mirror of
https://github.com/opencv/opencv.git
synced 2024-12-04 00:39:11 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
152e6476d9
@ -620,7 +620,7 @@
|
||||
volume = {1},
|
||||
publisher = {IEEE}
|
||||
}
|
||||
@article{Lowe:2004:DIF:993451.996342,
|
||||
@article{Lowe04,
|
||||
author = {Lowe, David G.},
|
||||
title = {Distinctive Image Features from Scale-Invariant Keypoints},
|
||||
journal = {Int. J. Comput. Vision},
|
||||
|
@ -44,7 +44,7 @@ img1 = cv.imread('box.png',0) # queryImage
|
||||
img2 = cv.imread('box_in_scene.png',0) # trainImage
|
||||
|
||||
# Initiate SIFT detector
|
||||
sift = cv.xfeatures2d.SIFT_create()
|
||||
sift = cv.SIFT_create()
|
||||
|
||||
# find the keypoints and descriptors with SIFT
|
||||
kp1, des1 = sift.detectAndCompute(img1,None)
|
||||
|
@ -110,7 +110,7 @@ img1 = cv.imread('box.png',cv.IMREAD_GRAYSCALE) # queryImage
|
||||
img2 = cv.imread('box_in_scene.png',cv.IMREAD_GRAYSCALE) # trainImage
|
||||
|
||||
# Initiate SIFT detector
|
||||
sift = cv.xfeatures2d.SIFT_create()
|
||||
sift = cv.SIFT_create()
|
||||
|
||||
# find the keypoints and descriptors with SIFT
|
||||
kp1, des1 = sift.detectAndCompute(img1,None)
|
||||
@ -174,7 +174,7 @@ img1 = cv.imread('box.png',cv.IMREAD_GRAYSCALE) # queryImage
|
||||
img2 = cv.imread('box_in_scene.png',cv.IMREAD_GRAYSCALE) # trainImage
|
||||
|
||||
# Initiate SIFT detector
|
||||
sift = cv.xfeatures2d.SIFT_create()
|
||||
sift = cv.SIFT_create()
|
||||
|
||||
# find the keypoints and descriptors with SIFT
|
||||
kp1, des1 = sift.detectAndCompute(img1,None)
|
||||
|
@ -119,7 +119,7 @@ import cv2 as cv
|
||||
img = cv.imread('home.jpg')
|
||||
gray= cv.cvtColor(img,cv.COLOR_BGR2GRAY)
|
||||
|
||||
sift = cv.xfeatures2d.SIFT_create()
|
||||
sift = cv.SIFT_create()
|
||||
kp = sift.detect(gray,None)
|
||||
|
||||
img=cv.drawKeypoints(gray,kp,img)
|
||||
@ -151,7 +151,7 @@ Now to calculate the descriptor, OpenCV provides two methods.
|
||||
|
||||
We will see the second method:
|
||||
@code{.py}
|
||||
sift = cv.xfeatures2d.SIFT_create()
|
||||
sift = cv.SIFT_create()
|
||||
kp, des = sift.detectAndCompute(gray,None)
|
||||
@endcode
|
||||
Here kp will be a list of keypoints and des is a numpy array of shape
|
||||
|
@ -27,7 +27,7 @@ Binary descriptors (ORB, BRISK, ...) are matched using the <a href="https://en.w
|
||||
This distance is equivalent to count the number of different elements for binary strings (population count after applying a XOR operation):
|
||||
\f[ d_{hamming} \left ( a,b \right ) = \sum_{i=0}^{n-1} \left ( a_i \oplus b_i \right ) \f]
|
||||
|
||||
To filter the matches, Lowe proposed in @cite Lowe:2004:DIF:993451.996342 to use a distance ratio test to try to eliminate false matches.
|
||||
To filter the matches, Lowe proposed in @cite Lowe04 to use a distance ratio test to try to eliminate false matches.
|
||||
The distance ratio between the two nearest matches of a considered keypoint is computed and it is a good match when this value is below
|
||||
a threshold. Indeed, this ratio allows helping to discriminate between ambiguous matches (distance ratio between the two nearest neighbors
|
||||
is close to one) and well discriminated matches. The figure below from the SIFT paper illustrates the probability that a match is correct
|
||||
|
@ -159,6 +159,7 @@ struct v_uint8x32
|
||||
(char)v22, (char)v23, (char)v24, (char)v25, (char)v26, (char)v27,
|
||||
(char)v28, (char)v29, (char)v30, (char)v31);
|
||||
}
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_uint8x32() {}
|
||||
|
||||
uchar get0() const { return (uchar)_v_cvtsi256_si32(val); }
|
||||
@ -184,6 +185,7 @@ struct v_int8x32
|
||||
v10, v11, v12, v13, v14, v15, v16, v17, v18, v19, v20,
|
||||
v21, v22, v23, v24, v25, v26, v27, v28, v29, v30, v31);
|
||||
}
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_int8x32() {}
|
||||
|
||||
schar get0() const { return (schar)_v_cvtsi256_si32(val); }
|
||||
@ -205,6 +207,7 @@ struct v_uint16x16
|
||||
(short)v4, (short)v5, (short)v6, (short)v7, (short)v8, (short)v9,
|
||||
(short)v10, (short)v11, (short)v12, (short)v13, (short)v14, (short)v15);
|
||||
}
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_uint16x16() {}
|
||||
|
||||
ushort get0() const { return (ushort)_v_cvtsi256_si32(val); }
|
||||
@ -225,6 +228,7 @@ struct v_int16x16
|
||||
val = _mm256_setr_epi16(v0, v1, v2, v3, v4, v5, v6, v7,
|
||||
v8, v9, v10, v11, v12, v13, v14, v15);
|
||||
}
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_int16x16() {}
|
||||
|
||||
short get0() const { return (short)_v_cvtsi256_si32(val); }
|
||||
@ -243,6 +247,7 @@ struct v_uint32x8
|
||||
val = _mm256_setr_epi32((unsigned)v0, (unsigned)v1, (unsigned)v2,
|
||||
(unsigned)v3, (unsigned)v4, (unsigned)v5, (unsigned)v6, (unsigned)v7);
|
||||
}
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_uint32x8() {}
|
||||
|
||||
