mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
optimized cv::normalize in case of mask
This commit is contained in:
parent
d156f5af6d
commit
17956a5ae5
@ -2065,7 +2065,7 @@ normalize
|
||||
---------
|
||||
Normalizes the norm or value range of an array.
|
||||
|
||||
.. ocv:function:: void normalize( InputArray src, OutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray() )
|
||||
.. ocv:function:: void normalize( InputArray src, InputOutputArray dst, double alpha=1, double beta=0, int norm_type=NORM_L2, int dtype=-1, InputArray mask=noArray() )
|
||||
|
||||
.. ocv:function:: void normalize(const SparseMat& src, SparseMat& dst, double alpha, int normType)
|
||||
|
||||
|
@ -240,7 +240,7 @@ CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2,
|
||||
bool crosscheck = false);
|
||||
|
||||
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
|
||||
CV_EXPORTS_W void normalize( InputArray src, OutputArray dst, double alpha = 1, double beta = 0,
|
||||
CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0,
|
||||
int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray());
|
||||
|
||||
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
|
||||
|
@ -131,6 +131,7 @@ public:
|
||||
virtual bool isSubmatrix(int i=-1) const;
|
||||
virtual bool empty() const;
|
||||
virtual void copyTo(const _OutputArray& arr) const;
|
||||
virtual void copyTo(const _OutputArray& arr, const _InputArray & mask) const;
|
||||
virtual size_t offset(int i=-1) const;
|
||||
virtual size_t step(int i=-1) const;
|
||||
bool isMat() const;
|
||||
|
@ -1831,18 +1831,86 @@ namespace cv {
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
static bool ocl_normalize( InputArray _src, OutputArray _dst, InputArray _mask, int rtype,
|
||||
double scale, double shift )
|
||||
static bool ocl_normalize( InputArray _src, InputOutputArray _dst, InputArray _mask, int dtype,
|
||||
double scale, double delta )
|
||||
{
|
||||
UMat src = _src.getUMat(), dst = _dst.getUMat();
|
||||
UMat src = _src.getUMat();
|
||||
|
||||
if( _mask.empty() )
|
||||
src.convertTo( dst, rtype, scale, shift );
|
||||
src.convertTo( _dst, dtype, scale, delta );
|
||||
else if (src.channels() <= 4)
|
||||
{
|
||||
const ocl::Device & dev = ocl::Device::getDefault();
|
||||
|
||||
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype),
|
||||
ddepth = CV_MAT_DEPTH(dtype), wdepth = std::max(CV_32F, std::max(sdepth, ddepth)),
|
||||
rowsPerWI = dev.isIntel() ? 4 : 1;
|
||||
|
||||
float fscale = static_cast<float>(scale), fdelta = static_cast<float>(delta);
|
||||
bool haveScale = std::fabs(scale - 1) > DBL_EPSILON,
|
||||
haveZeroScale = !(std::fabs(scale) > DBL_EPSILON),
|
||||
haveDelta = std::fabs(delta) > DBL_EPSILON,
|
||||
doubleSupport = dev.doubleFPConfig() > 0;
|
||||
|
||||
if (!haveScale && !haveDelta && stype == dtype)
|
||||
{
|
||||
_src.copyTo(_dst, _mask);
|
||||
return true;
|
||||
}
|
||||
if (haveZeroScale)
|
||||
{
|
||||
_dst.setTo(Scalar(delta), _mask);
|
||||
return true;
|
||||
}
|
||||
|
||||
if ((sdepth == CV_64F || ddepth == CV_64F) && !doubleSupport)
|
||||
return false;
|
||||
|
||||
char cvt[2][40];
|
||||
String opts = format("-D srcT=%s -D dstT=%s -D convertToWT=%s -D cn=%d -D rowsPerWI=%d"
|
||||
" -D convertToDT=%s -D workT=%s%s%s%s -D srcT1=%s -D dstT1=%s",
|
||||
ocl::typeToStr(stype), ocl::typeToStr(dtype),
|
||||
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]), cn,
|
||||
rowsPerWI, ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]),
|
||||
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)),
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : "",
|
||||
haveScale ? " -D HAVE_SCALE" : "",
|
||||
haveDelta ? " -D HAVE_DELTA" : "",
|
||||
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth));
|
||||
|
||||
ocl::Kernel k("normalizek", ocl::core::normalize_oclsrc, opts);
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
UMat mask = _mask.getUMat(), dst = _dst.getUMat();
|
||||
|
||||
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
||||
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask),
|
||||
dstarg = ocl::KernelArg::ReadWrite(dst);
|
||||
|
||||
