Merge pull request #21142 from alalek:dnn_two_inputs_ocl_fp16_3.4

This commit is contained in:
Alexander Alekhin 2021-11-29 21:44:59 +00:00
commit 17d99e6266
3 changed files with 122 additions and 104 deletions

View File

@ -597,29 +597,26 @@ struct DataLayer : public Layer
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
// FIXIT: add wrapper without exception suppression
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (outputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
bool isFP16 = outputs_arr.depth() == CV_16S;
std::vector<Mat> outputs, internals;
outputs_arr.getMatVector(outputs);
internals_arr.getMatVector(internals);
// Supported modes:
// | Input type | Output type |
// | fp32 | fp32 |
// | uint8 | fp32 |
for (int i = 0; i < inputsData.size(); ++i)
{
double scale = scaleFactors[i];
Scalar& mean = means[i];
CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4);
CV_CheckTypeEQ(outputs[i].type(), CV_32FC1, "");
if (isFP16)
CV_CheckTypeEQ(outputs[i].type(), CV_16SC1, "");
else
CV_CheckTypeEQ(outputs[i].type(), CV_32FC1, "");
bool singleMean = true;
for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
@ -629,34 +626,49 @@ struct DataLayer : public Layer
if (singleMean)
{
inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
if (isFP16)
{
Mat input_f32;
inputsData[i].convertTo(input_f32, CV_32F, scale, -mean[0] * scale);
convertFp16(input_f32, outputs[i]);
}
else
{
inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
}
}
else
{
for (int n = 0; n < inputsData[i].size[0]; ++n)
{
for (int c = 0; c < inputsData[i].size[1]; ++c)
{
Mat inp = getPlane(inputsData[i], n, c);
Mat out = getPlane(outputs[i], n, c);
inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
if (isFP16)
{
Mat input_f32;
inp.convertTo(input_f32, CV_32F, scale, -mean[c] * scale);
convertFp16(input_f32, out);
}
else
{
inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
}
}
}
}
}
}
#ifdef HAVE_OPENCL
std::vector<Mat> tmp_expressions;
bool forward_ocl(InputArrayOfArrays, OutputArrayOfArrays outputs_, OutputArrayOfArrays internals_)
{
// Supported modes:
// | Input type | Output type |
// | fp32 | fp32 |
// | fp32 | fp16 |
// | uint8 | fp32 |
bool isFP16 = outputs_.depth() == CV_16S;
std::vector<UMat> outputs;
outputs_.getUMatVector(outputs);
tmp_expressions.clear();
for (int i = 0; i < inputsData.size(); ++i)
{
Mat inputData = inputsData[i];
@ -664,58 +676,55 @@ struct DataLayer : public Layer
double scale = scaleFactors[i];
Scalar& mean = means[i];
CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4);
CV_Assert(mean == Scalar() || inputData.size[1] <= 4);
if (isFP16)
CV_CheckTypeEQ(outputs[i].type(), CV_16SC1, "");
else
CV_CheckTypeEQ(outputs[i].type(), CV_32FC1, "");
bool singleMean = true;
for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j)
for (int j = 1; j < std::min(4, inputData.size[1]) && singleMean; ++j)
{
singleMean = mean[j] == mean[j - 1];
}
if (outputs_.depth() == CV_16S)
if (singleMean)
{
if (singleMean)
if (isFP16)
{
tmp_expressions.push_back(Mat(scale * (inputsData[i] - mean[0])));
convertFp16(tmp_expressions.back(), outputs[i]);
UMat input_i;
inputData.convertTo(input_i, CV_32F, scale, -mean[0] * scale);
convertFp16(input_i, outputs[i]);
}
else
{
for (int n = 0; n < inputsData[i].size[0]; ++n)
for (int c = 0; c < inputsData[i].size[1]; ++c)
{
Mat inp = getPlane(inputsData[i], n, c);
std::vector<cv::Range> plane(4, Range::all());
plane[0] = Range(n, n + 1);
plane[1] = Range(c, c + 1);
UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size);
tmp_expressions.push_back(scale * (inp - mean[c]));
convertFp16(tmp_expressions.back(), out);
}
inputData.convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
}
}
else
{
CV_Assert(outputs_.depth() == CV_32F);
if (singleMean)
for (int n = 0; n < inputData.size[0]; ++n)
{
inputsData[i].convertTo(outputs[i], CV_32F, scale, -mean[0] * scale);
}
else
{
for (int n = 0; n < inputsData[i].size[0]; ++n)
for (int c = 0; c < inputsData[i].size[1]; ++c)
for (int c = 0; c < inputData.size[1]; ++c)
{
Mat inp = getPlane(inputData, n, c);
std::vector<cv::Range> plane(4, Range::all());
plane[0] = Range(n, n + 1);
plane[1] = Range(c, c + 1);
UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size);
if (isFP16)
{
UMat input_i;
inp.convertTo(input_i, CV_32F, scale, -mean[c] * scale);
convertFp16(input_i, out);
}
else
{
Mat inp = getPlane(inputsData[i], n, c);
std::vector<cv::Range> plane(4, Range::all());
plane[0] = Range(n, n + 1);
plane[1] = Range(c, c + 1);
UMat out = outputs[i](plane).reshape(1, inp.dims, inp.size);
inp.convertTo(out, CV_32F, scale, -mean[c] * scale);
}
}
}
}
}