unsigned get0() const { return (unsigned)_v_cvtsi256_si32(val); }
|
||||
@ -260,6 +265,7 @@ struct v_int32x8
|
||||
{
|
||||
val = _mm256_setr_epi32(v0, v1, v2, v3, v4, v5, v6, v7);
|
||||
}
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_int32x8() {}
|
||||
|
||||
int get0() const { return _v_cvtsi256_si32(val); }
|
||||
@ -277,6 +283,7 @@ struct v_float32x8
|
||||
{
|
||||
val = _mm256_setr_ps(v0, v1, v2, v3, v4, v5, v6, v7);
|
||||
}
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_float32x8() {}
|
||||
|
||||
float get0() const { return _mm_cvtss_f32(_mm256_castps256_ps128(val)); }
|
||||
@ -291,7 +298,9 @@ struct v_uint64x4
|
||||
explicit v_uint64x4(__m256i v) : val(v) {}
|
||||
v_uint64x4(uint64 v0, uint64 v1, uint64 v2, uint64 v3)
|
||||
{ val = _mm256_setr_epi64x((int64)v0, (int64)v1, (int64)v2, (int64)v3); }
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_uint64x4() {}
|
||||
|
||||
uint64 get0() const
|
||||
{
|
||||
#if defined __x86_64__ || defined _M_X64
|
||||
@ -313,6 +322,7 @@ struct v_int64x4
|
||||
explicit v_int64x4(__m256i v) : val(v) {}
|
||||
v_int64x4(int64 v0, int64 v1, int64 v2, int64 v3)
|
||||
{ val = _mm256_setr_epi64x(v0, v1, v2, v3); }
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_int64x4() {}
|
||||
|
||||
int64 get0() const
|
||||
@ -336,6 +346,7 @@ struct v_float64x4
|
||||
explicit v_float64x4(__m256d v) : val(v) {}
|
||||
v_float64x4(double v0, double v1, double v2, double v3)
|
||||
{ val = _mm256_setr_pd(v0, v1, v2, v3); }
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_float64x4() {}
|
||||
|
||||
double get0() const { return _mm_cvtsd_f64(_mm256_castpd256_pd128(val)); }
|
||||
|
@ -75,6 +75,7 @@ struct v_uint8x16
|
||||
typedef __m128i vector_type;
|
||||
enum { nlanes = 16 };
|
||||
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_uint8x16() {}
|
||||
explicit v_uint8x16(__m128i v) : val(v) {}
|
||||
v_uint8x16(uchar v0, uchar v1, uchar v2, uchar v3, uchar v4, uchar v5, uchar v6, uchar v7,
|
||||
@ -100,6 +101,7 @@ struct v_int8x16
|
||||
typedef __m128i vector_type;
|
||||
enum { nlanes = 16 };
|
||||
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_int8x16() {}
|
||||
explicit v_int8x16(__m128i v) : val(v) {}
|
||||
v_int8x16(schar v0, schar v1, schar v2, schar v3, schar v4, schar v5, schar v6, schar v7,
|
||||
@ -125,6 +127,7 @@ struct v_uint16x8
|
||||
typedef __m128i vector_type;
|
||||
enum { nlanes = 8 };
|
||||
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_uint16x8() {}
|
||||
explicit v_uint16x8(__m128i v) : val(v) {}
|
||||
v_uint16x8(ushort v0, ushort v1, ushort v2, ushort v3, ushort v4, ushort v5, ushort v6, ushort v7)
|
||||
@ -147,6 +150,7 @@ struct v_int16x8
|
||||
typedef __m128i vector_type;
|
||||
enum { nlanes = 8 };
|
||||
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_int16x8() {}
|
||||
explicit v_int16x8(__m128i v) : val(v) {}
|
||||
v_int16x8(short v0, short v1, short v2, short v3, short v4, short v5, short v6, short v7)
|
||||
@ -169,6 +173,7 @@ struct v_uint32x4
|
||||
typedef __m128i vector_type;
|
||||
enum { nlanes = 4 };
|
||||
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_uint32x4() {}
|
||||
explicit v_uint32x4(__m128i v) : val(v) {}
|
||||
v_uint32x4(unsigned v0, unsigned v1, unsigned v2, unsigned v3)
|
||||
@ -190,6 +195,7 @@ struct v_int32x4
|
||||
typedef __m128i vector_type;
|
||||
enum { nlanes = 4 };
|
||||
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_int32x4() {}
|
||||
explicit v_int32x4(__m128i v) : val(v) {}
|
||||
v_int32x4(int v0, int v1, int v2, int v3)
|
||||
@ -211,6 +217,7 @@ struct v_float32x4
|
||||
typedef __m128 vector_type;
|
||||
enum { nlanes = 4 };
|
||||
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_float32x4() {}
|
||||
explicit v_float32x4(__m128 v) : val(v) {}
|
||||
v_float32x4(float v0, float v1, float v2, float v3)
|
||||
@ -232,6 +239,7 @@ struct v_uint64x2
|
||||
typedef __m128i vector_type;
|
||||
enum { nlanes = 2 };
|
||||
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_uint64x2() {}
|
||||
explicit v_uint64x2(__m128i v) : val(v) {}
|
||||
v_uint64x2(uint64 v0, uint64 v1)
|
||||
@ -259,6 +267,7 @@ struct v_int64x2
|
||||
typedef __m128i vector_type;
|
||||
enum { nlanes = 2 };
|
||||
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_int64x2() {}
|
||||
explicit v_int64x2(__m128i v) : val(v) {}
|
||||
v_int64x2(int64 v0, int64 v1)
|
||||
@ -286,6 +295,7 @@ struct v_float64x2
|
||||
typedef __m128d vector_type;
|
||||
enum { nlanes = 2 };
|
||||
|
||||
/* coverity[uninit_ctor]: suppress warning */
|
||||
v_float64x2() {}
|
||||
explicit v_float64x2(__m128d v) : val(v) {}
|
||||
v_float64x2(double v0, double v1)
|
||||
|
@ -2230,7 +2230,7 @@ struct Net::Impl
|
||||
|
||||
auto ieInpNode = inputNodes[i].dynamicCast<InfEngineNgraphNode>();
|
||||
CV_Assert(oid < ieInpNode->node->get_output_size());
|
||||