if (haveScale)
|
||||
{
|
||||
if (haveDelta)
|
||||
k.args(srcarg, maskarg, dstarg, fscale, fdelta);
|
||||
else
|
||||
k.args(srcarg, maskarg, dstarg, fscale);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (haveDelta)
|
||||
k.args(srcarg, maskarg, dstarg, fdelta);
|
||||
else
|
||||
k.args(srcarg, maskarg, dstarg);
|
||||
}
|
||||
|
||||
size_t globalsize[2] = { src.cols, (src.rows + rowsPerWI - 1) / rowsPerWI };
|
||||
return k.run(2, globalsize, NULL, false);
|
||||
}
|
||||
else
|
||||
{
|
||||
UMat temp;
|
||||
src.convertTo( temp, rtype, scale, shift );
|
||||
temp.copyTo( dst, _mask );
|
||||
src.convertTo( temp, dtype, scale, delta );
|
||||
temp.copyTo( _dst, _mask );
|
||||
}
|
||||
|
||||
return true;
|
||||
@ -1852,7 +1920,7 @@ static bool ocl_normalize( InputArray _src, OutputArray _dst, InputArray _mask,
|
||||
|
||||
}
|
||||
|
||||
void cv::normalize( InputArray _src, OutputArray _dst, double a, double b,
|
||||
void cv::normalize( InputArray _src, InputOutputArray _dst, double a, double b,
|
||||
int norm_type, int rtype, InputArray _mask )
|
||||
{
|
||||
double scale = 1, shift = 0;
|
||||
|
@ -2051,6 +2051,23 @@ void _InputArray::copyTo(const _OutputArray& arr) const
|
||||
CV_Error(Error::StsNotImplemented, "");
|
||||
}
|
||||
|
||||
void _InputArray::copyTo(const _OutputArray& arr, const _InputArray & mask) const
|
||||
{
|
||||
int k = kind();
|
||||
|
||||
if( k == NONE )
|
||||
arr.release();
|
||||
else if( k == MAT || k == MATX || k == STD_VECTOR )
|
||||
{
|
||||
Mat m = getMat();
|
||||
m.copyTo(arr, mask);
|
||||
}
|
||||
else if( k == UMAT )
|
||||
((UMat*)obj)->copyTo(arr, mask);
|
||||
else
|
||||
CV_Error(Error::StsNotImplemented, "");
|
||||
}
|
||||
|
||||
bool _OutputArray::fixedSize() const
|
||||
{
|
||||
return (flags & FIXED_SIZE) == FIXED_SIZE;
|
||||
|
72
modules/core/src/opencl/normalize.cl
Normal file
72
modules/core/src/opencl/normalize.cl
Normal file
@ -0,0 +1,72 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2014, Itseez, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifdef DOUBLE_SUPPORT
|
||||
#ifdef cl_amd_fp64
|
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
||||
#elif defined (cl_khr_fp64)
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define noconvert
|
||||
|
||||
#if cn != 3
|
||||
#define loadpix(addr) *(__global const srcT *)(addr)
|
||||
#define storepix(val, addr) *(__global dstT *)(addr) = val
|
||||
#define srcTSIZE (int)sizeof(srcT)
|
||||
#define dstTSIZE (int)sizeof(dstT)
|
||||
#else
|
||||
#define loadpix(addr) vload3(0, (__global const srcT1 *)(addr))
|
||||
#define storepix(val, addr) vstore3(val, 0, (__global dstT1 *)(addr))
|
||||
#define srcTSIZE ((int)sizeof(srcT1)*3)
|
||||
#define dstTSIZE ((int)sizeof(dstT1)*3)
|
||||
#endif
|
||||
|
||||
__kernel void normalizek(__global const uchar * srcptr, int src_step, int src_offset,
|
||||
__global const uchar * mask, int mask_step, int mask_offset,
|
||||
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols
|
||||
#ifdef HAVE_SCALE
|
||||
, float scale
|
||||
#endif
|
||||
#ifdef HAVE_DELTA
|
||||
, float delta
|
||||
#endif
|
||||
)
|
||||
{
|
||||
int x = get_global_id(0);
|
||||
int y0 = get_global_id(1) * rowsPerWI;
|
||||
|
||||
if (x < dst_cols)
|
||||
{
|
||||
int src_index = mad24(y0, src_step, mad24(x, srcTSIZE, src_offset));
|
||||
int mask_index = mad24(y0, mask_step, x + mask_offset);
|
||||
int dst_index = mad24(y0, dst_step, mad24(x, dstTSIZE, dst_offset));
|
||||
|
||||
for (int y = y0, y1 = min(y0 + rowsPerWI, dst_rows); y < y1;
|
||||
++y, src_index += src_step, dst_index += dst_step, mask_index += mask_step)
|
||||
{
|
||||
if (mask[mask_index])
|
||||
{
|
||||
workT value = convertToWT(loadpix(srcptr + src_index));
|
||||
#ifdef HAVE_SCALE
|
||||
#ifdef HAVE_DELTA
|
||||
value = fma(value, (workT)(scale), (workT)(delta));
|
||||
#else
|
||||
value *= (workT)(scale);
|
||||
#endif
|
||||
#else // not scale
|
||||
#ifdef HAVE_DELTA
|
||||
value += (workT)(delta);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
storepix(convertToDT(value), dstptr + dst_index);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user