mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
integrated multi-threaded version of SURF (thanks to imahon and yvo2m for the patch; see ticket #275)
This commit is contained in:
parent
4e52df75a7
commit
17a5e02eca
@ -152,6 +152,56 @@ icvResizeHaarPattern( const int src[][5], CvSurfHF* dst, int n, int oldSize, int
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Calculate the determinant and trace of the Hessian for a layer of the
|
||||
* scale-space pyramid
|
||||
*/
|
||||
CV_INLINE void
|
||||
icvCalcLayerDetAndTrace( const CvMat* sum, int size, int sampleStep, CvMat *det, CvMat *trace )
|
||||
{
|
||||
const int NX=3, NY=3, NXY=4;
|
||||
const int dx_s[NX][5] = { {0, 2, 3, 7, 1}, {3, 2, 6, 7, -2}, {6, 2, 9, 7, 1} };
|
||||
const int dy_s[NY][5] = { {2, 0, 7, 3, 1}, {2, 3, 7, 6, -2}, {2, 6, 7, 9, 1} };
|
||||
const int dxy_s[NXY][5] = { {1, 1, 4, 4, 1}, {5, 1, 8, 4, -1}, {1, 5, 4, 8, -1}, {5, 5, 8, 8, 1} };
|
||||
|
||||
CvSurfHF Dx[NX], Dy[NY], Dxy[NXY];
|
||||
double dx = 0, dy = 0, dxy = 0;
|
||||
int i, j, samples_i, samples_j, margin;
|
||||
int *sum_ptr;
|
||||
float *det_ptr, *trace_ptr;
|
||||
|
||||
if( size>sum->rows-1 || size>sum->cols-1 )
|
||||
return;
|
||||
|
||||
icvResizeHaarPattern( dx_s , Dx , NX , 9, size, sum->cols );
|
||||
icvResizeHaarPattern( dy_s , Dy , NY , 9, size, sum->cols );
|
||||
icvResizeHaarPattern( dxy_s, Dxy, NXY, 9, size, sum->cols );
|
||||
|
||||
/* The integral image 'sum' is one pixel bigger than the source image */
|
||||
samples_i = 1+(sum->rows-1-size)/sampleStep;
|
||||
samples_j = 1+(sum->cols-1-size)/sampleStep;
|
||||
|
||||
/* Ignore pixels where some of the kernel is outside the image */
|
||||
margin = (size/2)/sampleStep;
|
||||
|
||||
for( i=0; i<samples_i; i++ )
|
||||
{
|
||||
sum_ptr = sum->data.i + (i*sampleStep)*sum->cols;
|
||||
det_ptr = det->data.fl + (i+margin)*det->cols + margin;
|
||||
trace_ptr = trace->data.fl + (i+margin)*trace->cols + margin;
|
||||
for( j=0; j<samples_j; j++ )
|
||||
{
|
||||
dx = icvCalcHaarPattern( sum_ptr, Dx , 3 );
|
||||
dy = icvCalcHaarPattern( sum_ptr, Dy , 3 );
|
||||
dxy = icvCalcHaarPattern( sum_ptr, Dxy, 4 );
|
||||
sum_ptr += sampleStep;
|
||||
*det_ptr++ = (float)(dx*dy - 0.81*dxy*dxy);
|
||||
*trace_ptr++ = (float)(dx + dy);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Maxima location interpolation as described in "Invariant Features from
|
||||
* Interest Point Groups" by Matthew Brown and David Lowe. This is performed by
|
||||
@ -209,6 +259,185 @@ icvInterpolateKeypoint( float N9[3][9], int dx, int dy, int ds, CvSURFPoint *poi
|
||||
return solve_ok;
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the maxima in the determinant of the Hessian in a layer of the
|
||||
* scale-space pyramid
|
||||
*/
|
||||
CV_INLINE void
|
||||
icvFindMaximaInLayer( const CvMat *sum, const CvMat* mask_sum, const CvSURFParams* params,
|
||||
CvMat **dets, CvMat **traces, const int *sizes,
|
||||
int layer, int sampleStep, CvSeq* points )
|
||||
{
|
||||
/* Wavelet Data */
|
||||
const int NM=1;
|
||||
const int dm[NM][5] = { {0, 0, 9, 9, 1} };
|
||||
|
||||
CvSurfHF Dm;
|
||||
int i, j, size, margin, layer_rows, layer_cols;
|
||||
float *det_ptr, *trace_ptr;
|
||||
|
||||
size = sizes[layer];
|
||||
|
||||
/* The integral image 'sum' is one pixel bigger than the source image */
|
||||
layer_rows = (sum->rows-1)/sampleStep;
|
||||
layer_cols = (sum->cols-1)/sampleStep;
|
||||
|
||||
/* Ignore pixels without a 3x3x3 neighbourhood in the layer above */
|
||||
margin = (sizes[layer+1]/2)/sampleStep+1;
|
||||
|
||||
if( mask_sum )
|
||||
icvResizeHaarPattern( dm, &Dm, NM, 9, size, mask_sum->cols );
|
||||
|
||||
for( i = margin; i < layer_rows-margin; i++ )
|
||||
{
|
||||
det_ptr = dets[layer]->data.fl + i*dets[layer]->cols;
|
||||
trace_ptr = traces[layer]->data.fl + i*traces[layer]->cols;
|
||||
for( j = margin; j < layer_cols-margin; j++ )
|
||||
{
|
||||
float val0 = det_ptr[j];
|
||||
if( val0 > params->hessianThreshold )
|
||||
{
|
||||
/* Coordinates for the start of the wavelet in the sum image. There
|
||||
is some integer division involved, so don't try to simplify this
|
||||
(cancel out sampleStep) without checking the result is the same */
|
||||
int sum_i = sampleStep*(i-(size/2)/sampleStep);
|
||||
int sum_j = sampleStep*(j-(size/2)/sampleStep);
|
||||
|
||||
/* The 3x3x3 neighbouring samples around the maxima.