#if INF_ENGINE_VER_MAJOR_GT(2020020000)
|
||||
#if INF_ENGINE_VER_MAJOR_GT(2020030000)
|
||||
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(ieInpNode->node->get_output_as_single_output_node(oid)));
|
||||
#else
|
||||
inputNodes[i] = Ptr<BackendNode>(new InfEngineNgraphNode(ieInpNode->node->get_output_as_single_output_node(oid, false)));
|
||||
@ -3450,6 +3450,8 @@ Net Net::Impl::createNetworkFromModelOptimizer(InferenceEngine::CNNNetwork& ieNe
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
|
||||
CV_TRACE_REGION("register_inputs");
|
||||
|
||||
std::vector<String> inputsNames;
|
||||
std::vector<MatShape> inp_shapes;
|
||||
for (auto& it : ieNet.getInputsInfo())
|
||||
@ -3468,6 +3470,8 @@ Net Net::Impl::createNetworkFromModelOptimizer(InferenceEngine::CNNNetwork& ieNe
|
||||
cvNet.setInputShape(inputsNames[inp_id], inp_shapes[inp_id]);
|
||||
}
|
||||
|
||||
CV_TRACE_REGION_NEXT("backendNode");
|
||||
|
||||
Ptr<BackendNode> backendNode;
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
if (DNN_BACKEND_INFERENCE_ENGINE_NGRAPH == getInferenceEngineBackendTypeParam())
|
||||
@ -3489,8 +3493,25 @@ Net Net::Impl::createNetworkFromModelOptimizer(InferenceEngine::CNNNetwork& ieNe
|
||||
#endif
|
||||
}
|
||||
|
||||
CV_TRACE_REGION_NEXT("register_outputs");
|
||||
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
auto ngraphFunction = ieNet.getFunction();
|
||||
#if INF_ENGINE_VER_MAJOR_LT(INF_ENGINE_RELEASE_2020_2)
|
||||
std::list< std::shared_ptr<ngraph::Node> > ngraphOperations;
|
||||
#else
|
||||
std::vector< std::shared_ptr<ngraph::Node> > ngraphOperations;
|
||||
#endif
|
||||
if (ngraphFunction)
|
||||
{
|
||||
ngraphOperations = ngraphFunction->get_ops();
|
||||
}
|
||||
#endif
|
||||
|
||||
for (auto& it : ieNet.getOutputsInfo())
|
||||
{
|
||||
CV_TRACE_REGION("output");
|
||||
|
||||
LayerParams lp;
|
||||
int lid = cvNet.addLayer(it.first, "", lp);
|
||||
|
||||
@ -3499,15 +3520,38 @@ Net Net::Impl::createNetworkFromModelOptimizer(InferenceEngine::CNNNetwork& ieNe
|
||||
#ifdef HAVE_DNN_NGRAPH
|
||||
if (DNN_BACKEND_INFERENCE_ENGINE_NGRAPH == getInferenceEngineBackendTypeParam())
|
||||
{
|
||||
const auto& outputName = it.first;
|
||||
Ptr<Layer> cvLayer(new NgraphBackendLayer(ieNet));
|
||||
cvLayer->name = outputName;
|
||||
cvLayer->type = "_unknown_";
|
||||
|
||||
InferenceEngine::CNNLayerPtr ieLayer = ieNet.getLayerByName(it.first.c_str());
|
||||
CV_Assert(ieLayer);
|
||||
if (ngraphFunction)
|
||||
{
|
||||
CV_TRACE_REGION("ngraph_function");
|
||||
bool found = false;
|
||||
for (const auto& op : ngraphOperations)
|
||||
{
|
||||
CV_Assert(op);
|
||||
if (op->get_friendly_name() == outputName)
|
||||
{
|
||||
const std::string typeName = op->get_type_info().name;
|
||||
cvLayer->type = typeName;
|
||||
found = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!found)
|
||||
CV_LOG_WARNING(NULL, "DNN/IE: Can't determine output layer type: '" << outputName << "'");
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_TRACE_REGION("legacy_cnn_layer");
|
||||
InferenceEngine::CNNLayerPtr ieLayer = ieNet.getLayerByName(it.first.c_str());
|
||||
CV_Assert(ieLayer);
|
||||
|
||||
cvLayer->name = it.first;
|
||||
cvLayer->type = ieLayer->type;
|
||||
cvLayer->type = ieLayer->type;
|
||||
}
|
||||
ld.layerInstance = cvLayer;
|
||||
|
||||
ld.backendNodes[DNN_BACKEND_INFERENCE_ENGINE_NGRAPH] = backendNode;
|
||||
}
|
||||
else
|
||||
@ -3532,6 +3576,9 @@ Net Net::Impl::createNetworkFromModelOptimizer(InferenceEngine::CNNNetwork& ieNe
|
||||
for (int i = 0; i < inputsNames.size(); ++i)
|
||||
cvNet.connect(0, i, lid, i);
|
||||
}
|
||||
|
||||
CV_TRACE_REGION_NEXT("finalize");
|
||||
|
||||
cvNet.setPreferableBackend(getInferenceEngineBackendTypeParam());
|
||||
|
||||
cvNet.impl->skipInfEngineInit = true;
|
||||
|
@ -382,6 +382,36 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
class BatchNormalizationSubgraph : public Subgraph
|
||||
{
|
||||
public:
|
||||
BatchNormalizationSubgraph()
|
||||
{
|
||||
int input = addNodeToMatch("");
|
||||
int data1 = addNodeToMatch("Constant");
|
||||
int data2 = addNodeToMatch("Constant");
|
||||
int data3 = addNodeToMatch("Constant");
|
||||
int data4 = addNodeToMatch("Constant");
|
||||
int shape1 = addNodeToMatch("Constant");
|
||||
int reshape1 = addNodeToMatch("Reshape", data1, shape1);
|
||||
int shape2 = addNodeToMatch("Constant");
|
||||
int reshape2 = addNodeToMatch("Reshape", data2, shape2);
|
||||
int shape3 = addNodeToMatch("Constant");
|
||||
int reshape3 = addNodeToMatch("Reshape", data3, shape3);
|
||||
int shape4 = addNodeToMatch("Constant");
|
||||
int reshape4 = addNodeToMatch("Reshape", data4, shape4);
|
||||
int sqrtNode = addNodeToMatch("Sqrt", reshape3);
|
||||
int A = addNodeToMatch("Constant");
|
||||
int divNode = addNodeToMatch("Div", A, sqrtNode);
|
||||
int mul1 = addNodeToMatch("Mul", reshape1, divNode);
