples \times 1\f$ size and CV\_64FC1 type.
|
||||
each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type.
|
||||
@param labels The optional output "class label" for each sample:
|
||||
\f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable mixture
|
||||
component for each sample). It has \f$nsamples \times 1\f$ size and CV\_32SC1 type.
|
||||
component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type.
|
||||
@param probs The optional output matrix that contains posterior probabilities of each Gaussian
|
||||
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and CV\_64FC1
|
||||
mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and CV_64FC1
|
||||
type.
|
||||
@param params The Gaussian mixture params, see EM::Params description
|
||||
*/
|
||||
@ -1450,7 +1450,7 @@ public:
|
||||
engines (including our implementation) try to find sub-optimal split in this case by clustering
|
||||
all the samples into maxCategories clusters that is some categories are merged together. The
|
||||
clustering is applied only in n \> 2-class classification problems for categorical variables
|
||||
with N \> max\_categories possible values. In case of regression and 2-class classification the
|
||||
with N \> max_categories possible values. In case of regression and 2-class classification the
|
||||
optimal split can be found efficiently without employing clustering, thus the parameter is not
|
||||
used in these cases.
|
||||
|
||||
@ -1515,7 +1515,7 @@ public:
|
||||
Value at the node: a class label in case of classification or estimated function value in case
|
||||
of regression.
|
||||
- member int classIdx
|
||||
Class index normalized to 0..class\_count-1 range and assigned to the node. It is used
|
||||
Class index normalized to 0..class_count-1 range and assigned to the node. It is used
|
||||
internally in classification trees and tree ensembles.
|
||||
- member int parent
|
||||
Index of the parent node
|
||||
@ -1653,11 +1653,11 @@ public:
|
||||
@param useSurrogates
|
||||
@param maxCategories Cluster possible values of a categorical variable into K \<= maxCategories
|
||||
clusters to find a suboptimal split. If a discrete variable, on which the training procedure tries
|
||||
to make a split, takes more than max\_categories values, the precise best subset estimation may
|
||||
to make a split, takes more than max_categories values, the precise best subset estimation may
|
||||
take a very long time because the algorithm is exponential. Instead, many decision trees engines
|
||||
(including ML) try to find sub-optimal split in this case by clustering all the samples into
|
||||
maxCategories clusters that is some categories are merged together. The clustering is applied only
|
||||
in n\>2-class classification problems for categorical variables with N \> max\_categories possible
|
||||
in n\>2-class classification problems for categorical variables with N \> max_categories possible
|
||||
values. In case of regression and 2-class classification the optimal split can be found
|
||||
efficiently without employing clustering, thus the parameter is not used in these cases.
|
||||
@param priors
|
||||
@ -1752,7 +1752,7 @@ public:
|
||||
Gentle AdaBoost and Real AdaBoost are often the preferable choices.
|
||||
@param weakCount The number of weak classifiers.
|
||||
@param weightTrimRate A threshold between 0 and 1 used to save computational time. Samples
|
||||
with summary weight \f$\leq 1 - weight\_trim\_rate\f$ do not participate in the *next* iteration of
|
||||
with summary weight \f$\leq 1 - weight_trim_rate\f$ do not participate in the *next* iteration of
|
||||
training. Set this parameter to 0 to turn off this functionality.
|
||||
@param maxDepth
|
||||
@param useSurrogates
|
||||
@ -1844,7 +1844,7 @@ public:
|
||||
|
||||
Unlike many other models in ML that are constructed and trained at once, in the MLP model these
|
||||
steps are separated. First, a network with the specified topology is created using the non-default
|
||||
constructor or the method ANN\_MLP::create. All the weights are set to zeros. Then, the network is
|
||||
constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is
|
||||
trained using a set of input and output vectors. The training procedure can be repeated more than
|
||||
once, that is, the weights can be adjusted based on the new training data.
|
||||
*/
|
||||
@ -1861,13 +1861,13 @@ public:
|
||||
of elements in the input layer. The last element - number of elements in the output layer.
|
||||
- member int activateFunc
|
||||
The activation function. Currently the only fully supported activation function is
|
||||
ANN\_MLP::SIGMOID\_SYM.
|
||||
ANN_MLP::SIGMOID_SYM.
|
||||
- member double fparam1
|
||||
The first parameter of activation function, 0 by default.
|
||||
- member double fparam2
|
||||
The second parameter of the activation function, 0 by default.
|
||||
@note
|
||||
If you are using the default ANN\_MLP::SIGMOID\_SYM activation function with the default
|
||||
If you are using the default ANN_MLP::SIGMOID_SYM activation function with the default
|
||||
parameter values fparam1=0 and fparam2=0 then the function used is y = 1.7159\*tanh(2/3 \* x),
|
||||
so the output will range from [-1.7159, 1.7159], instead of [0,1].
|
||||
|
||||
@ -1899,7 +1899,7 @@ public:
|
||||
@param layerSizes Integer vector specifying the number of neurons in each layer including the
|
||||
input and output layers.
|
||||
@param activateFunc Parameter specifying the activation function for each neuron: one of
|
||||
ANN\_MLP::IDENTITY, ANN\_MLP::SIGMOID\_SYM, and ANN\_MLP::GAUSSIAN.
|
||||
ANN_MLP::IDENTITY, ANN_MLP::SIGMOID_SYM, and ANN_MLP::GAUSSIAN.
|
||||
@param fparam1 The first parameter of the activation function, \f$\alpha\f$. See the formulas in the
|
||||
introduction section.
|
||||
@param fparam2 The second parameter of the activation function, \f$\beta\f$. See the formulas in the
|
||||
@ -1908,11 +1908,11 @@ public:
|
||||
of iterations (maxCount) and/or how much the error could change between the iterations to make the
|
||||
algorithm continue (epsilon).
|
||||
@param trainMethod Training method of the MLP. Possible values are:
|
||||
- **ANN\_MLP\_TrainParams::BACKPROP** The back-propagation algorithm.
|
||||
- **ANN\_MLP\_TrainParams::RPROP** The RPROP algorithm.
|
||||
@param param1 Parameter of the training method. It is rp\_dw0 for RPROP and bp\_dw\_scale for
|
||||
- **ANN_MLP_TrainParams::BACKPROP** The back-propagation algorithm.
|
||||
- **ANN_MLP_TrainParams::RPROP** The RPROP algorithm.
|
||||
@param param1 Parameter of the training method. It is rp_dw0 for RPROP and bp_dw_scale for
|
||||
BACKPROP.
|
||||
@param param2 Parameter of the training method. It is rp\_dw\_min for RPROP and bp\_moment\_scale
|
||||
@param param2 Parameter of the training method. It is rp_dw_min for RPROP and bp_moment_scale
|
||||
for BACKPROP.
|
||||
|
||||
By default the RPROP algorithm is used:
|
||||
@ -1973,18 +1973,18 @@ public:
|
||||
|
||||
/** @brief Creates empty model
|
||||
|
||||
Use StatModel::train to train the model, StatModel::train\<ANN\_MLP\>(traindata, params) to create
|
||||
and train the model, StatModel::load\<ANN\_MLP\>(filename) to load the pre-trained model. Note that
|
||||
the train method has optional flags, and the following flags are handled by \`ANN\_MLP\`:
|
||||
Use StatModel::train to train the model, StatModel::train\<ANN_MLP\>(traindata, params) to create
|
||||
and train the model, StatModel::load\<ANN_MLP\>(filename) to load the pre-trained model. Note that
|
||||
the train method has optional flags, and the following flags are handled by \`ANN_MLP\`:
|
||||
|
||||
- **UPDATE\_WEIGHTS** Algorithm updates the network weights, rather than computes them from
|
||||
- **UPDATE_WEIGHTS** Algorithm updates the network weights, rather than computes them from
|
||||
scratch. In the latter case the weights are initialized using the Nguyen-Widrow algorithm.
|
||||
- **NO\_INPUT\_SCALE** Algorithm does not normalize the input vectors. If this flag is not set,
|
||||
- **NO_INPUT_SCALE** Algorithm does not normalize the input vectors. If this flag is not set,
|
||||
the training algorithm normalizes each input feature independently, shifting its mean value to
|
||||
0 and making the standard deviation equal to 1. If the network is assumed to be updated
|
||||
frequently, the new training data could be much different from original one. In this case, you
|
||||
should take care of proper normalization.
|
||||
- **NO\_OUTPUT\_SCALE** Algorithm does not normalize the output vectors. If the flag is not set,
|
||||
- **NO_OUTPUT_SCALE** Algorithm does not normalize the output vectors. If the flag is not set,
|
||||
the training algorithm normalizes each output feature independently, by transforming it to the
|
||||
certain range depending on the used activation function.
|
||||
*/
|
||||
@ -2010,19 +2010,19 @@ public:
|
||||
public:
|
||||
/** @brief The constructors
|
||||
|
||||
@param learning\_rate Specifies the learning rate.
|
||||
@param learning_rate Specifies the learning rate.
|
||||
@param iters Specifies the number of iterations.
|
||||
@param method Specifies the kind of training method used. It should be set to either
|
||||
LogisticRegression::BATCH or LogisticRegression::MINI\_BATCH. If using
|
||||
LogisticRegression::MINI\_BATCH, set LogisticRegression::Params.mini\_batch\_size to a positive
|
||||
LogisticRegression::BATCH or LogisticRegression::MINI_BATCH. If using
|
||||
LogisticRegression::MINI_BATCH, set LogisticRegression::Params.mini_batch_size to a positive
|
||||
integer.
|
||||
@param normalization Specifies the kind of regularization to be applied.
|
||||
LogisticRegression::REG\_L1 or LogisticRegression::REG\_L2 (L1 norm or L2 norm). To use this, set
|
||||
LogisticRegression::REG_L1 or LogisticRegression::REG_L2 (L1 norm or L2 norm). To use this, set
|
||||
LogisticRegression::Params.regularized to a integer greater than zero.
|
||||
@param reg To enable or disable regularization. Set to positive integer (greater than zero) to
|
||||
enable and to 0 to disable.
|
||||
@param batch_size Specifies the number of training samples taken in each step of Mini-Batch
|
||||
Gradient Descent. Will only be used if using LogisticRegression::MINI\_BATCH training algorithm.