|
||||
The maxima is included at N9[1][4] */
|
||||
int c = dets[layer]->cols;
|
||||
const float *det1 = dets[layer-1]->data.fl + i*c + j;
|
||||
const float *det2 = dets[layer]->data.fl + i*c + j;
|
||||
const float *det3 = dets[layer+1]->data.fl + i*c + j;
|
||||
float N9[3][9] = { { det1[-c-1], det1[-c], det1[-c+1],
|
||||
det1[-1] , det1[0] , det1[1],
|
||||
det1[c-1] , det1[c] , det1[c+1] },
|
||||
{ det2[-c-1], det2[-c], det2[-c+1],
|
||||
det2[-1] , det2[0] , det2[1],
|
||||
det2[c-1] , det2[c] , det2[c+1] },
|
||||
{ det3[-c-1], det3[-c], det3[-c+1],
|
||||
det3[-1] , det3[0] , det3[1],
|
||||
det3[c-1] , det3[c] , det3[c+1] } };
|
||||
|
||||
/* Check the mask - why not just check the mask at the center of the wavelet? */
|
||||
if( mask_sum )
|
||||
{
|
||||
const int* mask_ptr = mask_sum->data.i + mask_sum->cols*sum_i + sum_j;
|
||||
float mval = icvCalcHaarPattern( mask_ptr, &Dm, 1 );
|
||||
if( mval < 0.5 )
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Non-maxima suppression. val0 is at N9[1][4]*/
|
||||
if( val0 > N9[0][0] && val0 > N9[0][1] && val0 > N9[0][2] &&
|
||||
val0 > N9[0][3] && val0 > N9[0][4] && val0 > N9[0][5] &&
|
||||
val0 > N9[0][6] && val0 > N9[0][7] && val0 > N9[0][8] &&
|
||||
val0 > N9[1][0] && val0 > N9[1][1] && val0 > N9[1][2] &&
|
||||
val0 > N9[1][3] && val0 > N9[1][5] &&
|
||||
val0 > N9[1][6] && val0 > N9[1][7] && val0 > N9[1][8] &&
|
||||
val0 > N9[2][0] && val0 > N9[2][1] && val0 > N9[2][2] &&
|
||||
val0 > N9[2][3] && val0 > N9[2][4] && val0 > N9[2][5] &&
|
||||
val0 > N9[2][6] && val0 > N9[2][7] && val0 > N9[2][8] )
|
||||
{
|
||||
/* Calculate the wavelet center coordinates for the maxima */
|
||||
double center_i = sum_i + (double)(size-1)/2;
|
||||
double center_j = sum_j + (double)(size-1)/2;
|
||||
|
||||
CvSURFPoint point = cvSURFPoint( cvPoint2D32f(center_j,center_i),
|
||||
CV_SIGN(trace_ptr[j]), sizes[layer], 0, val0 );
|
||||
|
||||
/* Interpolate maxima location within the 3x3x3 neighbourhood */
|
||||
int ds = size-sizes[layer-1];
|
||||
int interp_ok = icvInterpolateKeypoint( N9, sampleStep, sampleStep, ds, &point );
|
||||
|
||||
/* Sometimes the interpolation step gives a negative size etc. */
|
||||
if( interp_ok )
|
||||
{
|
||||
/*printf( "KeyPoint %f %f %d\n", point.pt.x, point.pt.y, point.size );*/
|
||||
#ifdef HAVE_TBB
|
||||
static tbb::mutex m;
|
||||
tbb::mutex::scoped_lock lock(m);
|
||||
#endif
|
||||
cvSeqPush( points, &point );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
namespace cv
|
||||
{
|
||||
/* Multi-threaded construction of the scale-space pyramid */
|
||||
struct SURFBuildInvoker
|
||||
{
|
||||
SURFBuildInvoker( const CvMat *_sum, const int *_sizes, const int *_sampleSteps,
|
||||
CvMat** _dets, CvMat** _traces )
|
||||
{
|
||||
sum = _sum;
|
||||
sizes = _sizes;
|
||||
sampleSteps = _sampleSteps;
|
||||
dets = _dets;
|
||||
traces = _traces;
|
||||
}
|
||||
|
||||
void operator()(const BlockedRange& range) const
|
||||
{
|
||||
for( int i=range.begin(); i<range.end(); i++ )
|
||||