|
||||
int mul2 = addNodeToMatch("Mul", reshape4, mul1);
|
||||
int sub = addNodeToMatch("Sub", reshape2, mul2);
|
||||
int mul3 = addNodeToMatch("Mul", input, mul1);
|
||||
addNodeToMatch("Add", mul3, sub);
|
||||
setFusedNode("BatchNormalization", input, data1, data2, data4 ,data3);
|
||||
}
|
||||
};
|
||||
|
||||
void simplifySubgraphs(opencv_onnx::GraphProto& net)
|
||||
{
|
||||
std::vector<Ptr<Subgraph> > subgraphs;
|
||||
@ -394,6 +424,7 @@ void simplifySubgraphs(opencv_onnx::GraphProto& net)
|
||||
subgraphs.push_back(makePtr<NormalizeSubgraph1>());
|
||||
subgraphs.push_back(makePtr<NormalizeSubgraph2>());
|
||||
subgraphs.push_back(makePtr<NormalizeSubgraph3>());
|
||||
subgraphs.push_back(makePtr<BatchNormalizationSubgraph>());
|
||||
|
||||
simplifySubgraphs(Ptr<ImportGraphWrapper>(new ONNXGraphWrapper(net)), subgraphs);
|
||||
}
|
||||
|
@ -309,11 +309,30 @@ static void addConstant(const std::string& name,
|
||||
outShapes.insert(std::make_pair(name, shape(blob)));
|
||||
}
|
||||
|
||||
void addConstantNodesForInitializers(opencv_onnx::GraphProto& graph_proto)
|
||||
{
|
||||
int num_initializers = graph_proto.initializer_size();
|
||||
for (int id = 0; id < num_initializers; id++)
|
||||
{
|
||||
opencv_onnx::TensorProto initializer = graph_proto.initializer(id);
|
||||
opencv_onnx::NodeProto* constant_node = graph_proto.add_node();
|
||||
constant_node->set_op_type("Constant");
|
||||
constant_node->set_name(initializer.name());
|
||||
constant_node->add_output(initializer.name());
|
||||
opencv_onnx::AttributeProto* value = constant_node->add_attribute();
|
||||
opencv_onnx::TensorProto* tensor = initializer.New();
|
||||
tensor->CopyFrom(initializer);
|
||||
releaseONNXTensor(initializer);
|
||||
value->set_allocated_t(tensor);
|
||||
}
|
||||
}
|
||||
|
||||
void ONNXImporter::populateNet(Net dstNet)
|
||||
{
|
||||
CV_Assert(model_proto.has_graph());
|
||||
opencv_onnx::GraphProto graph_proto = model_proto.graph();
|
||||
|
||||
addConstantNodesForInitializers(graph_proto);
|
||||
simplifySubgraphs(graph_proto);
|
||||
|
||||
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto);
|
||||
|
@ -570,6 +570,10 @@ TEST_P(Test_Darknet_layers, reorg)
|
||||
|
||||
TEST_P(Test_Darknet_layers, maxpool)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
testDarknetLayer("maxpool");
|
||||
}
|
||||
|
||||
|
@ -357,6 +357,11 @@ TEST_P(MaxPooling, Accuracy)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && targetId == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
|
||||
LayerParams lp;
|
||||
lp.set("pool", "max");
|
||||
lp.set("kernel_w", kernel.width);
|
||||
|
@ -134,6 +134,8 @@ static inline void genData(const InferenceEngine::TensorDesc& desc, Mat& m, Blob
|
||||
void runIE(Target target, const std::string& xmlPath, const std::string& binPath,
|
||||
std::map<std::string, cv::Mat>& inputsMap, std::map<std::string, cv::Mat>& outputsMap)
|
||||
{
|
||||
SCOPED_TRACE("runIE");
|
||||
|
||||
CNNNetReader reader;
|
||||
reader.ReadNetwork(xmlPath);
|
||||
reader.ReadWeights(binPath);
|
||||
@ -247,6 +249,8 @@ void runCV(Backend backendId, Target targetId, const std::string& xmlPath, const
|
||||
const std::map<std::string, cv::Mat>& inputsMap,
|
||||
std::map<std::string, cv::Mat>& outputsMap)
|
||||
{
|
||||
SCOPED_TRACE("runOCV");
|
||||
|
||||
Net net = readNet(xmlPath, binPath);
|
||||
for (auto& it : inputsMap)
|
||||
net.setInput(it.second, it.first);
|
||||
@ -273,9 +277,18 @@ TEST_P(DNNTestOpenVINO, models)
|
||||
|
||||
const Backend backendId = get<0>(get<0>(GetParam()));
|
||||
const Target targetId = get<1>(get<0>(GetParam()));
|
||||
std::string modelName = get<1>(GetParam());
|
||||
|
||||
if (backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
throw SkipTestException("No support for async forward");
|
||||
ASSERT_FALSE(backendId != DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 && backendId != DNN_BACKEND_INFERENCE_ENGINE_NGRAPH) <<
|
||||
"Inference Engine backend is required";
|
||||
|
||||
#if INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (targetId == DNN_TARGET_MYRIAD && backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
{
|
||||
if (modelName == "person-detection-retail-0013") // IRv10
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
setInferenceEngineBackendType(CV_DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_API);
|
||||
@ -284,7 +297,6 @@ TEST_P(DNNTestOpenVINO, models)
|
||||
else
|
||||
FAIL() << "Unknown backendId";
|
||||
|
||||
std::string modelName = get<1>(GetParam());
|
||||
bool isFP16 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD);
|
||||
|
||||
const std::map<std::string, OpenVINOModelTestCaseInfo>& models = getOpenVINOTestModels();
|
||||
@ -301,8 +313,8 @@ TEST_P(DNNTestOpenVINO, models)
|
||||
// Single Myriad device cannot be shared across multiple processes.