View File

@ -1380,57 +1380,6 @@ INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_two_inputs_3dim, Combine(
testing::ValuesIn(list_sizes)
));
typedef testing::TestWithParam<tuple<int, int, tuple<Backend, Target> > > Test_DLDT_two_inputs;
TEST_P(Test_DLDT_two_inputs, as_backend)
{
static const float kScale = 0.5f;
static const float kScaleInv = 1.0f / kScale;
Backend backendId = get<0>(get<2>(GetParam()));
Target targetId = get<1>(get<2>(GetParam()));
Net net;
LayerParams lp;
lp.type = "Eltwise";
lp.name = "testLayer";
lp.set("operation", "sum");
int eltwiseId = net.addLayerToPrev(lp.name, lp.type, lp); // connect to a first input
net.connect(0, 1, eltwiseId, 1); // connect to a second input
int inpSize[] = {1, 2, 3, 4};
Mat firstInp(4, &inpSize[0], get<0>(GetParam()));
Mat secondInp(4, &inpSize[0], get<1>(GetParam()));
randu(firstInp, 0, 255);
randu(secondInp, 0, 255);
net.setInputsNames({"data", "second_input"});
net.setInput(firstInp, "data", kScale);
net.setInput(secondInp, "second_input", kScaleInv);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
Mat out = net.forward();
Mat ref;
addWeighted(firstInp, kScale, secondInp, kScaleInv, 0, ref, CV_32F);
// Output values are in range [0, 637.5].
double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.06 : 1e-6;
double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.3 : 1e-5;
normAssert(out, ref, "", l1, lInf);
if (cvtest::debugLevel > 0 || HasFailure())
{
std::cout << "input1 scale=" << kScale << " input2 scale=" << kScaleInv << std::endl;
std::cout << "input1: " << firstInp.size << " " << firstInp.reshape(1, 1) << std::endl;
std::cout << "input2: " << secondInp.size << " " << secondInp.reshape(1, 1) << std::endl;
std::cout << "ref: " << ref.reshape(1, 1) << std::endl;
std::cout << "out: " << out.reshape(1, 1) << std::endl;
}
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_DLDT_two_inputs, Combine(
Values(CV_8U, CV_32F), Values(CV_8U, CV_32F),
dnnBackendsAndTargets()
));
class UnsupportedLayer : public Layer
{
public:

View File

@ -828,4 +828,64 @@ INSTANTIATE_TEST_CASE_P(/**/, Test_Model_Optimizer,
#endif // HAVE_INF_ENGINE
typedef testing::TestWithParam<tuple<MatDepth, MatDepth, tuple<Backend, Target> > > Test_two_inputs;
TEST_P(Test_two_inputs, basic)
{
static const float kScale = 0.5f;
static const float kScaleInv = 1.0f / kScale;
Backend backendId = get<0>(get<2>(GetParam()));
Target targetId = get<1>(get<2>(GetParam()));
Net net;
LayerParams lp;
lp.type = "Eltwise";
lp.name = "testLayer";
lp.set("operation", "sum");
int eltwiseId = net.addLayerToPrev(lp.name, lp.type, lp); // connect to a first input
net.connect(0, 1, eltwiseId, 1); // connect to a second input
int inpSize[] = {1, 2, 3, 4};
Mat firstInp(4, &inpSize[0], get<0>(GetParam()));
Mat secondInp(4, &inpSize[0], get<1>(GetParam()));
randu(firstInp, 0, 100);
randu(secondInp, 0, 100);
#ifndef CV_CXX11
std::vector<String> input_names;
input_names.push_back("data");
input_names.push_back("second_input");
net.setInputsNames(input_names);
#else
net.setInputsNames({"data", "second_input"});
#endif
net.setInput(firstInp, "data", kScale);
net.setInput(secondInp, "second_input", kScaleInv);
net.setPreferableBackend(backendId);
net.setPreferableTarget(targetId);
Mat out = net.forward();
Mat ref;
addWeighted(firstInp, kScale, secondInp, kScaleInv, 0, ref, CV_32F);
double l1 = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.06 : 1e-6;
double lInf = (targetId == DNN_TARGET_OPENCL_FP16 || targetId == DNN_TARGET_MYRIAD) ? 0.3 : 1e-5;
normAssert(out, ref, "", l1, lInf);
if (cvtest::debugLevel > 0 || HasFailure())
{
std::cout << "input1 scale=" << kScale << " input2 scale=" << kScaleInv << std::endl;
std::cout << "input1: " << firstInp.size << " " << firstInp.reshape(1, 1) << std::endl;
std::cout << "input2: " << secondInp.size << " " << secondInp.reshape(1, 1) << std::endl;
std::cout << "ref: " << ref.reshape(1, 1) << std::endl;
std::cout << "out: " << out.reshape(1, 1) << std::endl;
}
}
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_two_inputs, Combine(
Values(CV_32F, CV_8U),
Values(CV_32F, CV_8U),
dnnBackendsAndTargets()
));
}} // namespace