icvCalcLayerDetAndTrace( sum, sizes[i], sampleSteps[i], dets[i], traces[i] );
|
||||
}
|
||||
|
||||
const CvMat *sum;
|
||||
const int *sizes;
|
||||
const int *sampleSteps;
|
||||
CvMat** dets;
|
||||
CvMat** traces;
|
||||
};
|
||||
|
||||
/* Multi-threaded search of the scale-space pyramid for keypoints */
|
||||
struct SURFFindInvoker
|
||||
{
|
||||
SURFFindInvoker( const CvMat *_sum, const CvMat *_mask_sum, const CvSURFParams* _params,
|
||||
CvMat** _dets, CvMat** _traces, const int *_sizes,
|
||||
const int *_sampleSteps, const int *_middleIndices, CvSeq* _points )
|
||||
|
||||
{
|
||||
sum = _sum;
|
||||
mask_sum = _mask_sum;
|
||||
params = _params;
|
||||
dets = _dets;
|
||||
traces = _traces;
|
||||
sizes = _sizes;
|
||||
sampleSteps = _sampleSteps;
|
||||
middleIndices = _middleIndices;
|
||||
points = _points;
|
||||
}
|
||||
|
||||
void operator()(const BlockedRange& range) const
|
||||
{
|
||||
for( int i=range.begin(); i<range.end(); i++ )
|
||||
{
|
||||
int layer = middleIndices[i];
|
||||
icvFindMaximaInLayer( sum, mask_sum, params, dets, traces, sizes, layer,
|
||||
sampleSteps[layer], points );
|
||||
}
|
||||
}
|
||||
|
||||
const CvMat *sum;
|
||||
const CvMat *mask_sum;
|
||||
const CvSURFParams* params;
|
||||
CvMat** dets;
|
||||
CvMat** traces;
|
||||
const int *sizes;
|
||||
const int *sampleSteps;
|
||||
const int *middleIndices;
|
||||
CvSeq* points;
|
||||
};
|
||||
|
||||
} // namespace cv
|
||||
|
||||
|
||||
|
||||
/* Wavelet size at first layer of first octave. */
|
||||
const int HAAR_SIZE0 = 9;
|
||||
@ -230,152 +459,48 @@ static CvSeq* icvFastHessianDetector( const CvMat* sum, const CvMat* mask_sum,
|
||||
however keypoint extraction becomes unreliable. */
|
||||
const int SAMPLE_STEP0 = 1;
|
||||
|
||||
int nTotalLayers = (params->nOctaveLayers+2)*params->nOctaves;
|
||||
int nMiddleLayers = params->nOctaveLayers*params->nOctaves;
|
||||
|
||||
/* Wavelet Data */
|
||||
const int NX=3, NY=3, NXY=4, NM=1;
|
||||
const int dx_s[NX][5] = { {0, 2, 3, 7, 1}, {3, 2, 6, 7, -2}, {6, 2, 9, 7, 1} };
|
||||
const int dy_s[NY][5] = { {2, 0, 7, 3, 1}, {2, 3, 7, 6, -2}, {2, 6, 7, 9, 1} };
|
||||
const int dxy_s[NXY][5] = { {1, 1, 4, 4, 1}, {5, 1, 8, 4, -1}, {1, 5, 4, 8, -1}, {5, 5, 8, 8, 1} };
|
||||
const int dm[NM][5] = { {0, 0, 9, 9, 1} };
|
||||
CvSurfHF Dx[NX], Dy[NY], Dxy[NXY], Dm;
|
||||
|
||||
CvMat** dets = (CvMat**)cvStackAlloc((params->nOctaveLayers+2)*sizeof(dets[0]));
|
||||
CvMat** traces = (CvMat**)cvStackAlloc((params->nOctaveLayers+2)*sizeof(traces[0]));
|
||||
int *sizes = (int*)cvStackAlloc((params->nOctaveLayers+2)*sizeof(sizes[0]));
|
||||
|
||||
double dx = 0, dy = 0, dxy = 0;
|
||||
int octave, layer, sampleStep, size, margin;
|
||||
int rows, cols;
|
||||
int i, j, sum_i, sum_j;
|
||||
const int* s_ptr;
|
||||
float *det_ptr, *trace_ptr;
|
||||
|
||||
/* Allocate enough space for hessian determinant and trace matrices at the
|
||||
first octave. Clearing these initially or between octaves is not
|
||||