|
||||
if (targetId == DNN_TARGET_MYRIAD)
|
||||
resetMyriadDevice();
|
||||
runIE(targetId, xmlPath, binPath, inputsMap, ieOutputsMap);
|
||||
runCV(backendId, targetId, xmlPath, binPath, inputsMap, cvOutputsMap);
|
||||
EXPECT_NO_THROW(runIE(targetId, xmlPath, binPath, inputsMap, ieOutputsMap)) << "runIE";
|
||||
EXPECT_NO_THROW(runCV(backendId, targetId, xmlPath, binPath, inputsMap, cvOutputsMap)) << "runCV";
|
||||
|
||||
double eps = 0;
|
||||
#if INF_ENGINE_VER_MAJOR_GE(2020010000)
|
||||
|
@ -98,7 +98,14 @@ TEST_P(Test_ONNX_layers, InstanceNorm)
|
||||
|
||||
TEST_P(Test_ONNX_layers, MaxPooling)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
testONNXModels("maxpooling", npy, 0, 0, false, false);
|
||||
}
|
||||
TEST_P(Test_ONNX_layers, MaxPooling_2)
|
||||
{
|
||||
testONNXModels("two_maxpooling", npy, 0, 0, false, false);
|
||||
}
|
||||
|
||||
@ -314,6 +321,15 @@ TEST_P(Test_ONNX_layers, BatchNormalization3D)
|
||||
testONNXModels("batch_norm_3d");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, BatchNormalizationUnfused)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
testONNXModels("frozenBatchNorm2d");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Transpose)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
@ -396,6 +412,16 @@ TEST_P(Test_ONNX_layers, ResizeUnfused)
|
||||
testONNXModels("resize_bilinear_unfused_opset11_torch1.4");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, ResizeUnfusedTwoInputs)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
testONNXModels("upsample_unfused_two_inputs_opset9_torch1.4", npy, 0, 0, false, true, 2);
|
||||
testONNXModels("upsample_unfused_two_inputs_opset11_torch1.4", npy, 0, 0, false, true, 2);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, MultyInputs)
|
||||
{
|
||||
testONNXModels("multy_inputs", npy, 0, 0, false, true, 2);
|
||||
|
@ -128,13 +128,32 @@ TEST_P(Test_TensorFlow_layers, reduce_mean)
|
||||
runTensorFlowNet("global_pool_by_axis");
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, conv)
|
||||
TEST_P(Test_TensorFlow_layers, conv_single_conv)
|
||||
{
|
||||
runTensorFlowNet("single_conv");
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, conv_atrous_conv2d_valid)
|
||||
{
|
||||
runTensorFlowNet("atrous_conv2d_valid");
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, conv_atrous_conv2d_same)
|
||||
{
|
||||
runTensorFlowNet("atrous_conv2d_same");
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, conv_depthwise_conv2d)
|
||||
{
|
||||
runTensorFlowNet("depthwise_conv2d");
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, conv_keras_atrous_conv2d_same)
|
||||
{
|
||||
runTensorFlowNet("keras_atrous_conv2d_same");
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, conv_pool_nchw)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
runTensorFlowNet("conv_pool_nchw");
|
||||
}
|
||||
|
||||
@ -291,11 +310,32 @@ TEST_P(Test_TensorFlow_layers, slim_batch_norm)
|
||||
runTensorFlowNet("slim_batch_norm", false, l1, lInf);
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, pooling)
|
||||
TEST_P(Test_TensorFlow_layers, pooling_max_pool_even)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
runTensorFlowNet("max_pool_even");
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, pooling_max_pool_odd_valid)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
runTensorFlowNet("max_pool_odd_valid");
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, pooling_max_pool_odd_same)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
runTensorFlowNet("max_pool_odd_same");
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, pooling_reduce_mean)
|
||||
{
|
||||
runTensorFlowNet("reduce_mean"); // an average pooling over all spatial dimensions.
