mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Fix some typos in modules/.
This commit is contained in:
parent
039f3d01a0
commit
15ac54d5d6
@ -2290,7 +2290,7 @@ public:
|
||||
const_iterator begin() const;
|
||||
const_iterator end() const;
|
||||
|
||||
//! template methods for for operation over all matrix elements.
|
||||
//! template methods for operation over all matrix elements.
|
||||
// the operations take care of skipping gaps in the end of rows (if any)
|
||||
template<typename Functor> void forEach(const Functor& operation);
|
||||
template<typename Functor> void forEach(const Functor& operation) const;
|
||||
|
@ -318,7 +318,7 @@ CV_EXPORTS Ptr<Filter> createColumnSumFilter(int srcType, int dstType, int ksize
|
||||
|
||||
/** @brief Performs median filtering for each point of the source image.
|
||||
|
||||
@param srcType type of of source image. Only CV_8UC1 images are supported for now.
|
||||
@param srcType type of source image. Only CV_8UC1 images are supported for now.
|
||||
@param windowSize Size of the kernerl used for the filtering. Uses a (windowSize x windowSize) filter.
|
||||
@param partition Specifies the parallel granularity of the workload. This parameter should be used GPU experts when optimizing performance.
|
||||
|
||||
|
@ -235,7 +235,7 @@ namespace cv { namespace cuda { namespace device
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// For all remaining rows in the median filter, add the values to the the histogram
|
||||
// For all remaining rows in the median filter, add the values to the histogram
|
||||
for (int j=threadIdx.x; j<cols; j+=blockDim.x){
|
||||
for(int i=initStartRow; i<initStopRow; i++){
|
||||
int pos=::min(i,rows-1);
|
||||
|
@ -791,7 +791,7 @@ namespace cv {
|
||||
if (layers_vec.size() > 1)
|
||||
{
|
||||
// layer ids in layers_vec - inputs of Slice layers
|
||||
// after adding offset to layers_vec: layer ids - ouputs of Slice layers
|
||||
// after adding offset to layers_vec: layer ids - outputs of Slice layers
|
||||
for (size_t k = 0; k < layers_vec.size(); ++k)
|
||||
layers_vec[k] += layers_vec.size();
|
||||
|
||||
|
@ -61,7 +61,7 @@ enum Version {
|
||||
// The version field is always serialized and we will use it to store the
|
||||
// version that the graph is generated from. This helps us set up version
|
||||
// control.
|
||||
// For the IR, we are using simple numbers starting with with 0x00000001,
|
||||
// For the IR, we are using simple numbers starting with 0x00000001,
|
||||
// which was the version we published on Oct 10, 2017.
|
||||
IR_VERSION_2017_10_10 = 0x0000000000000001;
|
||||
|
||||
|
@ -1537,7 +1537,7 @@ CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth,
|
||||
For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring
|
||||
pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$.
|
||||
|
||||
The unnormalized square box filter can be useful in computing local image statistics such as the the local
|
||||
The unnormalized square box filter can be useful in computing local image statistics such as the local
|
||||
variance and standard deviation around the neighborhood of a pixel.
|
||||
|
||||
@param src input image
|
||||
|
@ -43,7 +43,7 @@
|
||||
|
||||
#ifdef USE_4OPT
|
||||
|
||||
//Utility macros for for 1,2,4 channel images:
|
||||
//Utility macros for 1,2,4 channel images:
|
||||
// - LOAD4/STORE4 - load/store 4-pixel groups from/to global memory
|
||||
|
||||
// - SHUFFLE4_3/SHUFFLE4_5 - rearrange scattered border/central pixels into regular 4-pixel variables
|
||||
|
@ -1015,7 +1015,7 @@ int CV_MinCircleTest::validate_test_results( int test_case_idx )
|
||||
if( point_count >= 2 && (j < 2 || (j == 2 && cvTsDist(v[0],v[1]) < (radius-1)*2/eps)) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG,
|
||||
"There should be at at least 3 points near the circle boundary or 2 points on the diameter\n" );
|
||||
"There should be at least 3 points near the circle boundary or 2 points on the diameter\n" );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
goto _exit_;
|
||||
}
|
||||
|
@ -126,7 +126,7 @@ bool LogisticRegressionImpl::train(const Ptr<TrainData>& trainData, int)
|
||||
int num_classes = (int) this->forward_mapper.size();
|
||||
if(num_classes < 2)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "data should have atleast 2 classes" );
|
||||
CV_Error( CV_StsBadArg, "data should have at least 2 classes" );
|
||||
}
|
||||
|
||||
// add a column of ones to the data (bias/intercept term)
|
||||
|
@ -334,7 +334,7 @@ GStreamerCapture::~GStreamerCapture()
|
||||
/*!