|
||||
Gradient Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm.
|
||||
It has to take values less than the total number of training samples.
|
||||
|
||||
By initializing this structure, one can set all the parameters required for Logistic Regression
|
||||
@ -2062,8 +2062,8 @@ public:
|
||||
/** @brief Predicts responses for input samples and returns a float type.
|
||||
|
||||
@param samples The input data for the prediction algorithm. Matrix [m x n], where each row
|
||||
contains variables (features) of one object being classified. Should have data type CV\_32F.
|
||||
@param results Predicted labels as a column matrix of type CV\_32S.
|
||||
contains variables (features) of one object being classified. Should have data type CV_32F.
|
||||
@param results Predicted labels as a column matrix of type CV_32S.
|
||||
@param flags Not used.
|
||||
*/
|
||||
virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
|
||||
@ -2072,7 +2072,7 @@ public:
|
||||
/** @brief This function returns the trained paramters arranged across rows.
|
||||
|
||||
For a two class classifcation problem, it returns a row matrix.
|
||||
It returns learnt paramters of the Logistic Regression as a matrix of type CV\_32F.
|
||||
It returns learnt paramters of the Logistic Regression as a matrix of type CV_32F.
|
||||
*/
|
||||
virtual Mat get_learnt_thetas() const = 0;
|
||||
|
||||
|
@ -94,7 +94,7 @@ To see the object detector at work, have a look at the facedetect demo:
|
||||
<https://github.com/Itseez/opencv/tree/master/samples/cpp/dbt_face_detection.cpp>
|
||||
|
||||
The following reference is for the detection part only. There is a separate application called
|
||||
opencv\_traincascade that can train a cascade of boosted classifiers from a set of samples.
|
||||
opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.
|
||||
|
||||
@note In the new C++ interface it is also possible to use LBP (local binary pattern) features in
|
||||
addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
|
||||
@ -246,7 +246,7 @@ public:
|
||||
/** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
|
||||
of rectangles.
|
||||
|
||||
@param image Matrix of the type CV\_8U containing an image where objects are detected.
|
||||
@param image Matrix of the type CV_8U containing an image where objects are detected.
|
||||
@param objects Vector of rectangles where each rectangle contains the detected object, the
|
||||
rectangles may be partially outside the original image.
|
||||
@param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
|
||||
@ -261,7 +261,7 @@ public:
|
||||
|
||||
@note
|
||||
- (Python) A face detection example using cascade classifiers can be found at
|
||||
opencv\_source\_code/samples/python2/facedetect.py
|
||||
opencv_source_code/samples/python2/facedetect.py
|
||||
*/
|
||||
CV_WRAP void detectMultiScale( InputArray image,
|
||||
CV_OUT std::vector<Rect>& objects,
|
||||
@ -271,7 +271,7 @@ public:
|
||||
Size maxSize = Size() );
|
||||
|
||||
/** @overload
|
||||
@param image Matrix of the type CV\_8U containing an image where objects are detected.
|
||||
@param image Matrix of the type CV_8U containing an image where objects are detected.
|
||||
@param objects Vector of rectangles where each rectangle contains the detected object, the
|
||||
rectangles may be partially outside the original image.
|
||||
@param numDetections Vector of detection numbers for the corresponding objects. An object's number
|
||||
|
@ -96,8 +96,8 @@ needs to be inpainted.
|
||||
@param inpaintRadius Radius of a circular neighborhood of each point inpainted that is considered
|
||||
by the algorithm.
|
||||
@param flags Inpainting method that could be one of the following:
|
||||
- **INPAINT\_NS** Navier-Stokes based method [Navier01]
|
||||
- **INPAINT\_TELEA** Method by Alexandru Telea @cite Telea04.
|
||||
- **INPAINT_NS** Navier-Stokes based method [Navier01]
|
||||
- **INPAINT_TELEA** Method by Alexandru Telea @cite Telea04.
|
||||
|
||||
The function reconstructs the selected image area from the pixel near the area boundary. The
|
||||
function may be used to remove dust and scratches from a scanned photo, or to remove undesirable
|
||||
@ -105,9 +105,9 @@ objects from still images or video. See <http://en.wikipedia.org/wiki/Inpainting
|
||||
|
||||
@note
|
||||
- An example using the inpainting technique can be found at
|
||||
opencv\_source\_code/samples/cpp/inpaint.cpp
|
||||
opencv_source_code/samples/cpp/inpaint.cpp
|
||||
- (Python) An example using the inpainting technique can be found at
|
||||
opencv\_source\_code/samples/python2/inpaint.py
|
||||
opencv_source_code/samples/python2/inpaint.py
|
||||
*/
|
||||
CV_EXPORTS_W void inpaint( InputArray src, InputArray inpaintMask,
|
||||
OutputArray dst, double inpaintRadius, int flags );
|
||||
@ -347,8 +347,8 @@ public:
|
||||
@param contrast resulting contrast on logarithmic scale, i. e. log(max / min), where max and min
|
||||
are maximum and minimum luminance values of the resulting image.
|
||||
@param saturation saturation enhancement value. See createTonemapDrago
|
||||
@param sigma\_space bilateral filter sigma in color space
|
||||
@param sigma\_color bilateral filter sigma in coordinate space
|
||||
@param sigma_space bilateral filter sigma in color space
|
||||
@param sigma_color bilateral filter sigma in coordinate space
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<TonemapDurand>
|
||||
createTonemapDurand(float gamma = 1.0f, float contrast = 4.0f, float saturation = 1.0f, float sigma_space = 2.0f, float sigma_color = 2.0f);
|
||||
@ -377,9 +377,9 @@ public:
|
||||
|
||||
@param gamma gamma value for gamma correction. See createTonemap
|
||||
@param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results.
|
||||
@param light\_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
|
||||
@param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel
|
||||
value, if 0 it's global, otherwise it's a weighted mean of this two cases.
|
||||
@param color\_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
|
||||
@param color_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently,
|
||||
if 0 adaptation level is the same for each channel.
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<TonemapReinhard>
|
||||
@ -484,9 +484,9 @@ public:
|
||||
|
||||
/** @brief Creates AlignMTB object
|
||||
|
||||
@param max\_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
|
||||
@param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are
|
||||
usually good enough (31 and 63 pixels shift respectively).
|
||||
@param exclude\_range range for exclusion bitmap that is constructed to suppress noise around the
|
||||
@param exclude_range range for exclusion bitmap that is constructed to suppress noise around the
|
||||
median value.
|
||||
@param cut if true cuts images, otherwise fills the new regions with zeros.
|
||||
*/
|
||||
@ -554,7 +554,7 @@ public:
|
||||
|
||||
/** @brief Creates CalibrateRobertson object
|
||||
|
||||
@param max\_iter maximal number of Gauss-Seidel solver iterations.
|
||||
@param max_iter maximal number of Gauss-Seidel solver iterations.
|
||||
@param threshold target difference between results of two successive steps of the minimization.
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<CalibrateRobertson> createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f);
|
||||
@ -628,9 +628,9 @@ public:
|
||||
|
||||
/** @brief Creates MergeMertens object
|
||||
|
||||
@param contrast\_weight contrast measure weight. See MergeMertens.
|
||||
@param saturation\_weight saturation measure weight
|
||||
@param exposure\_weight well-exposedness measure weight
|
||||
@param contrast_weight contrast measure weight. See MergeMertens.
|
||||
@param saturation_weight saturation measure weight
|
||||
@param exposure_weight well-exposedness measure weight
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<MergeMertens>
|
||||
createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f);
|
||||
@ -660,7 +660,7 @@ black-and-white photograph rendering, and in many single channel image processin
|
||||
|
||||
@param src Input 8-bit 3-channel image.
|
||||
@param grayscale Output 8-bit 1-channel image.
|
||||
@param color\_boost Output 8-bit 3-channel image.
|
||||
@param color_boost Output 8-bit 3-channel image.
|
||||
|
||||
This function is to be applied on color images.
|
||||
*/
|
||||
@ -681,13 +681,13 @@ content @cite PM03.
|
||||
@param p Point in dst image where object is placed.
|
||||
@param blend Output image with the same size and type as dst.
|
||||
@param flags Cloning method that could be one of the following:
|
||||
- **NORMAL\_CLONE** The power of the method is fully expressed when inserting objects with
|
||||
- **NORMAL_CLONE** The power of the method is fully expressed when inserting objects with
|
||||
complex outlines into a new background
|
||||
- **MIXED\_CLONE** The classic method, color-based selection and alpha masking might be time
|
||||
- **MIXED_CLONE** The classic method, color-based selection and alpha masking might be time
|
||||
consuming and often leaves an undesirable halo. Seamless cloning, even averaged with the
|
||||
original image, is not effective. Mixed seamless cloning based on a loose selection proves
|
||||
effective.
|
||||
- **FEATURE\_EXCHANGE** Feature exchange allows the user to easily replace certain features of
|
||||
- **FEATURE_EXCHANGE** Feature exchange allows the user to easily replace certain features of
|
||||
one object by alternative features.
|
||||
*/
|
||||
CV_EXPORTS_W void seamlessClone( InputArray src, InputArray dst, InputArray mask, Point p,
|
||||
@ -699,9 +699,9 @@ seamlessly.
|
||||
@param src Input 8-bit 3-channel image.
|
||||
@param mask Input 8-bit 1 or 3-channel image.
|
||||
@param dst Output image with the same size and type as src .
|
||||
@param red\_mul R-channel multiply factor.
|
||||
@param green\_mul G-channel multiply factor.
|
||||
@param blue\_mul B-channel multiply factor.
|
||||
@param red_mul R-channel multiply factor.
|
||||
@param green_mul G-channel multiply factor.
|
||||
@param blue_mul B-channel multiply factor.
|
||||
|
||||
Multiplication factor is between .5 to 2.5.
|
||||
*/
|
||||
@ -729,9 +729,9 @@ Detector is used.
|
||||
@param src Input 8-bit 3-channel image.
|
||||
@param mask Input 8-bit 1 or 3-channel image.
|
||||
@param dst Output image with the same size and type as src.
|
||||
@param low\_threshold Range from 0 to 100.