|
||||
}
|
||||
|
||||
@ -815,24 +855,67 @@ TEST_P(Test_TensorFlow_nets, EAST_text_detection)
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, dnnBackendsAndTargets());
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, fp16_weights)
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_single_conv)
|
||||
{
|
||||
float l1 = 0.00078;
|
||||
float lInf = 0.012;
|
||||
float l1 = 0.00078, lInf = 0.012;
|
||||
runTensorFlowNet("fp16_single_conv", false, l1, lInf);
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_max_pool_odd_same)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
float l1 = 0.00078, lInf = 0.012;
|
||||
runTensorFlowNet("fp16_max_pool_odd_same", false, l1, lInf);
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_eltwise_add_mul)
|
||||
{
|
||||
float l1 = 0.00078, lInf = 0.012;
|
||||
runTensorFlowNet("fp16_eltwise_add_mul", false, l1, lInf);
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_pad_and_concat)
|
||||
{
|
||||
float l1 = 0.00078, lInf = 0.012;
|
||||
runTensorFlowNet("fp16_pad_and_concat", false, l1, lInf);
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_padding_valid)
|
||||
{
|
||||
float l1 = 0.00078, lInf = 0.012;
|
||||
runTensorFlowNet("fp16_padding_valid", false, l1, lInf);
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_max_pool_even)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
float l1 = 0.00078, lInf = 0.012;
|
||||
// Reference output values are in range [0.0889, 1.651]
|
||||
runTensorFlowNet("fp16_max_pool_even", false, (target == DNN_TARGET_MYRIAD) ? 0.003 : l1, lInf);
|
||||
if (target == DNN_TARGET_MYRIAD)
|
||||
{
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_deconvolution)
|
||||
{
|
||||
float l1 = 0.00078, lInf = 0.012;
|
||||
if (target == DNN_TARGET_MYRIAD) {
|
||||
l1 = 0.0041;
|
||||
lInf = 0.024;
|
||||
}
|
||||
// Reference output values are in range [0, 10.75]
|
||||
runTensorFlowNet("fp16_deconvolution", false, l1, lInf);
|
||||
}
|
||||
TEST_P(Test_TensorFlow_layers, fp16_weights_fp16_max_pool_odd_valid)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2020020000)
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH && target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH, CV_TEST_TAG_DNN_SKIP_IE_VERSION);
|
||||
#endif
|
||||
float l1 = 0.00078, lInf = 0.012;
|
||||
if (target == DNN_TARGET_MYRIAD) {
|
||||
l1 = 0.0041;
|
||||
lInf = 0.024;
|
||||
}
|
||||
// Reference output values are in range [0.418, 2.297]
|
||||
runTensorFlowNet("fp16_max_pool_odd_valid", false, l1, lInf);
|
||||
}
|
||||
|
@ -244,6 +244,39 @@ typedef Feature2D DescriptorExtractor;
|
||||
//! @addtogroup features2d_main
|
||||
//! @{
|
||||
|
||||
|
||||
/** @brief Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform
|
||||
(SIFT) algorithm by D. Lowe @cite Lowe04 .
|
||||
*/
|
||||
class CV_EXPORTS_W SIFT : public Feature2D
|
||||
{
|
||||
public:
|
||||
/**
|
||||
@param nfeatures The number of best features to retain. The features are ranked by their scores
|
||||
(measured in SIFT algorithm as the local contrast)
|
||||
|
||||
@param nOctaveLayers The number of layers in each octave. 3 is the value used in D. Lowe paper. The
|
||||
number of octaves is computed automatically from the image resolution.
|
||||
|
||||
@param contrastThreshold The contrast threshold used to filter out weak features in semi-uniform
|
||||
(low-contrast) regions. The larger the threshold, the less features are produced by the detector.
|
||||
|
||||
@param edgeThreshold The threshold used to filter out edge-like features. Note that the its meaning
|
||||
is different from the contrastThreshold, i.e. the larger the edgeThreshold, the less features are
|
||||
filtered out (more features are retained).
|
||||
|
||||
@param sigma The sigma of the Gaussian applied to the input image at the octave \#0. If your image
|
||||
is captured with a weak camera with soft lenses, you might want to reduce the number.
|
||||
*/
|
||||
CV_WRAP static Ptr<SIFT> create(int nfeatures = 0, int nOctaveLayers = 3,
|
||||
double contrastThreshold = 0.04, double edgeThreshold = 10,
|
||||
double sigma = 1.6);
|
||||
};
|
||||
|
||||
typedef SIFT SiftFeatureDetector;
|
||||
typedef SIFT SiftDescriptorExtractor;
|
||||
|
||||
|
||||
/** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 .
|
||||
*/
|
||||
class CV_EXPORTS_W BRISK : public Feature2D
|
||||
|
@ -6,6 +6,7 @@ import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Point;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.features2d.SIFT;
|
||||
import org.opencv.test.OpenCVTestCase;
|
||||
import org.opencv.test.OpenCVTestRunner;
|
||||
import org.opencv.imgproc.Imgproc;
|
||||
@ -29,7 +30,7 @@ public class SIFTDescriptorExtractorTest extends OpenCVTestCase {
|
||||
@Override
|
||||
protected void setUp() throws Exception {
|
||||
super.setUp();
|
||||
extractor = createClassInstance(XFEATURES2D+"SIFT", DEFAULT_FACTORY, null, null);
|
||||
extractor = SIFT.create();
|
||||
keypoint = new KeyPoint(55.775577545166016f, 44.224422454833984f, 16, 9.754629f, 8617.863f, 1, -1);
|
||||
matSize = 100;
|
||||
truth = new Mat(1, 128, CvType.CV_32FC1) {
|
||||
|
85
modules/features2d/perf/perf_sift.cpp
Normal file
85
modules/features2d/perf/perf_sift.cpp
