mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
1996ae4a42
@ -401,7 +401,7 @@ macro(ocv_clear_vars)
|
||||
endmacro()
|
||||
|
||||
set(OCV_COMPILER_FAIL_REGEX
|
||||
"argument '.*' is not valid" # GCC 9+
|
||||
"argument .* is not valid" # GCC 9+ (including support of unicode quotes)
|
||||
"command line option .* is valid for .* but not for C\\+\\+" # GNU
|
||||
"command line option .* is valid for .* but not for C" # GNU
|
||||
"unrecognized .*option" # GNU
|
||||
|
@ -7,25 +7,25 @@ Goal
|
||||
In this chapter,
|
||||
|
||||
- We will understand the concepts behind Harris Corner Detection.
|
||||
- We will see the functions: **cv.cornerHarris()**, **cv.cornerSubPix()**
|
||||
- We will see the following functions: **cv.cornerHarris()**, **cv.cornerSubPix()**
|
||||
|
||||
Theory
|
||||
------
|
||||
|
||||
In last chapter, we saw that corners are regions in the image with large variation in intensity in
|
||||
In the last chapter, we saw that corners are regions in the image with large variation in intensity in
|
||||
all the directions. One early attempt to find these corners was done by **Chris Harris & Mike
|
||||
Stephens** in their paper **A Combined Corner and Edge Detector** in 1988, so now it is called
|
||||
Harris Corner Detector. He took this simple idea to a mathematical form. It basically finds the
|
||||
the Harris Corner Detector. He took this simple idea to a mathematical form. It basically finds the
|
||||
difference in intensity for a displacement of \f$(u,v)\f$ in all directions. This is expressed as below:
|
||||
|
||||
\f[E(u,v) = \sum_{x,y} \underbrace{w(x,y)}_\text{window function} \, [\underbrace{I(x+u,y+v)}_\text{shifted intensity}-\underbrace{I(x,y)}_\text{intensity}]^2\f]
|
||||
|
||||
Window function is either a rectangular window or gaussian window which gives weights to pixels
|
||||
The window function is either a rectangular window or a Gaussian window which gives weights to pixels
|
||||
underneath.
|
||||
|
||||
We have to maximize this function \f$E(u,v)\f$ for corner detection. That means, we have to maximize the
|
||||
second term. Applying Taylor Expansion to above equation and using some mathematical steps (please
|
||||
refer any standard text books you like for full derivation), we get the final equation as:
|
||||
We have to maximize this function \f$E(u,v)\f$ for corner detection. That means we have to maximize the
|
||||
second term. Applying Taylor Expansion to the above equation and using some mathematical steps (please
|
||||
refer to any standard text books you like for full derivation), we get the final equation as:
|
||||
|
||||
\f[E(u,v) \approx \begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix}\f]
|
||||
|
||||
@ -34,11 +34,11 @@ where
|
||||
\f[M = \sum_{x,y} w(x,y) \begin{bmatrix}I_x I_x & I_x I_y \\
|
||||
I_x I_y & I_y I_y \end{bmatrix}\f]
|
||||
|
||||
Here, \f$I_x\f$ and \f$I_y\f$ are image derivatives in x and y directions respectively. (Can be easily found
|
||||
out using **cv.Sobel()**).
|
||||
Here, \f$I_x\f$ and \f$I_y\f$ are image derivatives in x and y directions respectively. (These can be easily found
|
||||
using **cv.Sobel()**).
|
||||
|
||||
Then comes the main part. After this, they created a score, basically an equation, which will
|
||||
determine if a window can contain a corner or not.
|
||||
Then comes the main part. After this, they created a score, basically an equation, which
|
||||
determines if a window can contain a corner or not.
|
||||
|
||||
\f[R = det(M) - k(trace(M))^2\f]
|
||||
|
||||
@ -47,7 +47,7 @@ where
|
||||
- \f$trace(M) = \lambda_1 + \lambda_2\f$
|
||||
- \f$\lambda_1\f$ and \f$\lambda_2\f$ are the eigenvalues of M
|
||||
|
||||
So the values of these eigen values decide whether a region is corner, edge or flat.