required, since all values that are accessed are first calculated */
|
||||
for( layer = 0; layer <= params->nOctaveLayers+1; layer++ )
|
||||
CvMat** dets = (CvMat**)cvStackAlloc(nTotalLayers*sizeof(dets[0]));
|
||||
CvMat** traces = (CvMat**)cvStackAlloc(nTotalLayers*sizeof(traces[0]));
|
||||
int *sizes = (int*)cvStackAlloc(nTotalLayers*sizeof(sizes[0]));
|
||||
int *sampleSteps = (int*)cvStackAlloc(nTotalLayers*sizeof(sampleSteps[0]));
|
||||
int *middleIndices = (int*)cvStackAlloc(nMiddleLayers*sizeof(middleIndices[0]));
|
||||
int octave, layer, step, index, middleIndex;
|
||||
|
||||
/* Allocate space and calculate properties of each layer */
|
||||
index = 0;
|
||||
middleIndex = 0;
|
||||
step = SAMPLE_STEP0;
|
||||
for( octave=0; octave<params->nOctaves; octave++ )
|
||||
{
|
||||
dets[layer] = cvCreateMat( (sum->rows-1)/SAMPLE_STEP0, (sum->cols-1)/SAMPLE_STEP0, CV_32FC1 );
|
||||
traces[layer] = cvCreateMat( (sum->rows-1)/SAMPLE_STEP0, (sum->cols-1)/SAMPLE_STEP0, CV_32FC1 );
|
||||
for( layer=0; layer<params->nOctaveLayers+2; layer++ )
|
||||
{
|
||||
/* The integral image sum is one pixel bigger than the source image*/
|
||||
dets[index] = cvCreateMat( (sum->rows-1)/step, (sum->cols-1)/step, CV_32FC1 );
|
||||
traces[index] = cvCreateMat( (sum->rows-1)/step, (sum->cols-1)/step, CV_32FC1 );
|
||||
sizes[index] = (HAAR_SIZE0+HAAR_SIZE_INC*layer)<<octave;
|
||||
sampleSteps[index] = step;
|
||||
|
||||
if( layer!=0 && layer!=params->nOctaveLayers+1 )
|
||||
middleIndices[middleIndex++] = index;
|
||||
index++;
|
||||
}
|
||||
step*=2;
|
||||
}
|
||||
|
||||
for( octave = 0, sampleStep=SAMPLE_STEP0; octave < params->nOctaves; octave++, sampleStep*=2 )
|
||||
{
|
||||
/* Hessian determinant and trace sample array size in this octave */
|
||||
rows = (sum->rows-1)/sampleStep;
|
||||
cols = (sum->cols-1)/sampleStep;
|
||||
/* Calculate hessian determinant and trace samples in each layer*/
|
||||
cv::parallel_for( cv::BlockedRange(0, nTotalLayers),
|
||||
cv::SURFBuildInvoker(sum,sizes,sampleSteps,dets,traces) );
|
||||
|
||||
/* Calculate the determinant and trace of the hessian */
|
||||
for( layer = 0; layer <= params->nOctaveLayers+1; layer++ )
|
||||
{
|
||||
sizes[layer] = size = (HAAR_SIZE0+HAAR_SIZE_INC*layer)<<octave;
|
||||
icvResizeHaarPattern( dx_s, Dx, NX, 9, size, sum->cols );
|
||||
icvResizeHaarPattern( dy_s, Dy, NY, 9, size, sum->cols );
|
||||
icvResizeHaarPattern( dxy_s, Dxy, NXY, 9, size, sum->cols );
|
||||
|
||||
margin = (size/2)/sampleStep;
|
||||
for( sum_i=0, i=margin; sum_i<=(sum->rows-1)-size; sum_i+=sampleStep, i++ )
|
||||
{
|
||||
s_ptr = sum->data.i + sum_i*sum->cols;
|
||||
det_ptr = dets[layer]->data.fl + i*dets[layer]->cols + margin;
|
||||
trace_ptr = traces[layer]->data.fl + i*traces[layer]->cols + margin;
|
||||
for( sum_j=0, j=margin; sum_j<=(sum->cols-1)-size; sum_j+=sampleStep, j++ )
|
||||
{
|
||||
dx = icvCalcHaarPattern( s_ptr, Dx, 3 );
|
||||
dy = icvCalcHaarPattern( s_ptr, Dy, 3 );
|
||||
dxy = icvCalcHaarPattern( s_ptr, Dxy, 4 );
|
||||
s_ptr+=sampleStep;