|
||||
@param high\_threshold Value \> 100.
|
||||
@param kernel\_size The size of the Sobel kernel to be used.
|
||||
@param low_threshold Range from 0 to 100.
|
||||
@param high_threshold Value \> 100.
|
||||
@param kernel_size The size of the Sobel kernel to be used.
|
||||
|
||||
**NOTE:**
|
||||
|
||||
@ -754,10 +754,10 @@ filters are used in many different applications @cite EM11.
|
||||
@param src Input 8-bit 3-channel image.
|
||||
@param dst Output 8-bit 3-channel image.
|
||||
@param flags Edge preserving filters:
|
||||
- **RECURS\_FILTER** = 1
|
||||
- **NORMCONV\_FILTER** = 2
|
||||
@param sigma\_s Range between 0 to 200.
|
||||
@param sigma\_r Range between 0 to 1.
|
||||
- **RECURS_FILTER** = 1
|
||||
- **NORMCONV_FILTER** = 2
|
||||
@param sigma_s Range between 0 to 200.
|
||||
@param sigma_r Range between 0 to 1.
|
||||
*/
|
||||
CV_EXPORTS_W void edgePreservingFilter(InputArray src, OutputArray dst, int flags = 1,
|
||||
float sigma_s = 60, float sigma_r = 0.4f);
|
||||
@ -766,8 +766,8 @@ CV_EXPORTS_W void edgePreservingFilter(InputArray src, OutputArray dst, int flag
|
||||
|
||||
@param src Input 8-bit 3-channel image.
|
||||
@param dst Output image with the same size and type as src.
|
||||
@param sigma\_s Range between 0 to 200.
|
||||
@param sigma\_r Range between 0 to 1.
|
||||
@param sigma_s Range between 0 to 200.
|
||||
@param sigma_r Range between 0 to 1.
|
||||
*/
|
||||
CV_EXPORTS_W void detailEnhance(InputArray src, OutputArray dst, float sigma_s = 10,
|
||||
float sigma_r = 0.15f);
|
||||
@ -777,9 +777,9 @@ CV_EXPORTS_W void detailEnhance(InputArray src, OutputArray dst, float sigma_s =
|
||||
@param src Input 8-bit 3-channel image.
|
||||
@param dst1 Output 8-bit 1-channel image.
|
||||
@param dst2 Output image with the same size and type as src.
|
||||
@param sigma\_s Range between 0 to 200.
|
||||
@param sigma\_r Range between 0 to 1.
|
||||
@param shade\_factor Range between 0 to 0.1.
|
||||
@param sigma_s Range between 0 to 200.
|
||||
@param sigma_r Range between 0 to 1.
|
||||
@param shade_factor Range between 0 to 0.1.
|
||||
*/
|
||||
CV_EXPORTS_W void pencilSketch(InputArray src, OutputArray dst1, OutputArray dst2,
|
||||
float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f);
|
||||
@ -790,8 +790,8 @@ contrast while preserving, or enhancing, high-contrast features.
|
||||
|
||||
@param src Input 8-bit 3-channel image.
|
||||
@param dst Output image with the same size and type as src.
|
||||
@param sigma\_s Range between 0 to 200.
|
||||
@param sigma\_r Range between 0 to 1.
|
||||
@param sigma_s Range between 0 to 200.
|
||||
@param sigma_r Range between 0 to 1.
|
||||
*/
|
||||
CV_EXPORTS_W void stylization(InputArray src, OutputArray dst, float sigma_s = 60,
|
||||
float sigma_r = 0.45f);
|
||||
|
@ -52,13 +52,13 @@ namespace cv { namespace cuda {
|
||||
|
||||
/** @brief Performs pure non local means denoising without any simplification, and thus it is not fast.
|
||||
|
||||
@param src Source image. Supports only CV\_8UC1, CV\_8UC2 and CV\_8UC3.
|
||||
@param src Source image. Supports only CV_8UC1, CV_8UC2 and CV_8UC3.
|
||||
@param dst Destination image.
|
||||
@param h Filter sigma regulating filter strength for color.
|
||||
@param search\_window Size of search window.
|
||||
@param block\_size Size of block used for computing weights.
|
||||
@param borderMode Border type. See borderInterpolate for details. BORDER\_REFLECT101 ,
|
||||
BORDER\_REPLICATE , BORDER\_CONSTANT , BORDER\_REFLECT and BORDER\_WRAP are supported for now.
|
||||
@param search_window Size of search window.
|
||||
@param block_size Size of block used for computing weights.
|
||||
@param borderMode Border type. See borderInterpolate for details. BORDER_REFLECT101 ,
|
||||
BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now.
|
||||
@param s Stream for the asynchronous version.
|
||||
|
||||
@sa
|
||||
@ -79,10 +79,10 @@ public:
|
||||
@param dst Output image with the same size and type as src .
|
||||
@param h Parameter regulating filter strength. Big h value perfectly removes noise but also
|
||||
removes image details, smaller h value preserves details but also preserves some noise
|
||||
@param search\_window Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater search\_window - greater
|
||||
@param search_window Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param block\_size Size in pixels of the template patch that is used to compute weights. Should be
|
||||
@param block_size Size in pixels of the template patch that is used to compute weights. Should be
|
||||
odd. Recommended value 7 pixels
|
||||
@param s Stream for the asynchronous invocations.
|
||||
|
||||
@ -98,14 +98,14 @@ public:
|
||||
|
||||
@param src Input 8-bit 3-channel image.
|
||||
@param dst Output image with the same size and type as src .
|
||||
@param h\_luminance Parameter regulating filter strength. Big h value perfectly removes noise but
|
||||
@param h_luminance Parameter regulating filter strength. Big h value perfectly removes noise but
|
||||
also removes image details, smaller h value preserves details but also preserves some noise
|
||||
@param photo_render float The same as h but for color components. For most images value equals 10 will be
|
||||
enought to remove colored noise and do not distort colors
|
||||
@param search\_window Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater search\_window - greater
|
||||
@param search_window Size in pixels of the window that is used to compute weighted average for
|
||||
given pixel. Should be odd. Affect performance linearly: greater search_window - greater
|
||||
denoising time. Recommended value 21 pixels
|
||||
@param block\_size Size in pixels of the template patch that is used to compute weights. Should be
|
||||
@param block_size Size in pixels of the template patch that is used to compute weights. Should be
|
||||
odd. Recommended value 7 pixels
|
||||
@param s Stream for the asynchronous invocations.
|
||||
|
||||
|
@ -200,7 +200,7 @@ public:
|
||||
/** @brief Set the norm used to compute the Hausdorff value between two shapes. It can be L1 or L2 norm.
|
||||
|
||||
@param distanceFlag Flag indicating which norm is used to compute the Hausdorff distance
|
||||
(NORM\_L1, NORM\_L2).
|
||||
(NORM_L1, NORM_L2).
|
||||
*/
|
||||
CV_WRAP virtual void setDistanceFlag(int distanceFlag) = 0;
|
||||
CV_WRAP virtual int getDistanceFlag() const = 0;
|
||||
|
@ -89,9 +89,9 @@ familiar with the theory is recommended.
|
||||
|
||||
@note
|
||||
- A basic example on image stitching can be found at
|
||||
opencv\_source\_code/samples/cpp/stitching.cpp
|
||||
opencv_source_code/samples/cpp/stitching.cpp
|
||||
- A detailed example on image stitching can be found at
|
||||
opencv\_source\_code/samples/cpp/stitching\_detailed.cpp
|
||||
opencv_source_code/samples/cpp/stitching_detailed.cpp
|
||||
*/
|
||||
class CV_EXPORTS_W Stitcher
|
||||
{
|
||||
@ -108,7 +108,7 @@ public:
|
||||
// Stitcher() {}
|
||||
/** @brief Creates a stitcher with the default parameters.
|
||||
|
||||
@param try\_use\_gpu Flag indicating whether GPU should be used whenever it's possible.
|
||||
@param try_use_gpu Flag indicating whether GPU should be used whenever it's possible.
|
||||
@return Stitcher class instance.
|
||||
*/
|
||||
static Stitcher createDefault(bool try_use_gpu = false);
|
||||
|
@ -58,8 +58,8 @@ undergoes rotations around its centre only.
|
||||
@param H Homography.
|
||||
@param f0 Estimated focal length along X axis.
|
||||
@param f1 Estimated focal length along Y axis.
|
||||
@param f0\_ok True, if f0 was estimated successfully, false otherwise.
|
||||
@param f1\_ok True, if f1 was estimated successfully, false otherwise.
|
||||
@param f0_ok True, if f0 was estimated successfully, false otherwise.
|
||||
@param f1_ok True, if f1 was estimated successfully, false otherwise.
|
||||
|
||||
See "Construction of Panoramic Image Mosaics with Global and Local Alignment"
|
||||
by Heung-Yeung Shum and Richard Szeliski.
|
||||
@ -69,7 +69,7 @@ void CV_EXPORTS focalsFromHomography(const Mat &H, double &f0, double &f1, bool
|
||||
/** @brief Estimates focal lengths for each given camera.
|
||||
|
||||
@param features Features of images.
|
||||
@param pairwise\_matches Matches between all image pairs.
|
||||
@param pairwise_matches Matches between all image pairs.
|
||||
@param focals Estimated focal lengths for each camera.
|
||||
*/
|
||||
void CV_EXPORTS estimateFocal(const std::vector<ImageFeatures> &features,
|
||||
|
@ -81,7 +81,7 @@ public:
|
||||
/** @brief Blends and returns the final pano.
|
||||
|
||||
@param dst Final pano
|
||||
@param dst\_mask Final pano mask
|
||||
@param dst_mask Final pano mask
|
||||
*/
|
||||
virtual void blend(InputOutputArray dst, InputOutputArray dst_mask);
|
||||
|
||||
|
@ -80,7 +80,7 @@ public:
|
||||
@param features Found features
|
||||
@param rois Regions of interest
|
||||
|
||||
@sa detail::ImageFeatures, Rect\_
|
||||
@sa detail::ImageFeatures, Rect_
|
||||
*/
|
||||
void operator ()(InputArray image, ImageFeatures &features, const std::vector<cv::Rect> &rois);
|
||||
/** @brief Frees unused memory allocated before if there is any. */
|
||||
@ -88,7 +88,7 @@ public:
|
||||
|
||||
protected:
|
||||
/** @brief This method must implement features finding logic in order to make the wrappers
|
||||
detail::FeaturesFinder::operator()\_ work.