|
||||
So the magnitudes of these eigenvalues decide whether a region is a corner, an edge, or flat.
|
||||
|
||||
- When \f$|R|\f$ is small, which happens when \f$\lambda_1\f$ and \f$\lambda_2\f$ are small, the region is
|
||||
flat.
|
||||
@ -60,16 +60,16 @@ It can be represented in a nice picture as follows:
|
||||

|
||||
|
||||
So the result of Harris Corner Detection is a grayscale image with these scores. Thresholding for a
|
||||
suitable give you the corners in the image. We will do it with a simple image.
|
||||
suitable score gives you the corners in the image. We will do it with a simple image.
|
||||
|
||||
Harris Corner Detector in OpenCV
|
||||
--------------------------------
|
||||
|
||||
OpenCV has the function **cv.cornerHarris()** for this purpose. Its arguments are:
|
||||
|
||||
- **img** - Input image, it should be grayscale and float32 type.
|
||||
- **img** - Input image. It should be grayscale and float32 type.
|
||||
- **blockSize** - It is the size of neighbourhood considered for corner detection
|
||||
- **ksize** - Aperture parameter of Sobel derivative used.
|
||||
- **ksize** - Aperture parameter of the Sobel derivative used.
|
||||
- **k** - Harris detector free parameter in the equation.
|
||||
|
||||
See the example below:
|
||||
@ -103,12 +103,12 @@ Corner with SubPixel Accuracy
|
||||
|
||||
Sometimes, you may need to find the corners with maximum accuracy. OpenCV comes with a function
|
||||
**cv.cornerSubPix()** which further refines the corners detected with sub-pixel accuracy. Below is
|
||||
an example. As usual, we need to find the harris corners first. Then we pass the centroids of these
|
||||
an example. As usual, we need to find the Harris corners first. Then we pass the centroids of these
|
||||
corners (There may be a bunch of pixels at a corner, we take their centroid) to refine them. Harris
|
||||
corners are marked in red pixels and refined corners are marked in green pixels. For this function,
|
||||
we have to define the criteria when to stop the iteration. We stop it after a specified number of
|
||||
iteration or a certain accuracy is achieved, whichever occurs first. We also need to define the size
|
||||
of neighbourhood it would search for corners.
|
||||
iterations or a certain accuracy is achieved, whichever occurs first. We also need to define the size
|
||||
of the neighbourhood it searches for corners.
|
||||
@code{.py}
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
@ -139,7 +139,7 @@ img[res[:,3],res[:,2]] = [0,255,0]
|
||||
|
||||
cv.imwrite('subpixel5.png',img)
|
||||
@endcode
|
||||
Below is the result, where some important locations are shown in zoomed window to visualize:
|
||||
Below is the result, where some important locations are shown in the zoomed window to visualize:
|
||||
|
||||

|
||||
|
||||
|
@ -250,8 +250,6 @@ CV_IMPL void cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1,
|
||||
|
||||
CV_IMPL int cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian )
|
||||
{
|
||||
int depth, elem_size;
|
||||
int i, k;
|
||||
double J[27] = {0};
|
||||
CvMat matJ = cvMat( 3, 9, CV_64F, J );
|
||||
|
||||