Normal file
@ -0,0 +1,85 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
#include "perf_precomp.hpp"
|
||||
|
||||
namespace opencv_test { namespace {
|
||||
|
||||
typedef perf::TestBaseWithParam<std::string> SIFT_detect;
|
||||
typedef perf::TestBaseWithParam<std::string> SIFT_extract;
|
||||
typedef perf::TestBaseWithParam<std::string> SIFT_full;
|
||||
|
||||
#define SIFT_IMAGES \
|
||||
"cv/detectors_descriptors_evaluation/images_datasets/leuven/img1.png",\
|
||||
"stitching/a3.png"
|
||||
|
||||
PERF_TEST_P_(SIFT_detect, SIFT)
|
||||
{
|
||||
string filename = getDataPath(GetParam());
|
||||
Mat frame = imread(filename, IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame.empty()) << "Unable to load source image " << filename;
|
||||
|
||||
Mat mask;
|
||||
declare.in(frame).time(90);
|
||||
Ptr<SIFT> detector = SIFT::create();
|
||||
vector<KeyPoint> points;
|
||||
|
||||
PERF_SAMPLE_BEGIN();
|
||||
detector->detect(frame, points, mask);
|
||||
PERF_SAMPLE_END();
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST_P_(SIFT_extract, SIFT)
|
||||
{
|
||||
string filename = getDataPath(GetParam());
|
||||
Mat frame = imread(filename, IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame.empty()) << "Unable to load source image " << filename;
|
||||
|
||||
Mat mask;
|
||||
declare.in(frame).time(90);
|
||||
|
||||
Ptr<SIFT> detector = SIFT::create();
|
||||
vector<KeyPoint> points;
|
||||
Mat descriptors;
|
||||
detector->detect(frame, points, mask);
|
||||
|
||||
PERF_SAMPLE_BEGIN();
|
||||
detector->compute(frame, points, descriptors);
|
||||
PERF_SAMPLE_END();
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
PERF_TEST_P_(SIFT_full, SIFT)
|
||||
{
|
||||
string filename = getDataPath(GetParam());
|
||||
Mat frame = imread(filename, IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame.empty()) << "Unable to load source image " << filename;
|
||||
|
||||
Mat mask;
|
||||
declare.in(frame).time(90);
|
||||
Ptr<SIFT> detector = SIFT::create();
|
||||
vector<KeyPoint> points;
|
||||
Mat descriptors;
|
||||
|
||||
PERF_SAMPLE_BEGIN();
|
||||
detector->detectAndCompute(frame, mask, points, descriptors, false);
|
||||
PERF_SAMPLE_END();
|
||||
|
||||
SANITY_CHECK_NOTHING();
|
||||
}
|
||||
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, SIFT_detect,
|
||||
testing::Values(SIFT_IMAGES)
|
||||
);
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, SIFT_extract,
|
||||
testing::Values(SIFT_IMAGES)
|
||||
);
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, SIFT_full,
|
||||
testing::Values(SIFT_IMAGES)
|
||||
);
|
||||
|
||||
}} // namespace
|
1190
modules/features2d/src/sift.cpp
Normal file
1190
modules/features2d/src/sift.cpp
Normal file
File diff suppressed because it is too large
Load Diff
@ -17,6 +17,9 @@ const static std::string IMAGE_BIKES = "detectors_descriptors_evaluation/images_
|
||||
* Descriptors's rotation invariance check
|
||||
*/
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(SIFT, DescriptorRotationInvariance,
|
||||
Value(IMAGE_TSUKUBA, SIFT::create(), SIFT::create(), 0.98f));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(BRISK, DescriptorRotationInvariance,
|
||||
Value(IMAGE_TSUKUBA, BRISK::create(), BRISK::create(), 0.99f));
|
||||
|
||||
@ -33,6 +36,10 @@ INSTANTIATE_TEST_CASE_P(AKAZE_DESCRIPTOR_KAZE, DescriptorRotationInvariance,
|
||||
* Descriptor's scale invariance check
|
||||
*/
|
||||
|
||||
// TODO: Expected: (descInliersRatio) >= (minInliersRatio), actual: 0.330378 vs 0.78
|
||||
INSTANTIATE_TEST_CASE_P(DISABLED_SIFT, DescriptorScaleInvariance,
|
||||
Value(IMAGE_BIKES, SIFT::create(), SIFT::create(), 0.78f));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(AKAZE, DescriptorScaleInvariance,
|
||||
Value(IMAGE_BIKES, AKAZE::create(), AKAZE::create(), 0.6f));
|
||||
|
||||
|
@ -18,6 +18,13 @@ namespace opencv_test { namespace {
|
||||
* Tests registrations *
|
||||
\****************************************************************************************/
|
||||
|
||||
TEST( Features2d_DescriptorExtractor_SIFT, regression )
|
||||
{
|
||||
CV_DescriptorExtractorTest<L1<float> > test( "descriptor-sift", 1.0f,
|
||||
SIFT::create() );
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST( Features2d_DescriptorExtractor_BRISK, regression )
|
||||
{
|
||||
CV_DescriptorExtractorTest<Hamming> test( "descriptor-brisk",
|
||||
@ -64,7 +71,7 @@ TEST( Features2d_DescriptorExtractor_AKAZE_DESCRIPTOR_KAZE, regression )
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST( Features2d_DescriptorExtractor, batch )
|
||||
TEST( Features2d_DescriptorExtractor, batch_ORB )
|
||||
{
|
||||
string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf");
|
||||
vector<Mat> imgs, descriptors;
|
||||
@ -92,6 +99,35 @@ TEST( Features2d_DescriptorExtractor, batch )
|
||||
}
|
||||
}
|
||||
|
||||
TEST( Features2d_DescriptorExtractor, batch_SIFT )
|
||||
{
|
||||
string path = string(cvtest::TS::ptr()->get_data_path() + "detectors_descriptors_evaluation/images_datasets/graf");
|
||||
vector<Mat> imgs, descriptors;
|
||||
vector<vector<KeyPoint> > keypoints;
|
||||
int i, n = 6;
|
||||
Ptr<SIFT> sift = SIFT::create();
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
string imgname = format("%s/img%d.png", path.c_str(), i+1);