|
||||
detail::FeaturesFinder::operator()_ work.
|
||||
|
||||
@param image Source image
|
||||
@param features Found features
|
||||
@ -181,7 +181,7 @@ public:
|
||||
/** @overload
|
||||
@param features1 First image features
|
||||
@param features2 Second image features
|
||||
@param matches\_info Found matches
|
||||
@param matches_info Found matches
|
||||
*/
|
||||
void operator ()(const ImageFeatures &features1, const ImageFeatures &features2,
|
||||
MatchesInfo& matches_info) { match(features1, features2, matches_info); }
|
||||
@ -189,7 +189,7 @@ public:
|
||||
/** @brief Performs images matching.
|
||||
|
||||
@param features Features of the source images
|
||||
@param pairwise\_matches Found pairwise matches
|
||||
@param pairwise_matches Found pairwise matches
|
||||
@param mask Mask indicating which image pairs must be matched
|
||||
|
||||
The function is parallelized with the TBB library.
|
||||
@ -211,11 +211,11 @@ protected:
|
||||
FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {}
|
||||
|
||||
/** @brief This method must implement matching logic in order to make the wrappers
|
||||
detail::FeaturesMatcher::operator()\_ work.
|
||||
detail::FeaturesMatcher::operator()_ work.
|
||||
|
||||
@param features1 first image features
|
||||
@param features2 second image features
|
||||
@param matches\_info found matches
|
||||
@param matches_info found matches
|
||||
*/
|
||||
virtual void match(const ImageFeatures &features1, const ImageFeatures &features2,
|
||||
MatchesInfo& matches_info) = 0;
|
||||
@ -224,7 +224,7 @@ protected:
|
||||
};
|
||||
|
||||
/** @brief Features matcher which finds two best matches for each feature and leaves the best one only if the
|
||||
ratio between descriptor distances is greater than the threshold match\_conf
|
||||
ratio between descriptor distances is greater than the threshold match_conf
|
||||
|
||||
@sa detail::FeaturesMatcher
|
||||
*/
|
||||
@ -233,11 +233,11 @@ class CV_EXPORTS BestOf2NearestMatcher : public FeaturesMatcher
|
||||
public:
|
||||
/** @brief Constructs a "best of 2 nearest" matcher.
|
||||
|
||||
@param try\_use\_gpu Should try to use GPU or not
|
||||
@param match\_conf Match distances ration threshold
|
||||
@param num\_matches\_thresh1 Minimum number of matches required for the 2D projective transform
|
||||
@param try_use_gpu Should try to use GPU or not
|
||||
@param match_conf Match distances ration threshold
|
||||
@param num_matches_thresh1 Minimum number of matches required for the 2D projective transform
|
||||
estimation used in the inliers classification step
|
||||
@param num\_matches\_thresh2 Minimum number of matches required for the 2D projective transform
|
||||
@param num_matches_thresh2 Minimum number of matches required for the 2D projective transform
|
||||
re-estimation on inliers
|
||||
*/
|
||||
BestOf2NearestMatcher(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
|
||||
|
@ -70,7 +70,7 @@ public:
|
||||
/** @brief Estimates camera parameters.
|
||||
|
||||
@param features Features of images
|
||||
@param pairwise\_matches Pairwise matches of images
|
||||
@param pairwise_matches Pairwise matches of images
|
||||
@param cameras Estimated camera parameters
|
||||
@return True in case of success, false otherwise
|
||||
*/
|
||||
@ -81,10 +81,10 @@ public:
|
||||
|
||||
protected:
|
||||
/** @brief This method must implement camera parameters estimation logic in order to make the wrapper
|
||||
detail::Estimator::operator()\_ work.
|
||||
detail::Estimator::operator()_ work.
|
||||
|
||||
@param features Features of images
|
||||
@param pairwise\_matches Pairwise matches of images
|
||||
@param pairwise_matches Pairwise matches of images
|
||||
@param cameras Estimated camera parameters
|
||||
@return True in case of success, false otherwise
|
||||
*/
|
||||
@ -130,8 +130,8 @@ public:
|
||||
protected:
|
||||
/** @brief Construct a bundle adjuster base instance.
|
||||
|
||||
@param num\_params\_per\_cam Number of parameters per camera
|
||||
@param num\_errs\_per\_measurement Number of error terms (components) per match
|
||||
@param num_params_per_cam Number of parameters per camera
|
||||
@param num_errs_per_measurement Number of error terms (components) per match
|
||||
*/
|
||||
BundleAdjusterBase(int num_params_per_cam, int num_errs_per_measurement)
|
||||
: num_params_per_cam_(num_params_per_cam),
|
||||
@ -159,13 +159,13 @@ protected:
|
||||
virtual void obtainRefinedCameraParams(std::vector<CameraParams> &cameras) const = 0;
|
||||
/** @brief Calculates error vector.
|
||||
|
||||
@param err Error column-vector of length total\_num\_matches \* num\_errs\_per\_measurement
|
||||
@param err Error column-vector of length total_num_matches \* num_errs_per_measurement
|
||||
*/
|
||||
virtual void calcError(Mat &err) = 0;
|
||||
/** @brief Calculates the cost function jacobian.
|
||||
|
||||
@param jac Jacobian matrix of dimensions
|
||||
(total\_num\_matches \* num\_errs\_per\_measurement) x (num\_images \* num\_params\_per\_cam)
|
||||
(total_num_matches \* num_errs_per_measurement) x (num_images \* num_params_per_cam)
|
||||
*/
|
||||
virtual void calcJacobian(Mat &jac) = 0;
|
||||
|
||||
|
@ -72,7 +72,7 @@ public:
|
||||
|
||||
/** @brief Builds the projection maps according to the given camera data.
|
||||
|
||||
@param src\_size Source image size
|
||||
@param src_size Source image size
|
||||
@param K Camera intrinsic parameters
|
||||
@param R Camera rotation matrix
|
||||
@param xmap Projection map for the x axis
|
||||
@ -86,8 +86,8 @@ public:
|
||||
@param src Source image
|
||||
@param K Camera intrinsic parameters
|
||||
@param R Camera rotation matrix
|
||||
@param interp\_mode Interpolation mode
|
||||
@param border\_mode Border extrapolation mode
|
||||
@param interp_mode Interpolation mode
|
||||
@param border_mode Border extrapolation mode
|
||||
@param dst Projected image
|
||||
@return Project image top-left corner
|
||||
*/
|
||||
@ -99,16 +99,16 @@ public:
|
||||
@param src Projected image
|
||||
@param K Camera intrinsic parameters
|
||||
@param R Camera rotation matrix
|
||||
@param interp\_mode Interpolation mode
|
||||
@param border\_mode Border extrapolation mode
|
||||
@param dst\_size Backward-projected image size
|
||||
@param interp_mode Interpolation mode
|
||||
@param border_mode Border extrapolation mode
|
||||
@param dst_size Backward-projected image size
|
||||
@param dst Backward-projected image
|
||||
*/
|
||||
virtual void warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
|
||||
Size dst_size, OutputArray dst) = 0;
|
||||
|
||||
/**
|
||||
@param src\_size Source image bounding box
|
||||
@param src_size Source image bounding box
|
||||
@param K Camera intrinsic parameters
|
||||
@param R Camera rotation matrix
|
||||
@return Projected image minimum bounding box
|
||||
@ -135,7 +135,7 @@ struct CV_EXPORTS ProjectorBase
|
||||
float t[3];
|
||||
};
|
||||
|
||||
/** @brief Base class for rotation-based warper using a detail::ProjectorBase\_ derived class.
|
||||
/** @brief Base class for rotation-based warper using a detail::ProjectorBase_ derived class.
|
||||
*/
|
||||
template <class P>
|
||||
class CV_EXPORTS RotationWarperBase : public RotationWarper
|
||||
|
@ -74,7 +74,7 @@ See the OpenCV sample camshiftdemo.c that tracks colored objects.
|
||||
|
||||
@note
|
||||
- (Python) A sample explaining the camshift tracking algorithm can be found at
|
||||
opencv\_source\_code/samples/python2/camshift.py
|
||||
opencv_source_code/samples/python2/camshift.py
|
||||
*/
|
||||
CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
|
||||
TermCriteria criteria );
|
||||
@ -98,7 +98,7 @@ with findContours , throwing away contours with small area ( contourArea ), and
|
||||
remaining contours with drawContours.
|
||||
|
||||
@note
|
||||
- A mean-shift tracking sample can be found at opencv\_source\_code/samples/cpp/camshiftdemo.cpp
|
||||
- A mean-shift tracking sample can be found at opencv_source_code/samples/cpp/camshiftdemo.cpp
|
||||
*/
|
||||
CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
|
||||
|
||||
@ -132,7 +132,7 @@ pyramids.
|
||||
single-precision floating-point numbers.
|
||||
@param nextPts output vector of 2D points (with single-precision floating-point coordinates)
|
||||
containing the calculated new positions of input features in the second image; when
|
||||
OPTFLOW\_USE\_INITIAL\_FLOW flag is passed, the vector must have the same size as in the input.
|
||||
OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
|
||||
@param status output status vector (of unsigned chars); each element of the vector is set to 1 if
|
||||
the flow for the corresponding features has been found, otherwise, it is set to 0.
|
||||
@param err output vector of errors; each element of the vector is set to an error for the
|
||||
@ -146,9 +146,9 @@ algorithm will use as many levels as pyramids have but no more than maxLevel.
|
||||
(after the specified maximum number of iterations criteria.maxCount or when the search window
|
||||
moves by less than criteria.epsilon.
|
||||
@param flags operation flags:
|
||||
- **OPTFLOW\_USE\_INITIAL\_FLOW** uses initial estimations, stored in nextPts; if the flag is
|
||||
- **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
|
||||
not set, then prevPts is copied to nextPts and is considered the initial estimate.