@ -262,8 +260,8 @@ CV_IMPL int cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian )
|
||||
CV_Error( !dst ? CV_StsNullPtr : CV_StsBadArg,
|
||||
"The first output argument is not a valid matrix" );
|
||||
|
||||
depth = CV_MAT_DEPTH(src->type);
|
||||
elem_size = CV_ELEM_SIZE(depth);
|
||||
int depth = CV_MAT_DEPTH(src->type);
|
||||
int elem_size = CV_ELEM_SIZE(depth);
|
||||
|
||||
if( depth != CV_32F && depth != CV_64F )
|
||||
CV_Error( CV_StsUnsupportedFormat, "The matrices must have 32f or 64f data type" );
|
||||
@ -349,12 +347,12 @@ CV_IMPL int cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian )
|
||||
double d_r_x_[] = { 0, 0, 0, 0, 0, -1, 0, 1, 0,
|
||||
0, 0, 1, 0, 0, 0, -1, 0, 0,
|
||||
0, -1, 0, 1, 0, 0, 0, 0, 0 };
|
||||
for( i = 0; i < 3; i++ )
|
||||
for( int i = 0; i < 3; i++ )
|
||||
{
|
||||
double ri = i == 0 ? r.x : i == 1 ? r.y : r.z;
|
||||
double a0 = -s*ri, a1 = (s - 2*c1*itheta)*ri, a2 = c1*itheta;
|
||||
double a3 = (c - s*itheta)*ri, a4 = s*itheta;
|
||||
for( k = 0; k < 9; k++ )
|
||||
for( int k = 0; k < 9; k++ )
|
||||
J[i*9+k] = a0*I[k] + a1*rrt.val[k] + a2*drrt[i*9+k] +
|
||||
a3*r_x.val[k] + a4*d_r_x_[i*9+k];
|
||||
}
|
||||
@ -490,6 +488,10 @@ CV_IMPL int cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian )
|
||||
dst->data.db[step*2] = r.z;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(CV_StsBadSize, "Input matrix must be 1x3 or 3x1 for a rotation vector, or 3x3 for a rotation matrix");
|
||||
}
|
||||
|
||||
if( jacobian )
|
||||
{
|
||||
@ -3465,6 +3467,12 @@ void cv::Rodrigues(InputArray _src, OutputArray _dst, OutputArray _jacobian)
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat src = _src.getMat();
|
||||
const Size srcSz = src.size();
|
||||
CV_Check(srcSz, srcSz == Size(3, 1) || srcSz == Size(1, 3) ||
|
||||
(srcSz == Size(1, 1) && src.channels() == 3) ||
|
||||
srcSz == Size(3, 3),
|
||||
"Input matrix must be 1x3 or 3x1 for a rotation vector, or 3x3 for a rotation matrix");
|
||||
|
||||
bool v2m = src.cols == 1 || src.rows == 1;
|
||||
_dst.create(3, v2m ? 3 : 1, src.depth());
|
||||
Mat dst = _dst.getMat();
|
||||
|
@ -95,6 +95,7 @@ void CV_ChessboardDetectorBadArgTest::run( int /*start_from */)
|
||||
initArgs();
|
||||
pattern_size = Size(2,2);
|
||||
errors += run_test_case( Error::StsOutOfRange, "Invalid pattern size" );
|
||||
|
||||
pattern_size = cbg.cornersSize();
|
||||
|
||||
cb.convertTo(img, CV_32F);
|
||||
|
@ -671,7 +671,8 @@ TEST(Core_Check, testMatType_fail_2)
|
||||
EXPECT_STREQ(e.err.c_str(),
|
||||
"> Unsupported src:\n"
|
||||
"> 'src_type == CV_32FC1 || src_type == CV_32FC3'\n"
|
||||
"> where\n> 'src_type' is 0 (CV_8UC1)\n"
|
||||
"> where\n"
|
||||
"> 'src_type' is 0 (CV_8UC1)\n"
|
||||
);
|
||||
}
|
||||
catch (const std::exception& e)
|
||||
@ -737,7 +738,39 @@ TEST(Core_Check, testMatDepth_fail_2)
|
||||
EXPECT_STREQ(e.err.c_str(),
|
||||
"> Unsupported src:\n"
|
||||
"> 'src_depth == CV_32F || src_depth == CV_64F'\n"
|
||||
"> where\n> 'src_depth' is 0 (CV_8U)\n"
|
||||
"> where\n"
|
||||
"> 'src_depth' is 0 (CV_8U)\n"
|
||||
);
|
||||
}
|
||||
catch (const std::exception& e)
|
||||
{
|
||||
FAIL() << "Unexpected C++ exception: " << e.what();
|
||||
}
|
||||
catch (...)