|
||||
*det_ptr++ = (float)(dx*dy - 0.81*dxy*dxy);
|
||||
*trace_ptr++ = (float)(dx + dy);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Find maxima in the determinant of the hessian */
|
||||
for( layer = 1; layer <= params->nOctaveLayers; layer++ )
|
||||
{
|
||||
size = sizes[layer];
|
||||
icvResizeHaarPattern( dm, &Dm, NM, 9, size, mask_sum ? mask_sum->cols : sum->cols );
|
||||
|
||||
/* Ignore pixels without a 3x3 neighbourhood in the layer above */
|
||||
margin = (sizes[layer+1]/2)/sampleStep+1;
|
||||
for( i = margin; i < rows-margin; i++ )
|
||||
{
|
||||
det_ptr = dets[layer]->data.fl + i*dets[layer]->cols;
|
||||
trace_ptr = traces[layer]->data.fl + i*traces[layer]->cols;
|
||||
for( j = margin; j < cols-margin; j++ )
|
||||
{
|
||||
float val0 = det_ptr[j];
|
||||
if( val0 > params->hessianThreshold )
|
||||
{
|
||||
/* Coordinates for the start of the wavelet in the sum image. There
|
||||
is some integer division involved, so don't try to simplify this
|
||||
(cancel out sampleStep) without checking the result is the same */
|
||||
int sum_i = sampleStep*(i-(size/2)/sampleStep);
|
||||
int sum_j = sampleStep*(j-(size/2)/sampleStep);
|
||||
|
||||
/* The 3x3x3 neighbouring samples around the maxima.
|
||||
The maxima is included at N9[1][4] */
|
||||
int c = dets[layer]->cols;
|
||||
const float *det1 = dets[layer-1]->data.fl + i*c + j;
|
||||
const float *det2 = dets[layer]->data.fl + i*c + j;
|
||||
const float *det3 = dets[layer+1]->data.fl + i*c + j;
|
||||
float N9[3][9] = { { det1[-c-1], det1[-c], det1[-c+1],
|
||||
det1[-1] , det1[0] , det1[1],
|
||||
det1[c-1] , det1[c] , det1[c+1] },
|
||||
{ det2[-c-1], det2[-c], det2[-c+1],
|
||||
det2[-1] , det2[0] , det2[1],
|
||||
det2[c-1] , det2[c] , det2[c+1 ] },
|
||||
{ det3[-c-1], det3[-c], det3[-c+1],
|
||||
det3[-1 ], det3[0] , det3[1],
|
||||
det3[c-1] , det3[c] , det3[c+1 ] } };
|
||||
|
||||
/* Check the mask - why not just check the mask at the center of the wavelet? */
|
||||
if( mask_sum )
|
||||
{
|
||||
const int* mask_ptr = mask_sum->data.i + mask_sum->cols*sum_i + sum_j;
|
||||
float mval = icvCalcHaarPattern( mask_ptr, &Dm, 1 );
|
||||
if( mval < 0.5 )
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Non-maxima suppression. val0 is at N9[1][4]*/
|
||||
if( val0 > N9[0][0] && val0 > N9[0][1] && val0 > N9[0][2] &&
|
||||
val0 > N9[0][3] && val0 > N9[0][4] && val0 > N9[0][5] &&
|
||||
val0 > N9[0][6] && val0 > N9[0][7] && val0 > N9[0][8] &&
|
||||
val0 > N9[1][0] && val0 > N9[1][1] && val0 > N9[1][2] &&
|
||||
val0 > N9[1][3] && val0 > N9[1][5] &&
|
||||
val0 > N9[1][6] && val0 > N9[1][7] && val0 > N9[1][8] &&
|
||||
val0 > N9[2][0] && val0 > N9[2][1] && val0 > N9[2][2] &&
|
||||
val0 > N9[2][3] && val0 > N9[2][4] && val0 > N9[2][5] &&
|
||||
val0 > N9[2][6] && val0 > N9[2][7] && val0 > N9[2][8] )
|
||||
{
|
||||
/* Calculate the wavelet center coordinates for the maxima */
|
||||
double center_i = sum_i + (double)(size-1)/2;
|
||||
double center_j = sum_j + (double)(size-1)/2;
|
||||
|
||||