|
||||
- **OPTFLOW\_LK\_GET\_MIN\_EIGENVALS** use minimum eigen values as an error measure (see
|
||||
- **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
|
||||
minEigThreshold description); if the flag is not set, then L1 distance between patches
|
||||
around the original and a moved point, divided by number of pixels in a window, is used as a
|
||||
error measure.
|
||||
@ -164,11 +164,11 @@ The function implements a sparse iterative version of the Lucas-Kanade optical f
|
||||
@note
|
||||
|
||||
- An example using the Lucas-Kanade optical flow algorithm can be found at
|
||||
opencv\_source\_code/samples/cpp/lkdemo.cpp
|
||||
opencv_source_code/samples/cpp/lkdemo.cpp
|
||||
- (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
|
||||
opencv\_source\_code/samples/python2/lk\_track.py
|
||||
opencv_source_code/samples/python2/lk_track.py
|
||||
- (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
|
||||
opencv\_source\_code/samples/python2/lk\_homography.py
|
||||
opencv_source_code/samples/python2/lk_homography.py
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
|
||||
InputArray prevPts, InputOutputArray nextPts,
|
||||
@ -181,24 +181,24 @@ CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
|
||||
|
||||
@param prev first 8-bit single-channel input image.
|
||||
@param next second input image of the same size and the same type as prev.
|
||||
@param flow computed flow image that has the same size as prev and type CV\_32FC2.
|
||||
@param pyr\_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
|
||||
pyr\_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
|
||||
@param flow computed flow image that has the same size as prev and type CV_32FC2.
|
||||
@param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
|
||||
pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
|
||||
one.
|
||||
@param levels number of pyramid layers including the initial image; levels=1 means that no extra
|
||||
layers are created and only the original images are used.
|
||||
@param winsize averaging window size; larger values increase the algorithm robustness to image
|
||||
noise and give more chances for fast motion detection, but yield more blurred motion field.
|
||||
@param iterations number of iterations the algorithm does at each pyramid level.
|
||||
@param poly\_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
|
||||
@param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
|
||||
larger values mean that the image will be approximated with smoother surfaces, yielding more
|
||||
robust algorithm and more blurred motion field, typically poly\_n =5 or 7.
|
||||
@param poly\_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
|
||||
basis for the polynomial expansion; for poly\_n=5, you can set poly\_sigma=1.1, for poly\_n=7, a
|
||||
good value would be poly\_sigma=1.5.
|
||||
robust algorithm and more blurred motion field, typically poly_n =5 or 7.
|
||||
@param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
|
||||
basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
|
||||
good value would be poly_sigma=1.5.
|
||||
@param flags operation flags that can be a combination of the following:
|
||||
- **OPTFLOW\_USE\_INITIAL\_FLOW** uses the input flow as an initial flow approximation.
|
||||
- **OPTFLOW\_FARNEBACK\_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
|
||||
- **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
|
||||
- **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
|
||||
filter instead of a box filter of the same size for optical flow estimation; usually, this
|
||||
option gives z more accurate flow than with a box filter, at the cost of lower speed;
|
||||
normally, winsize for a Gaussian window should be set to a larger value to achieve the same
|
||||
@ -211,9 +211,9 @@ The function finds an optical flow for each prev pixel using the @cite Farneback
|
||||
@note
|
||||
|
||||
- An example using the optical flow algorithm described by Gunnar Farneback can be found at
|
||||
opencv\_source\_code/samples/cpp/fback.cpp
|
||||
opencv_source_code/samples/cpp/fback.cpp
|
||||
- (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
|
||||
found at opencv\_source\_code/samples/python2/opt\_flow.py
|
||||
found at opencv_source_code/samples/python2/opt_flow.py
|
||||
*/
|
||||
CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
|
||||
double pyr_scale, int levels, int winsize,
|
||||
@ -260,19 +260,19 @@ enum
|
||||
|
||||
/** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08.
|
||||
|
||||
@param templateImage single-channel template image; CV\_8U or CV\_32F array.
|
||||
@param templateImage single-channel template image; CV_8U or CV_32F array.
|
||||
@param inputImage single-channel input image which should be warped with the final warpMatrix in
|
||||
order to provide an image similar to templateImage, same type as temlateImage.
|
||||
@param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
|
||||
@param motionType parameter, specifying the type of motion:
|
||||
- **MOTION\_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
|
||||
- **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
|
||||
the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
|
||||
estimated.
|
||||
- **MOTION\_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
|
||||
- **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
|
||||
parameters are estimated; warpMatrix is \f$2\times 3\f$.
|
||||
- **MOTION\_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
|
||||
- **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
|
||||
warpMatrix is \f$2\times 3\f$.
|
||||
- **MOTION\_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
|
||||
- **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
|
||||
estimated;\`warpMatrix\` is \f$3\times 3\f$.
|
||||
@param criteria parameter, specifying the termination criteria of the ECC algorithm;
|
||||
criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
|
||||
@ -300,8 +300,8 @@ warp (unity matrix) should be given as input. Note that if images undergo strong
|
||||
displacements/rotations, an initial transformation that roughly aligns the images is necessary
|
||||
(e.g., a simple euclidean/similarity transform that allows for the images showing the same image
|
||||
content approximately). Use inverse warping in the second image to take an image close to the first
|
||||
one, i.e. use the flag WARP\_INVERSE\_MAP with warpAffine or warpPerspective. See also the OpenCV
|
||||
sample image\_alignment.cpp that demonstrates the use of the function. Note that the function throws
|
||||
one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
|
||||
sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
|
||||
an exception if algorithm does not converges.
|
||||
|
||||
@sa
|
||||
@ -320,7 +320,7 @@ an extended Kalman filter functionality. See the OpenCV sample kalman.cpp.
|
||||
@note
|
||||
|
||||
- An example using the standard Kalman filter can be found at
|
||||
opencv\_source\_code/samples/cpp/kalman.cpp
|
||||
opencv_source_code/samples/cpp/kalman.cpp
|
||||
*/
|
||||
class CV_EXPORTS_W KalmanFilter
|
||||
{
|
||||
@ -335,7 +335,7 @@ public:
|
||||
@param dynamParams Dimensionality of the state.
|
||||
@param measureParams Dimensionality of the measurement.
|
||||
@param controlParams Dimensionality of the control vector.
|
||||
@param type Type of the created matrices that should be CV\_32F or CV\_64F.
|
||||
@param type Type of the created matrices that should be CV_32F or CV_64F.
|
||||
*/
|
||||
CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
||||
|
||||
@ -344,7 +344,7 @@ public:
|
||||
@param dynamParams Dimensionalityensionality of the state.
|
||||
@param measureParams Dimensionality of the measurement.
|
||||
@param controlParams Dimensionality of the control vector.
|
||||
@param type Type of the created matrices that should be CV\_32F or CV\_64F.
|
||||
@param type Type of the created matrices that should be CV_32F or CV_64F.
|
||||
*/
|
||||
void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
|
||||
|
||||
@ -429,7 +429,7 @@ public:
|
||||
|
||||
@param I0 first 8-bit single-channel input image.
|
||||
@param I1 second input image of the same size and the same type as prev.
|
||||
@param flow computed flow image that has the same size as prev and type CV\_32FC2.
|
||||
@param flow computed flow image that has the same size as prev and type CV_32FC2.
|
||||
*/
|
||||
CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
|
||||
/** @brief Releases all inner buffers.
|
||||
|
@ -390,15 +390,15 @@ class can be used: :
|
||||
|
||||
@note
|
||||
- A basic sample on using the VideoCapture interface can be found at
|
||||
opencv\_source\_code/samples/cpp/starter\_video.cpp
|
||||
opencv_source_code/samples/cpp/starter_video.cpp
|
||||
- Another basic video processing sample can be found at
|
||||
opencv\_source\_code/samples/cpp/video\_dmtx.cpp
|
||||
opencv_source_code/samples/cpp/video_dmtx.cpp
|
||||
- (Python) A basic sample on using the VideoCapture interface can be found at
|
||||
opencv\_source\_code/samples/python2/video.py
|
||||
opencv_source_code/samples/python2/video.py
|
||||
- (Python) Another basic video processing sample can be found at
|
||||
opencv\_source\_code/samples/python2/video\_dmtx.py
|
||||
opencv_source_code/samples/python2/video_dmtx.py
|
||||
- (Python) A multi threaded video processing sample can be found at
|
||||
opencv\_source\_code/samples/python2/video\_threaded.py
|
||||
opencv_source_code/samples/python2/video_threaded.py
|
||||
*/
|
||||
class CV_EXPORTS_W VideoCapture
|
||||
{
|
||||
@ -412,7 +412,7 @@ public:
|
||||
|
||||
/** @overload
|
||||
@param filename name of the opened video file (eg. video.avi) or image sequence (eg.
|
||||
img\_%02d.jpg, which will read samples like img\_00.jpg, img\_01.jpg, img\_02.jpg, ...)
|
||||
img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)
|
||||
*/
|
||||
CV_WRAP VideoCapture(const String& filename);
|
||||
|
||||
@ -427,7 +427,7 @@ public:
|
||||
/** @brief Open video file or a capturing device for video capturing
|
||||
|
||||
@param filename name of the opened video file (eg. video.avi) or image sequence (eg.
|
||||
img\_%02d.jpg, which will read samples like img\_00.jpg, img\_01.jpg, img\_02.jpg, ...)
|
||||
img_%02d.jpg, which will read samples like img_00.jpg, img_01.jpg, img_02.jpg, ...)
|
||||
|
||||
The methods first call VideoCapture::release to close the already opened file or camera.
|
||||
*/
|
||||
@ -502,27 +502,27 @@ public:
|
||||
/** @brief Sets a property in the VideoCapture.
|
||||
|
||||
@param propId Property identifier. It can be one of the following:
|
||||
- **CV\_CAP\_PROP\_POS\_MSEC** Current position of the video file in milliseconds.
|
||||
- **CV\_CAP\_PROP\_POS\_FRAMES** 0-based index of the frame to be decoded/captured next.
|
||||
- **CV\_CAP\_PROP\_POS\_AVI\_RATIO** Relative position of the video file: 0 - start of the
|
||||
- **CV_CAP_PROP_POS_MSEC** Current position of the video file in milliseconds.