|
||||
Mat img = imread(imgname, 0);
|
||||
imgs.push_back(img);
|
||||
}
|
||||
|
||||
sift->detect(imgs, keypoints);
|
||||
sift->compute(imgs, keypoints, descriptors);
|
||||
|
||||
ASSERT_EQ((int)keypoints.size(), n);
|
||||
ASSERT_EQ((int)descriptors.size(), n);
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
{
|
||||
EXPECT_GT((int)keypoints[i].size(), 100);
|
||||
EXPECT_GT(descriptors[i].rows, 100);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class DescriptorImage : public TestWithParam<std::string>
|
||||
{
|
||||
protected:
|
||||
|
@ -17,6 +17,9 @@ const static std::string IMAGE_BIKES = "detectors_descriptors_evaluation/images_
|
||||
* Detector's rotation invariance check
|
||||
*/
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(SIFT, DetectorRotationInvariance,
|
||||
Value(IMAGE_TSUKUBA, SIFT::create(), 0.45f, 0.70f));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(BRISK, DetectorRotationInvariance,
|
||||
Value(IMAGE_TSUKUBA, BRISK::create(), 0.45f, 0.76f));
|
||||
|
||||
@ -33,6 +36,10 @@ INSTANTIATE_TEST_CASE_P(AKAZE_DESCRIPTOR_KAZE, DetectorRotationInvariance,
|
||||
* Detector's scale invariance check
|
||||
*/
|
||||
|
||||
// TODO: Expected: (keyPointMatchesRatio) >= (minKeyPointMatchesRatio), actual: 0.596752 vs 0.69
|
||||
INSTANTIATE_TEST_CASE_P(DISABLED_SIFT, DetectorScaleInvariance,
|
||||
Value(IMAGE_BIKES, SIFT::create(), 0.69f, 0.98f));
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(BRISK, DetectorScaleInvariance,
|
||||
Value(IMAGE_BIKES, BRISK::create(), 0.08f, 0.49f));
|
||||
|
||||
|
@ -18,6 +18,12 @@ namespace opencv_test { namespace {
|
||||
* Tests registrations *
|
||||
\****************************************************************************************/
|
||||
|
||||
TEST( Features2d_Detector_SIFT, regression )
|
||||
{
|
||||
CV_FeatureDetectorTest test( "detector-sift", SIFT::create() );
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
TEST( Features2d_Detector_BRISK, regression )
|
||||
{
|
||||
CV_FeatureDetectorTest test( "detector-brisk", BRISK::create() );
|
||||
|
@ -177,4 +177,11 @@ TEST(Features2d_Detector_Keypoints_AKAZE, validation)
|
||||
test_mldb.safe_run();
|
||||
}
|
||||
|
||||
TEST(Features2d_Detector_Keypoints_SIFT, validation)
|
||||
{
|
||||
CV_FeatureDetectorKeypointsTest test(SIFT::create());
|
||||
test.safe_run();
|
||||
}
|
||||
|
||||
|
||||
}} // namespace
|
||||
|
@ -39,10 +39,10 @@ For example to grab from default camera using Direct Show as backend
|
||||
|
||||
```cpp
|
||||
//declare a capture object
|
||||
cv::VideoCapture cap(0 + cv::CAP_DSHOW);
|
||||
cv::VideoCapture cap(0, cv::CAP_DSHOW);
|
||||
|
||||
//or specify the apiPreference with open
|
||||
cap.open(0 + cv::CAP_DSHOW);
|
||||
cap.open(0, cv::CAP_DSHOW);
|
||||
```
|
||||
|
||||
If you want to grab from a file using the Direct Show as backend:
|
||||
|
@ -59,7 +59,7 @@
|
||||
// Please obvserve, that jumbo frames are required when high fps & 16bit data is selected.
|
||||
// (camera, switches/routers and the computer this software is running on)
|
||||
//
|
||||
// Basic usage: VideoCapture cap(CAP_ARAVIS + <camera id>);
|
||||
// Basic usage: VideoCapture cap(<camera id>, CAP_ARAVIS);
|
||||
//
|
||||
// Supported properties:
|
||||
// read/write
|
||||
|
@ -431,10 +431,11 @@ int main(int argc, char* argv[])
|
||||
{
|
||||
finder = xfeatures2d::SURF::create();
|
||||
}
|
||||
else if (features_type == "sift") {
|
||||
finder = xfeatures2d::SIFT::create();
|
||||
}
|
||||
#endif
|
||||
else if (features_type == "sift")
|
||||
{
|
||||
finder = SIFT::create();
|
||||
}
|
||||
else
|
||||
{
|
||||
cout << "Unknown 2D features type: '" << features_type << "'.\n";
|
||||
|
@ -323,15 +323,8 @@ void createFeatures(const std::string &featureName, int numKeypoints, cv::Ptr<cv
|
||||
}
|
||||
else if (featureName == "SIFT")
|
||||
{
|
||||
#if defined (OPENCV_ENABLE_NONFREE) && defined (HAVE_OPENCV_XFEATURES2D)
|
||||
detector = cv::xfeatures2d::SIFT::create();
|
||||
descriptor = cv::xfeatures2d::SIFT::create();
|
||||
#else
|
||||
std::cout << "xfeatures2d module is not available or nonfree is not enabled." << std::endl;
|
||||
std::cout << "Default to ORB." << std::endl;
|
||||
detector = cv::ORB::create(numKeypoints);
|
||||
descriptor = cv::ORB::create(numKeypoints);
|
||||
#endif
|
||||
detector = cv::SIFT::create();
|
||||
descriptor = cv::SIFT::create();
|
||||
}
|
||||
else if (featureName == "SURF")
|
||||
{
|
||||
|
@ -25,7 +25,7 @@ int main(int, char**)
|
||||
int deviceID = 0; // 0 = open default camera
|
||||
int apiID = cv::CAP_ANY; // 0 = autodetect default API
|
||||
// open selected camera using selected API
|
||||
cap.open(deviceID + apiID);
|
||||
cap.open(deviceID, apiID);
|
||||
// check if we succeeded
|
||||
if (!cap.isOpened()) {
|
||||
cerr << "ERROR! Unable to open camera\n";
|
||||
|
@ -29,7 +29,7 @@ FLANN_INDEX_LSH = 6
|
||||
def init_feature(name):
|
||||
chunks = name.split('-')
|
||||
if chunks[0] == 'sift':
|
||||
detector = cv.xfeatures2d.SIFT_create()
|
||||
detector = cv.SIFT_create()
|
||||
norm = cv.NORM_L2
|
||||
elif chunks[0] == 'surf':
|
||||
detector = cv.xfeatures2d.SURF_create(800)
|
||||
|
Loading…
Reference in New Issue
Block a user