CvSURFPoint point = cvSURFPoint( cvPoint2D32f(center_j,center_i),
|
||||
CV_SIGN(trace_ptr[j]), sizes[layer], 0, val0 );
|
||||
|
||||
/* Interpolate maxima location within the 3x3x3 neighbourhood */
|
||||
int ds = sizes[layer]-sizes[layer-1];
|
||||
int interp_ok = icvInterpolateKeypoint( N9, sampleStep, sampleStep, ds, &point );
|
||||
|
||||
/* Sometimes the interpolation step gives a negative size etc. */
|
||||
if( interp_ok )
|
||||
{
|
||||
/*printf( "KeyPoint %f %f %d\n", point.pt.x, point.pt.y, point.size );*/
|
||||
cvSeqPush( points, &point );
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Find maxima in the determinant of the hessian */
|
||||
cv::parallel_for( cv::BlockedRange(0, nMiddleLayers),
|
||||
cv::SURFFindInvoker(sum,mask_sum,params,dets,traces,sizes,
|
||||
sampleSteps,middleIndices,points) );
|
||||
|
||||
/* Clean-up */
|
||||
for( layer = 0; layer <= params->nOctaveLayers+1; layer++ )
|
||||
for( layer = 0; layer < nTotalLayers; layer++ )
|
||||
{
|
||||
cvReleaseMat( &dets[layer] );
|
||||
cvReleaseMat( &traces[layer] );
|
||||
@ -388,6 +513,10 @@ static CvSeq* icvFastHessianDetector( const CvMat* sum, const CvMat* mask_sum,
|
||||
namespace cv
|
||||
{
|
||||
|
||||
/* Methods to free data allocated in SURFInvoker constructor */
|
||||
template<> inline void Ptr<float>::delete_obj(){ cvFree(&obj); }
|
||||
template<> inline void Ptr<CvPoint>::delete_obj(){ cvFree(&obj); }
|
||||
|
||||
struct SURFInvoker
|
||||
{
|
||||
enum { ORI_RADIUS = 6, ORI_WIN = 60, PATCH_SZ = 20 };
|
||||
@ -398,41 +527,69 @@ struct SURFInvoker
|
||||
|
||||
SURFInvoker( const CvSURFParams* _params,
|
||||
CvSeq* _keypoints, CvSeq* _descriptors,
|
||||
const CvMat* _img, const CvMat* _sum,
|
||||
const CvPoint* _apt, const float* _aptw,
|
||||
int _nangle0, const float* _DW )
|
||||
const CvMat* _img, const CvMat* _sum )
|
||||
{
|
||||
params = _params;
|
||||
keypoints = _keypoints;
|
||||
descriptors = _descriptors;
|
||||
img = _img;
|
||||
sum = _sum;
|
||||
apt = _apt;
|
||||
aptw = _aptw;
|
||||
nangle0 = _nangle0;
|
||||
DW = _DW;
|
||||
|
||||
/* Simple bound for number of grid points in circle of radius ORI_RADIUS */
|
||||
const int nOriSampleBound = (2*ORI_RADIUS+1)*(2*ORI_RADIUS+1);
|
||||
|
||||
/* Allocate arrays */
|
||||
apt = (CvPoint*)cvAlloc(nOriSampleBound*sizeof(CvPoint));
|
||||
aptw = (float*)cvAlloc(nOriSampleBound*sizeof(float));
|
||||
DW = (float*)cvAlloc(PATCH_SZ*PATCH_SZ*sizeof(float));
|
||||
|
||||
/* Coordinates and weights of samples used to calculate orientation */
|
||||
cv::Mat G_ori = cv::getGaussianKernel( 2*ORI_RADIUS+1, ORI_SIGMA, CV_32F );
|
||||
nOriSamples = 0;
|
||||
for( int i = -ORI_RADIUS; i <= ORI_RADIUS; i++ )
|
||||
{
|
||||
for( int j = -ORI_RADIUS; j <= ORI_RADIUS; j++ )
|
||||
{
|
||||
if( i*i + j*j <= ORI_RADIUS*ORI_RADIUS )
|
||||
{
|
||||
apt[nOriSamples] = cvPoint(i,j);
|
||||
aptw[nOriSamples++] = G_ori.at<float>(i+ORI_RADIUS,0) * G_ori.at<float>(j+ORI_RADIUS,0);
|
||||
}
|
||||
}
|
||||
}
|
||||