|
||||
- **CV_CAP_PROP_POS_FRAMES** 0-based index of the frame to be decoded/captured next.
|
||||
- **CV_CAP_PROP_POS_AVI_RATIO** Relative position of the video file: 0 - start of the
|
||||
film, 1 - end of the film.
|
||||
- **CV\_CAP\_PROP\_FRAME\_WIDTH** Width of the frames in the video stream.
|
||||
- **CV\_CAP\_PROP\_FRAME\_HEIGHT** Height of the frames in the video stream.
|
||||
- **CV\_CAP\_PROP\_FPS** Frame rate.
|
||||
- **CV\_CAP\_PROP\_FOURCC** 4-character code of codec.
|
||||
- **CV\_CAP\_PROP\_FRAME\_COUNT** Number of frames in the video file.
|
||||
- **CV\_CAP\_PROP\_FORMAT** Format of the Mat objects returned by retrieve() .
|
||||
- **CV\_CAP\_PROP\_MODE** Backend-specific value indicating the current capture mode.
|
||||
- **CV\_CAP\_PROP\_BRIGHTNESS** Brightness of the image (only for cameras).
|
||||
- **CV\_CAP\_PROP\_CONTRAST** Contrast of the image (only for cameras).
|
||||
- **CV\_CAP\_PROP\_SATURATION** Saturation of the image (only for cameras).
|
||||
- **CV\_CAP\_PROP\_HUE** Hue of the image (only for cameras).
|
||||
- **CV\_CAP\_PROP\_GAIN** Gain of the image (only for cameras).
|
||||
- **CV\_CAP\_PROP\_EXPOSURE** Exposure (only for cameras).
|
||||
- **CV\_CAP\_PROP\_CONVERT\_RGB** Boolean flags indicating whether images should be converted
|
||||
- **CV_CAP_PROP_FRAME_WIDTH** Width of the frames in the video stream.
|
||||
- **CV_CAP_PROP_FRAME_HEIGHT** Height of the frames in the video stream.
|
||||
- **CV_CAP_PROP_FPS** Frame rate.
|
||||
- **CV_CAP_PROP_FOURCC** 4-character code of codec.
|
||||
- **CV_CAP_PROP_FRAME_COUNT** Number of frames in the video file.
|
||||
- **CV_CAP_PROP_FORMAT** Format of the Mat objects returned by retrieve() .
|
||||
- **CV_CAP_PROP_MODE** Backend-specific value indicating the current capture mode.
|
||||
- **CV_CAP_PROP_BRIGHTNESS** Brightness of the image (only for cameras).
|
||||
- **CV_CAP_PROP_CONTRAST** Contrast of the image (only for cameras).
|
||||
- **CV_CAP_PROP_SATURATION** Saturation of the image (only for cameras).
|
||||
- **CV_CAP_PROP_HUE** Hue of the image (only for cameras).
|
||||
- **CV_CAP_PROP_GAIN** Gain of the image (only for cameras).
|
||||
- **CV_CAP_PROP_EXPOSURE** Exposure (only for cameras).
|
||||
- **CV_CAP_PROP_CONVERT_RGB** Boolean flags indicating whether images should be converted
|
||||
to RGB.
|
||||
- **CV\_CAP\_PROP\_WHITE\_BALANCE** Currently unsupported
|
||||
- **CV\_CAP\_PROP\_RECTIFICATION** Rectification flag for stereo cameras (note: only supported
|
||||
- **CV_CAP_PROP_WHITE_BALANCE** Currently unsupported
|
||||
- **CV_CAP_PROP_RECTIFICATION** Rectification flag for stereo cameras (note: only supported
|
||||
by DC1394 v 2.x backend currently)
|
||||
@param value Value of the property.
|
||||
*/
|
||||
@ -531,28 +531,28 @@ public:
|
||||
/** @brief Returns the specified VideoCapture property
|
||||
|
||||
@param propId Property identifier. It can be one of the following:
|
||||
- **CV\_CAP\_PROP\_POS\_MSEC** Current position of the video file in milliseconds or video
|
||||
- **CV_CAP_PROP_POS_MSEC** Current position of the video file in milliseconds or video
|
||||
capture timestamp.
|
||||
- **CV\_CAP\_PROP\_POS\_FRAMES** 0-based index of the frame to be decoded/captured next.
|
||||
- **CV\_CAP\_PROP\_POS\_AVI\_RATIO** Relative position of the video file: 0 - start of the
|
||||
- **CV_CAP_PROP_POS_FRAMES** 0-based index of the frame to be decoded/captured next.
|
||||
- **CV_CAP_PROP_POS_AVI_RATIO** Relative position of the video file: 0 - start of the
|
||||
film, 1 - end of the film.
|
||||
- **CV\_CAP\_PROP\_FRAME\_WIDTH** Width of the frames in the video stream.
|
||||
- **CV\_CAP\_PROP\_FRAME\_HEIGHT** Height of the frames in the video stream.
|
||||
- **CV\_CAP\_PROP\_FPS** Frame rate.
|
||||
- **CV\_CAP\_PROP\_FOURCC** 4-character code of codec.
|
||||
- **CV\_CAP\_PROP\_FRAME\_COUNT** Number of frames in the video file.
|
||||
- **CV\_CAP\_PROP\_FORMAT** Format of the Mat objects returned by retrieve() .
|
||||
- **CV\_CAP\_PROP\_MODE** Backend-specific value indicating the current capture mode.
|
||||
- **CV\_CAP\_PROP\_BRIGHTNESS** Brightness of the image (only for cameras).
|
||||
- **CV\_CAP\_PROP\_CONTRAST** Contrast of the image (only for cameras).
|
||||
- **CV\_CAP\_PROP\_SATURATION** Saturation of the image (only for cameras).
|
||||
- **CV\_CAP\_PROP\_HUE** Hue of the image (only for cameras).
|
||||
- **CV\_CAP\_PROP\_GAIN** Gain of the image (only for cameras).
|
||||
- **CV\_CAP\_PROP\_EXPOSURE** Exposure (only for cameras).
|
||||
- **CV\_CAP\_PROP\_CONVERT\_RGB** Boolean flags indicating whether images should be converted
|
||||
- **CV_CAP_PROP_FRAME_WIDTH** Width of the frames in the video stream.
|
||||
- **CV_CAP_PROP_FRAME_HEIGHT** Height of the frames in the video stream.
|
||||
- **CV_CAP_PROP_FPS** Frame rate.
|
||||
- **CV_CAP_PROP_FOURCC** 4-character code of codec.
|
||||
- **CV_CAP_PROP_FRAME_COUNT** Number of frames in the video file.
|
||||
- **CV_CAP_PROP_FORMAT** Format of the Mat objects returned by retrieve() .
|
||||
- **CV_CAP_PROP_MODE** Backend-specific value indicating the current capture mode.
|
||||
- **CV_CAP_PROP_BRIGHTNESS** Brightness of the image (only for cameras).
|
||||
- **CV_CAP_PROP_CONTRAST** Contrast of the image (only for cameras).
|
||||
- **CV_CAP_PROP_SATURATION** Saturation of the image (only for cameras).
|
||||
- **CV_CAP_PROP_HUE** Hue of the image (only for cameras).
|
||||
- **CV_CAP_PROP_GAIN** Gain of the image (only for cameras).
|
||||
- **CV_CAP_PROP_EXPOSURE** Exposure (only for cameras).
|
||||
- **CV_CAP_PROP_CONVERT_RGB** Boolean flags indicating whether images should be converted
|
||||
to RGB.
|
||||
- **CV\_CAP\_PROP\_WHITE\_BALANCE** Currently not supported
|
||||
- **CV\_CAP\_PROP\_RECTIFICATION** Rectification flag for stereo cameras (note: only supported
|
||||
- **CV_CAP_PROP_WHITE_BALANCE** Currently not supported
|
||||
- **CV_CAP_PROP_RECTIFICATION** Rectification flag for stereo cameras (note: only supported
|
||||
by DC1394 v 2.x backend currently)
|
||||
|
||||
**Note**: When querying a property that is not supported by the backend used by the VideoCapture
|
||||
|
@ -70,7 +70,7 @@ namespace videostab
|
||||
|
||||
@param points0 Source set of 2D points (32F).
|
||||
@param points1 Destination set of 2D points (32F).
|
||||
@param model Motion model (up to MM\_AFFINE).
|
||||
@param model Motion model (up to MM_AFFINE).
|
||||
@param rmse Final root-mean-square error.
|
||||
@return 3x3 2D transformation matrix (32F).
|
||||
*/
|
||||
|
@ -155,19 +155,19 @@ namespace cv
|
||||
Camera(double fx, double fy, double cx, double cy, const Size &window_size);
|
||||
/** @overload
|
||||
@param fov Field of view (horizontal, vertical)
|
||||
@param window\_size Size of the window. Principal point is at the center of the window
|
||||
@param window_size Size of the window. Principal point is at the center of the window
|
||||
by default.
|
||||
*/
|
||||
explicit Camera(const Vec2d &fov, const Size &window_size);
|
||||
/** @overload
|
||||
@param K Intrinsic matrix of the camera.
|
||||
@param window\_size Size of the window. This together with intrinsic matrix determines
|
||||
@param window_size Size of the window. This together with intrinsic matrix determines
|
||||
the field of view.
|
||||
*/
|
||||
explicit Camera(const Matx33d &K, const Size &window_size);
|
||||
/** @overload
|
||||
@param proj Projection matrix of the camera.
|
||||
@param window\_size Size of the window. This together with projection matrix determines
|
||||
@param window_size Size of the window. This together with projection matrix determines
|
||||
the field of view.
|
||||
*/
|
||||
explicit Camera(const Matx44d &proj, const Size &window_size);
|
||||
@ -192,7 +192,7 @@ namespace cv
|
||||
|
||||
/** @brief Creates a Kinect Camera.
|
||||
|
||||
@param window\_size Size of the window. This together with intrinsic matrix of a Kinect Camera
|
||||
@param window_size Size of the window. This together with intrinsic matrix of a Kinect Camera
|
||||
determines the field of view.
|
||||
*/
|
||||
static Camera KinectCamera(const Size &window_size);
|
||||
|
@ -73,7 +73,7 @@ namespace cv
|
||||
|
||||
/** @brief The constructors.