|
||||
* \brief CvCapture_GStreamer::grabFrame
|
||||
* \return
|
||||
* Grabs a sample from the pipeline, awaiting consumation by retreiveFrame.
|
||||
* Grabs a sample from the pipeline, awaiting consumation by retrieveFrame.
|
||||
* The pipeline is started if it was not running yet
|
||||
*/
|
||||
bool GStreamerCapture::grabFrame()
|
||||
|
@ -507,21 +507,21 @@ bool IntelPerCStreamDepth::setProperty(int propIdx, double propVal)
|
||||
}
|
||||
bool IntelPerCStreamDepth::retrieveDepthAsOutputArray(cv::OutputArray image)
|
||||
{
|
||||
return retriveFrame(CV_16SC1, 0, image);
|
||||
return retrieveFrame(CV_16SC1, 0, image);
|
||||
}
|
||||
bool IntelPerCStreamDepth::retrieveIRAsOutputArray(cv::OutputArray image)
|
||||
{
|
||||
return retriveFrame(CV_16SC1, 1, image);
|
||||
return retrieveFrame(CV_16SC1, 1, image);
|
||||
}
|
||||
bool IntelPerCStreamDepth::retrieveUVAsOutputArray(cv::OutputArray image)
|
||||
{
|
||||
return retriveFrame(CV_32FC2, 2, image);
|
||||
return retrieveFrame(CV_32FC2, 2, image);
|
||||
}
|
||||
bool IntelPerCStreamDepth::validProfile(const PXCCapture::VideoStream::ProfileInfo& pinfo)
|
||||
{
|
||||
return (PXCImage::COLOR_FORMAT_DEPTH == pinfo.imageInfo.format);
|
||||
}
|
||||
bool IntelPerCStreamDepth::retriveFrame(int type, int planeIdx, cv::OutputArray frame)
|
||||
bool IntelPerCStreamDepth::retrieveFrame(int type, int planeIdx, cv::OutputArray frame)
|
||||
{
|
||||
if (!m_pxcImage.IsValid())
|
||||
return false;
|
||||
|
@ -85,7 +85,7 @@ public:
|
||||
protected:
|
||||
virtual bool validProfile(const PXCCapture::VideoStream::ProfileInfo& pinfo);
|
||||
protected:
|
||||
bool retriveFrame(int type, int planeIdx, OutputArray frame);
|
||||
bool retrieveFrame(int type, int planeIdx, OutputArray frame);
|
||||
};
|
||||
|
||||
class VideoCapture_IntelPerC : public IVideoCapture
|
||||
|
@ -1858,7 +1858,7 @@ static int icvSetPropertyCAM_V4L(CvCaptureCAM_V4L* capture, int property_id, dou
|
||||
retval = icvSetControl(capture, property_id, value);
|
||||
}
|
||||
|
||||
/* return the the status */
|
||||
/* return the status */
|
||||
return retval;
|
||||
}
|
||||
|
||||
|
@ -261,7 +261,7 @@ public:
|
||||
if (cvtest::debugLevel > 0)
|
||||
std::cout << "i = " << i << ": timestamp = " << timestamp << std::endl;
|
||||
const double frame_period = 1000.f/bunny_param.getFps();
|
||||
// NOTE: eps == frame_period, because videoCapture returns frame begining timestamp or frame end
|
||||
// NOTE: eps == frame_period, because videoCapture returns frame beginning timestamp or frame end
|
||||
// timestamp depending on codec and back-end. So the first frame has timestamp 0 or frame_period.
|
||||
EXPECT_NEAR(timestamp, i*frame_period, frame_period) << "i=" << i;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user