CV_Assert( nOriSamples <= nOriSampleBound );
|
||||
|
||||
/* Gaussian used to weight descriptor samples */
|
||||
cv::Mat G_desc = cv::getGaussianKernel( PATCH_SZ, DESC_SIGMA, CV_32F );
|
||||
for( int i = 0; i < PATCH_SZ; i++ )
|
||||
{
|
||||
for( int j = 0; j < PATCH_SZ; j++ )
|
||||
DW[i*PATCH_SZ+j] = G_desc.at<float>(i,0) * G_desc.at<float>(j,0);
|
||||
}
|
||||
}
|
||||
|
||||
void operator()(const BlockedRange& range) const
|
||||
{
|
||||
/* X and Y gradient wavelet data */
|
||||
const int NX=2, NY=2;
|
||||
int dx_s[NX][5] = {{0, 0, 2, 4, -1}, {2, 0, 4, 4, 1}};
|
||||
int dy_s[NY][5] = {{0, 0, 4, 2, 1}, {0, 2, 4, 4, -1}};
|
||||
const int dx_s[NX][5] = {{0, 0, 2, 4, -1}, {2, 0, 4, 4, 1}};
|
||||
const int dy_s[NY][5] = {{0, 0, 4, 2, 1}, {0, 2, 4, 4, -1}};
|
||||
|
||||
const int descriptor_size = params->extended ? 128 : 64;
|
||||
|
||||
const int max_ori_samples = (2*ORI_RADIUS+1)*(2*ORI_RADIUS+1);
|
||||
float X[max_ori_samples], Y[max_ori_samples], angle[max_ori_samples];
|
||||
/* Optimisation is better using nOriSampleBound than nOriSamples for
|
||||
array lengths. Maybe because it is a constant known at compile time */
|
||||
const int nOriSampleBound =(2*ORI_RADIUS+1)*(2*ORI_RADIUS+1);
|
||||
|
||||
float X[nOriSampleBound], Y[nOriSampleBound], angle[nOriSampleBound];
|
||||
uchar PATCH[PATCH_SZ+1][PATCH_SZ+1];
|
||||
float DX[PATCH_SZ][PATCH_SZ], DY[PATCH_SZ][PATCH_SZ];
|
||||
|
||||
CvMat matX = cvMat(1, max_ori_samples, CV_32F, X);
|
||||
CvMat matY = cvMat(1, max_ori_samples, CV_32F, Y);
|
||||
CvMat _angle = cvMat(1, max_ori_samples, CV_32F, angle);
|
||||
CvMat matX = cvMat(1, nOriSampleBound, CV_32F, X);
|
||||
CvMat matY = cvMat(1, nOriSampleBound, CV_32F, Y);
|
||||
CvMat _angle = cvMat(1, nOriSampleBound, CV_32F, angle);
|
||||
CvMat _patch = cvMat(PATCH_SZ+1, PATCH_SZ+1, CV_8U, PATCH);
|
||||
|
||||
int k, k1 = range.begin(), k2 = range.end();
|
||||
int k, k1 = range.begin(), k2 = range.end();
|
||||
int maxSize = 0;
|
||||
|
||||
for( k = k1; k < k2; k++ )
|
||||
@ -475,7 +632,7 @@ struct SURFInvoker
|
||||
}
|
||||
icvResizeHaarPattern( dx_s, dx_t, NX, 4, grad_wav_size, sum->cols );
|
||||
icvResizeHaarPattern( dy_s, dy_t, NY, 4, grad_wav_size, sum->cols );
|
||||
for( kk = 0, nangle = 0; kk < nangle0; kk++ )
|
||||
for( kk = 0, nangle = 0; kk < nOriSamples; kk++ )
|
||||
{
|
||||
const int* ptr;
|
||||
float vx, vy;
|
||||
@ -649,33 +806,32 @@ struct SURFInvoker
|
||||
}
|
||||
}
|
||||
|
||||
/* Parameters */
|
||||
const CvSURFParams* params;
|
||||
const CvMat* img;
|
||||
const CvMat* sum;
|
||||
CvSeq* keypoints;
|
||||
CvSeq* descriptors;
|
||||
const CvPoint* apt;
|
||||
const float* aptw;
|
||||
int nangle0;
|
||||
const float* DW;
|
||||
|
||||
/* Pre-calculated values */
|
||||
int nOriSamples;
|
||||
cv::Ptr<CvPoint> apt;
|
||||
cv::Ptr<float> aptw;
|
||||
cv::Ptr<float> DW;
|
||||
};
|
||||
|
||||
const int SURFInvoker::ORI_SEARCH_INC = 5;
|
||||
const float SURFInvoker::ORI_SIGMA = 2.5f;
|
||||
const float SURFInvoker::DESC_SIGMA = 3.3f;
|
||||
|