|
||||
|
||||
@param window\_name Name of the window.
|
||||
@param window_name Name of the window.
|
||||
*/
|
||||
Viz3d(const String& window_name = String());
|
||||
Viz3d(const Viz3d&);
|
||||
@ -165,13 +165,13 @@ namespace cv
|
||||
/** @brief Transforms a point in world coordinate system to window coordinate system.
|
||||
|
||||
@param pt Point in world coordinate system.
|
||||
@param window\_coord Output point in window coordinate system.
|
||||
@param window_coord Output point in window coordinate system.
|
||||
*/
|
||||
void convertToWindowCoordinates(const Point3d &pt, Point3d &window_coord);
|
||||
|
||||
/** @brief Transforms a point in window coordinate system to a 3D ray in world coordinate system.
|
||||
|
||||
@param window\_coord Point in window coordinate system. @param origin Output origin of the ray.
|
||||
@param window_coord Point in window coordinate system. @param origin Output origin of the ray.
|
||||
@param direction Output direction of the ray.
|
||||
*/
|
||||
void converTo3DRay(const Point3d &window_coord, Point3d &origin, Vec3d &direction);
|
||||
@ -181,7 +181,7 @@ namespace cv
|
||||
Size getWindowSize() const;
|
||||
/** @brief Sets the size of the window.
|
||||
|
||||
@param window\_size New size of the window.
|
||||
@param window_size New size of the window.
|
||||
*/
|
||||
void setWindowSize(const Size &window_size);
|
||||
|
||||
@ -251,24 +251,24 @@ namespace cv
|
||||
@param value The new value of the property.
|
||||
|
||||
**Rendering property** can be one of the following:
|
||||
- **POINT\_SIZE**
|
||||
- **POINT_SIZE**
|
||||
- **OPACITY**
|
||||
- **LINE\_WIDTH**
|
||||
- **FONT\_SIZE**
|
||||
- **LINE_WIDTH**
|
||||
- **FONT_SIZE**
|
||||
-
|
||||
**REPRESENTATION**: Expected values are
|
||||
- **REPRESENTATION\_POINTS**
|
||||
- **REPRESENTATION\_WIREFRAME**
|
||||
- **REPRESENTATION\_SURFACE**
|
||||
- **REPRESENTATION_POINTS**
|
||||
- **REPRESENTATION_WIREFRAME**
|
||||
- **REPRESENTATION_SURFACE**
|
||||
-
|
||||
**IMMEDIATE\_RENDERING**:
|
||||
**IMMEDIATE_RENDERING**:
|
||||
- Turn on immediate rendering by setting the value to 1.
|
||||
- Turn off immediate rendering by setting the value to 0.
|
||||
-
|
||||
**SHADING**: Expected values are
|
||||
- **SHADING\_FLAT**
|
||||
- **SHADING\_GOURAUD**
|
||||
- **SHADING\_PHONG**
|
||||
- **SHADING_FLAT**
|
||||
- **SHADING_GOURAUD**
|
||||
- **SHADING_PHONG**
|
||||
*/
|
||||
void setRenderingProperty(const String &id, int property, double value);
|
||||
/** @brief Returns rendering property of a widget.
|
||||
@ -277,33 +277,33 @@ namespace cv
|
||||
@param property Property.
|
||||
|
||||
**Rendering property** can be one of the following:
|
||||
- **POINT\_SIZE**
|
||||
- **POINT_SIZE**
|
||||
- **OPACITY**
|
||||
- **LINE\_WIDTH**
|
||||
- **FONT\_SIZE**
|
||||
- **LINE_WIDTH**
|
||||
- **FONT_SIZE**
|
||||
-
|
||||
**REPRESENTATION**: Expected values are
|
||||
- **REPRESENTATION\_POINTS**
|
||||
- **REPRESENTATION\_WIREFRAME**
|
||||
- **REPRESENTATION\_SURFACE**
|
||||
- **REPRESENTATION_POINTS**
|
||||
- **REPRESENTATION_WIREFRAME**
|
||||
- **REPRESENTATION_SURFACE**
|
||||
-
|
||||
**IMMEDIATE\_RENDERING**:
|
||||
**IMMEDIATE_RENDERING**:
|
||||
- Turn on immediate rendering by setting the value to 1.
|
||||
- Turn off immediate rendering by setting the value to 0.
|
||||
-
|
||||
**SHADING**: Expected values are
|
||||
- **SHADING\_FLAT**
|
||||
- **SHADING\_GOURAUD**
|
||||
- **SHADING\_PHONG**
|
||||
- **SHADING_FLAT**
|
||||
- **SHADING_GOURAUD**
|
||||
- **SHADING_PHONG**
|
||||
*/
|
||||
double getRenderingProperty(const String &id, int property);
|
||||
|
||||
/** @brief Sets geometry representation of the widgets to surface, wireframe or points.
|
||||
|
||||
@param representation Geometry representation which can be one of the following:
|
||||
- **REPRESENTATION\_POINTS**
|
||||
- **REPRESENTATION\_WIREFRAME**
|
||||
- **REPRESENTATION\_SURFACE**
|
||||
- **REPRESENTATION_POINTS**
|
||||
- **REPRESENTATION_WIREFRAME**
|
||||
- **REPRESENTATION_SURFACE**
|
||||
*/
|
||||
void setRepresentation(int representation);
|
||||
|
||||
|
@ -60,8 +60,8 @@ namespace cv
|
||||
|
||||
/** @brief Takes coordinate frame data and builds transform to global coordinate frame.
|
||||
|
||||
@param axis\_x X axis vector in global coordinate frame. @param axis\_y Y axis vector in global
|
||||
coordinate frame. @param axis\_z Z axis vector in global coordinate frame. @param origin Origin of
|
||||
@param axis_x X axis vector in global coordinate frame. @param axis_y Y axis vector in global
|
||||
coordinate frame. @param axis_z Z axis vector in global coordinate frame. @param origin Origin of
|
||||
the coordinate frame in global coordinate frame.
|
||||
|
||||
This function returns affine transform that describes transformation between global coordinate frame
|
||||
@ -69,11 +69,11 @@ namespace cv
|
||||
*/
|
||||
CV_EXPORTS Affine3d makeTransformToGlobal(const Vec3d& axis_x, const Vec3d& axis_y, const Vec3d& axis_z, const Vec3d& origin = Vec3d::all(0));
|
||||
|
||||
/** @brief Constructs camera pose from position, focal\_point and up\_vector (see gluLookAt() for more
|
||||
/** @brief Constructs camera pose from position, focal_point and up_vector (see gluLookAt() for more
|
||||
infromation).
|
||||
|
||||
@param position Position of the camera in global coordinate frame. @param focal\_point Focal point
|
||||
of the camera in global coordinate frame. @param y\_dir Up vector of the camera in global
|
||||
@param position Position of the camera in global coordinate frame. @param focal_point Focal point
|
||||
of the camera in global coordinate frame. @param y_dir Up vector of the camera in global
|
||||
coordinate frame.
|
||||
|
||||
This function returns pose of the camera in global coordinate frame.
|
||||
@ -82,7 +82,7 @@ namespace cv
|
||||
|
||||
/** @brief Retrieves a window by its name.
|
||||
|
||||
@param window\_name Name of the window that is to be retrieved.
|
||||
@param window_name Name of the window that is to be retrieved.
|
||||
|
||||
This function returns a Viz3d object with the given name.
|
||||
|
||||
|
@ -97,7 +97,7 @@ namespace cv
|
||||
|
||||
/** @brief Creates a widget from ply file.
|
||||
|
||||
@param file\_name Ply file name.
|
||||
@param file_name Ply file name.
|
||||
*/
|
||||
static Widget fromPlyFile(const String &file_name);
|
||||
|
||||
@ -107,24 +107,24 @@ namespace cv
|
||||
@param value The new value of the property.
|
||||
|
||||
**Rendering property** can be one of the following:
|
||||
- **POINT\_SIZE**
|
||||
- **POINT_SIZE**
|
||||
- **OPACITY**
|
||||
- **LINE\_WIDTH**
|
||||
- **FONT\_SIZE**
|
||||
- **LINE_WIDTH**
|
||||
- **FONT_SIZE**
|
||||
-
|
||||
**REPRESENTATION**: Expected values are
|
||||
- **REPRESENTATION\_POINTS**
|
||||
- **REPRESENTATION\_WIREFRAME**
|
||||
- **REPRESENTATION\_SURFACE**
|
||||
- **REPRESENTATION_POINTS**
|
||||
- **REPRESENTATION_WIREFRAME**
|
||||
- **REPRESENTATION_SURFACE**
|
||||
-
|
||||
**IMMEDIATE\_RENDERING**:
|
||||
**IMMEDIATE_RENDERING**:
|
||||
- Turn on immediate rendering by setting the value to 1.
|
||||
- Turn off immediate rendering by setting the value to 0.
|
||||
-
|
||||
**SHADING**: Expected values are
|
||||
- **SHADING\_FLAT**
|
||||
- **SHADING\_GOURAUD**
|
||||
- **SHADING\_PHONG**
|
||||
- **SHADING_FLAT**
|
||||
- **SHADING_GOURAUD**
|
||||
- **SHADING_PHONG**
|
||||
*/
|
||||
void setRenderingProperty(int property, double value);
|
||||
/** @brief Returns rendering property of the widget.
|
||||
@ -132,24 +132,24 @@ namespace cv
|
||||
@param property Property.
|
||||
|
||||
**Rendering property** can be one of the following:
|
||||
- **POINT\_SIZE**
|
||||
- **POINT_SIZE**
|
||||
- **OPACITY**
|
||||
- **LINE\_WIDTH**
|
||||
- **FONT\_SIZE**
|
||||
- **LINE_WIDTH**
|
||||
- **FONT_SIZE**
|
||||
-
|
||||
**REPRESENTATION**: Expected values are
|
||||
: - **REPRESENTATION\_POINTS**
|
||||
- **REPRESENTATION\_WIREFRAME**
|
||||
- **REPRESENTATION\_SURFACE**
|
||||
: - **REPRESENTATION_POINTS**
|
||||
- **REPRESENTATION_WIREFRAME**
|
||||
- **REPRESENTATION_SURFACE**
|
||||
-
|
||||
**IMMEDIATE\_RENDERING**:
|
||||
**IMMEDIATE_RENDERING**:
|
||||
: - Turn on immediate rendering by setting the value to 1.
|
||||
- Turn off immediate rendering by setting the value to 0.
|
||||
-
|
||||
**SHADING**: Expected values are
|
||||
: - **SHADING\_FLAT**
|
||||
- **SHADING\_GOURAUD**
|
||||
- **SHADING\_PHONG**
|
||||
: - **SHADING_FLAT**
|
||||
- **SHADING_GOURAUD**
|
||||
- **SHADING_PHONG**
|
||||
*/
|
||||
double getRenderingProperty(int property) const;
|
||||
|
||||
@ -257,7 +257,7 @@ namespace cv
|
||||
|
||||
@param center Center of the plane
|
||||
@param normal Plane normal orientation
|
||||
@param new\_yaxis Up-vector. New orientation of plane y-axis.
|
||||
@param new_yaxis Up-vector. New orientation of plane y-axis.
|
||||
@param size
|
||||
@param color Color of the plane.
|
||||
*/
|
||||
@ -274,7 +274,7 @@ namespace cv
|
||||
|
||||
@param center Center of the sphere.
|
||||
@param radius Radius of the sphere.
|
||||
@param sphere\_resolution Resolution of the sphere.
|
||||
@param sphere_resolution Resolution of the sphere.
|
||||
@param color Color of the sphere.
|
||||
*/
|
||||
WSphere(const cv::Point3d ¢er, double radius, int sphere_resolution = 10, const Color &color = Color::white());
|
||||
@ -355,8 +355,8 @@ namespace cv
|
||||
public:
|
||||
/** @brief Constructs a WCylinder.
|
||||
|
||||
@param axis\_point1 A point1 on the axis of the cylinder.
|
||||
@param axis\_point2 A point2 on the axis of the cylinder.
|
||||
@param axis_point1 A point1 on the axis of the cylinder.
|
||||
@param axis_point2 A point2 on the axis of the cylinder.
|
||||
@param radius Radius of the cylinder.
|
||||
@param numsides Resolution of the cylinder.
|
||||
@param color Color of the cylinder.
|
||||
@ -373,7 +373,7 @@ namespace cv
|
||||
|
||||
@param min_point Specifies minimum point of the bounding box.
|
||||
@param max_point Specifies maximum point of the bounding box.
|
||||
@param wire\_frame If true, cube is represented as wireframe.
|
||||
@param wire_frame If true, cube is represented as wireframe.
|
||||
@param color Color of the cube.
|
||||
|
||||
![Cube Widget](images/cube_widget.png)
|
||||
@ -408,7 +408,7 @@ namespace cv
|
||||
|
||||
@param text Text content of the widget.
|
||||
@param pos Position of the text.
|
||||
@param font\_size Font size.
|
||||
@param font_size Font size.
|
||||
@param color Color of the text.
|
||||
*/
|
||||
WText(const String &text, const Point &pos, int font_size = 20, const Color &color = Color::white());
|
||||
@ -432,8 +432,8 @@ namespace cv
|
||||
|
||||
@param text Text content of the widget.
|
||||
@param position Position of the text.
|
||||
@param text\_scale Size of the text.
|
||||
@param face\_camera If true, text always faces the camera.
|
||||
@param text_scale Size of the text.
|
||||
@param face_camera If true, text always faces the camera.
|
||||
@param color Color of the text.
|
||||
*/
|
||||
WText3D(const String &text, const Point3d &position, double text_scale = 1., bool face_camera = true, const Color &color = Color::white());
|
||||
@ -485,7 +485,7 @@ namespace cv
|
||||
@param size Size of the image.
|
||||
@param center Position of the image.
|
||||
@param normal Normal of the plane that represents the image.
|
||||
@param up\_vector Determines orientation of the image.
|
||||
@param up_vector Determines orientation of the image.
|
||||
*/
|
||||
WImage3D(InputArray image, const Size2d &size, const Vec3d ¢er, const Vec3d &normal, const Vec3d &up_vector);
|
||||
|
||||
@ -519,7 +519,7 @@ namespace cv
|
||||
/** @brief Constructs a WGrid.
|
||||
|
||||
@param cells Number of cell columns and rows, respectively.
|
||||
@param cells\_spacing Size of each cell, respectively.
|
||||
@param cells_spacing Size of each cell, respectively.
|
||||
@param color Color of the grid.
|
||||
*/
|
||||
WGrid(const Vec2i &cells = Vec2i::all(10), const Vec2d &cells_spacing = Vec2d::all(1.0), const Color &color = Color::white());
|
||||
@ -600,7 +600,7 @@ namespace cv
|
||||
/** @brief Constructs a WTrajectory.
|
||||
|
||||
@param path List of poses on a trajectory. Takes std::vector\<Affine\<T\>\> with T == [float | double]
|
||||
@param display\_mode Display mode. This can be PATH, FRAMES, and BOTH.
|
||||
@param display_mode Display mode. This can be PATH, FRAMES, and BOTH.
|
||||
@param scale Scale of the frames. Polyline is not affected.
|
||||
@param color Color of the polyline that represents path.
|
||||
|
||||
@ -652,7 +652,7 @@ namespace cv
|
||||
/** @brief Constructs a WTrajectorySpheres.
|
||||
|
||||
@param path List of poses on a trajectory. Takes std::vector\<Affine\<T\>\> with T == [float | double]
|
||||
@param line\_length Max length of the lines which point to previous position
|
||||
@param line_length Max length of the lines which point to previous position
|
||||
@param radius Radius of the spheres.
|
||||
@param from Color for first sphere.
|
||||
@param to Color for last sphere. Intermediate spheres will have interpolated color.
|
||||
@ -673,7 +673,7 @@ namespace cv
|
||||
public:
|
||||
/** @brief Constructs a WCloud.
|
||||
|
||||
@param cloud Set of points which can be of type: CV\_32FC3, CV\_32FC4, CV\_64FC3, CV\_64FC4.
|
||||
@param cloud Set of points which can be of type: CV_32FC3, CV_32FC4, CV_64FC3, CV_64FC4.
|
||||
@param colors Set of colors. It has to be of the same size with cloud.
|
||||
|
||||
Points in the cloud belong to mask when they are set to (NaN, NaN, NaN).
|
||||
@ -681,7 +681,7 @@ namespace cv
|
||||
WCloud(InputArray cloud, InputArray colors);
|
||||
|
||||
/** @brief Constructs a WCloud.
|
||||
@param cloud Set of points which can be of type: CV\_32FC3, CV\_32FC4, CV\_64FC3, CV\_64FC4.
|
||||
@param cloud Set of points which can be of type: CV_32FC3, CV_32FC4, CV_64FC3, CV_64FC4.
|
||||
@param color A single Color for the whole cloud.
|
||||
|
||||
Points in the cloud belong to mask when they are set to (NaN, NaN, NaN).
|
||||
@ -689,7 +689,7 @@ namespace cv
|
||||
WCloud(InputArray cloud, const Color &color = Color::white());
|
||||
|
||||
/** @brief Constructs a WCloud.
|
||||
@param cloud Set of points which can be of type: CV\_32FC3, CV\_32FC4, CV\_64FC3, CV\_64FC4.
|
||||
@param cloud Set of points which can be of type: CV_32FC3, CV_32FC4, CV_64FC3, CV_64FC4.
|
||||
@param colors Set of colors. It has to be of the same size with cloud.
|
||||
@param normals Normals for each point in cloud. Size and type should match with the cloud parameter.
|
||||
|
||||
@ -698,7 +698,7 @@ namespace cv
|
||||
WCloud(InputArray cloud, InputArray colors, InputArray normals);
|
||||
|
||||
/** @brief Constructs a WCloud.
|
||||
@param cloud Set of points which can be of type: CV\_32FC3, CV\_32FC4, CV\_64FC3, CV\_64FC4.
|
||||
@param cloud Set of points which can be of type: CV_32FC3, CV_32FC4, CV_64FC3, CV_64FC4.
|
||||
@param color A single Color for the whole cloud.
|
||||
@param normals Normals for each point in cloud.
|
||||
|
||||
@ -731,14 +731,14 @@ namespace cv
|
||||
|
||||
/** @brief Adds a cloud to the collection.
|
||||
|
||||
@param cloud Point set which can be of type: CV\_32FC3, CV\_32FC4, CV\_64FC3, CV\_64FC4.
|
||||
@param cloud Point set which can be of type: CV_32FC3, CV_32FC4, CV_64FC3, CV_64FC4.
|
||||
@param colors Set of colors. It has to be of the same size with cloud.
|
||||
@param pose Pose of the cloud. Points in the cloud belong to mask when they are set to (NaN, NaN, NaN).
|
||||
*/
|
||||
void addCloud(InputArray cloud, InputArray colors, const Affine3d &pose = Affine3d::Identity());
|
||||
/** @brief Adds a cloud to the collection.
|
||||
|
||||
@param cloud Point set which can be of type: CV\_32FC3, CV\_32FC4, CV\_64FC3, CV\_64FC4.
|
||||
@param cloud Point set which can be of type: CV_32FC3, CV_32FC4, CV_64FC3, CV_64FC4.
|
||||
@param color A single Color for the whole cloud.
|
||||
@param pose Pose of the cloud. Points in the cloud belong to mask when they are set to (NaN, NaN, NaN).
|
||||
*/
|
||||
@ -757,7 +757,7 @@ namespace cv
|
||||
public:
|
||||
/** @brief Constructs a WCloudNormals.
|
||||
|
||||
@param cloud Point set which can be of type: CV\_32FC3, CV\_32FC4, CV\_64FC3, CV\_64FC4.
|
||||
@param cloud Point set which can be of type: CV_32FC3, CV_32FC4, CV_64FC3, CV_64FC4.
|
||||
@param normals A set of normals that has to be of same type with cloud.
|
||||
@param level Display only every level th normal.
|
||||
@param scale Scale of the arrows that represent normals.
|
||||
|
Loading…
Reference in New Issue
Block a user