||||
}
|
||||
|
||||
|
||||
CV_IMPL void
|
||||
cvExtractSURF( const CvArr* _img, const CvArr* _mask,
|
||||
CvSeq** _keypoints, CvSeq** _descriptors,
|
||||
CvMemStorage* storage, CvSURFParams params,
|
||||
int useProvidedKeyPts)
|
||||
{
|
||||
const int ORI_RADIUS = cv::SURFInvoker::ORI_RADIUS;
|
||||
const float ORI_SIGMA = cv::SURFInvoker::ORI_SIGMA;
|
||||
const float DESC_SIGMA = cv::SURFInvoker::DESC_SIGMA;
|
||||
|
||||
CvMat *sum = 0, *mask1 = 0, *mask_sum = 0;
|
||||
|
||||
if( _keypoints && !useProvidedKeyPts ) // If useProvidedKeyPts!=0 we'll use current contents of "*_keypoints"
|
||||
@ -687,15 +843,9 @@ cvExtractSURF( const CvArr* _img, const CvArr* _mask,
|
||||
CvMat imghdr, *img = cvGetMat(_img, &imghdr);
|
||||
CvMat maskhdr, *mask = _mask ? cvGetMat(_mask, &maskhdr) : 0;
|
||||
|
||||
const int max_ori_samples = (2*ORI_RADIUS+1)*(2*ORI_RADIUS+1);
|
||||
int descriptor_size = params.extended ? 128 : 64;
|
||||
const int descriptor_data_type = CV_32F;
|
||||
const int PATCH_SZ = 20;
|
||||
float DW[PATCH_SZ][PATCH_SZ];
|
||||
CvMat _DW = cvMat(PATCH_SZ, PATCH_SZ, CV_32F, DW);
|
||||
CvPoint apt[max_ori_samples];
|
||||
float aptw[max_ori_samples];
|
||||
int i, j, nangle0 = 0, N;
|
||||
int i, N;
|
||||
|
||||
CV_Assert(img != 0);
|
||||
CV_Assert(CV_MAT_TYPE(img->type) == CV_8UC1);
|
||||
@ -734,44 +884,12 @@ cvExtractSURF( const CvArr* _img, const CvArr* _mask,
|
||||
cvSeqPushMulti( descriptors, 0, N );
|
||||
}
|
||||
|
||||
/* Coordinates and weights of samples used to calculate orientation */
|
||||
cv::Mat matG = cv::getGaussianKernel( 2*ORI_RADIUS+1, ORI_SIGMA, CV_32F );
|
||||
const float* G = (const float*)matG.data;
|
||||
|
||||
for( i = -ORI_RADIUS; i <= ORI_RADIUS; i++ )
|
||||
{
|
||||
for( j = -ORI_RADIUS; j <= ORI_RADIUS; j++ )
|
||||
{
|
||||
if( i*i + j*j <= ORI_RADIUS*ORI_RADIUS )
|
||||
{
|
||||
apt[nangle0] = cvPoint(j,i);
|
||||
aptw[nangle0++] = G[i+ORI_RADIUS]*G[j+ORI_RADIUS];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Gaussian used to weight descriptor samples */
|
||||
double c2 = 1./(DESC_SIGMA*DESC_SIGMA*2);
|
||||
double gs = 0;
|
||||
for( i = 0; i < PATCH_SZ; i++ )
|
||||
{
|
||||
for( j = 0; j < PATCH_SZ; j++ )
|
||||
{
|
||||
double x = j - (float)(PATCH_SZ-1)/2, y = i - (float)(PATCH_SZ-1)/2;
|
||||
double val = exp(-(x*x+y*y)*c2);
|
||||
DW[i][j] = (float)val;
|
||||
gs += val;
|
||||
}
|
||||
}
|
||||
cvScale( &_DW, &_DW, 1./gs );
|
||||
|
||||
|
||||
if ( N > 0 )
|
||||
cv::parallel_for(cv::BlockedRange(0, N),
|
||||
cv::SURFInvoker(¶ms, keypoints, descriptors, img, sum,
|
||||
apt, aptw, nangle0, &DW[0][0]));
|
||||
//cv::SURFInvoker(¶ms, keypoints, descriptors, img, sum,
|
||||
// apt, aptw, nangle0, &DW[0][0])(cv::BlockedRange(0, N));
|
||||
|
||||
cv::parallel_for(cv::BlockedRange(0, N),
|
||||
cv::SURFInvoker(¶ms, keypoints, descriptors, img, sum) );
|
||||
|
||||
|
||||
/* remove keypoints that were marked for deletion */
|
||||
for ( i = 0; i < N; i++ )
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user