|
||||
{
|
||||
FAIL() << "Unexpected unknown exception";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void test_check_Size_1(const Size& srcSz)
|
||||
{
|
||||
CV_Check(srcSz, srcSz == Size(4, 3), "Unsupported src size");
|
||||
}
|
||||
TEST(Core_Check, testSize_1)
|
||||
{
|
||||
try
|
||||
{
|
||||
test_check_Size_1(Size(2, 1));
|
||||
FAIL() << "Unreachable code called";
|
||||
}
|
||||
catch (const cv::Exception& e)
|
||||
{
|
||||
EXPECT_STREQ(e.err.c_str(),
|
||||
"> Unsupported src size:\n"
|
||||
"> 'srcSz == Size(4, 3)'\n"
|
||||
"> where\n"
|
||||
"> 'srcSz' is [2 x 1]\n"
|
||||
);
|
||||
}
|
||||
catch (const std::exception& e)
|
||||
|
@ -996,7 +996,7 @@ void TFImporter::populateNet(Net dstNet)
|
||||
if (getDataLayout(name, data_layouts) == DATA_LAYOUT_UNKNOWN)
|
||||
data_layouts[name] = DATA_LAYOUT_NHWC;
|
||||
}
|
||||
else if (type == "BiasAdd" || type == "Add" || type == "Sub" || type=="AddN")
|
||||
else if (type == "BiasAdd" || type == "Add" || type == "AddV2" || type == "Sub" || type=="AddN")
|
||||
{
|
||||
bool haveConst = false;
|
||||
for(int ii = 0; !haveConst && ii < layer.input_size(); ++ii)
|
||||
|
@ -90,12 +90,12 @@ public:
|
||||
CV_TRACE_FUNCTION();
|
||||
DTreesImpl::clear();
|
||||
oobError = 0.;
|
||||
rng = RNG((uint64)-1);
|
||||
}
|
||||
|
||||
const vector<int>& getActiveVars() CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
RNG &rng = theRNG();
|
||||
int i, nvars = (int)allVars.size(), m = (int)activeVars.size();
|
||||
for( i = 0; i < nvars; i++ )
|
||||
{
|
||||
@ -134,6 +134,7 @@ public:
|
||||
bool train( const Ptr<TrainData>& trainData, int flags ) CV_OVERRIDE
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
RNG &rng = theRNG();
|
||||
CV_Assert(!trainData.empty());
|
||||
startTraining(trainData, flags);
|
||||
int treeidx, ntrees = (rparams.termCrit.type & TermCriteria::COUNT) != 0 ?
|
||||
@ -424,7 +425,6 @@ public:
|
||||
double oobError;
|
||||
vector<float> varImportance;
|
||||
vector<int> allVars, activeVars;
|
||||
RNG rng;
|
||||
};
|
||||
|
||||
|
||||
|
@ -62,7 +62,7 @@ class MultiscaleAnchorGenerator:
|
||||
|
||||
def createSSDGraph(modelPath, configPath, outputPath):
|
||||
# Nodes that should be kept.
|
||||
keepOps = ['Conv2D', 'BiasAdd', 'Add', 'Relu', 'Relu6', 'Placeholder', 'FusedBatchNorm',
|
||||
keepOps = ['Conv2D', 'BiasAdd', 'Add', 'AddV2', 'Relu', 'Relu6', 'Placeholder', 'FusedBatchNorm',
|
||||
'DepthwiseConv2dNative', 'ConcatV2', 'Mul', 'MaxPool', 'AvgPool', 'Identity',
|
||||
'Sub', 'ResizeNearestNeighbor', 'Pad', 'FusedBatchNormV3']
|
||||
|
||||
@ -151,6 +151,9 @@ def createSSDGraph(modelPath, configPath, outputPath):
|
||||
subgraphBatchNorm = ['Add',
|
||||
['Mul', 'input', ['Mul', ['Rsqrt', ['Add', 'moving_variance', 'add_y']], 'gamma']],
|
||||
['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]]
|
||||
subgraphBatchNormV2 = ['AddV2',
|
||||
['Mul', 'input', ['Mul', ['Rsqrt', ['AddV2', 'moving_variance', 'add_y']], 'gamma']],
|
||||
['Sub', 'beta', ['Mul', 'moving_mean', 'Mul_0']]]
|
||||
# Detect unfused nearest neighbor resize.
|
||||
subgraphResizeNN = ['Reshape',
|
||||
['Mul', ['Reshape', 'input', ['Pack', 'shape_1', 'shape_2', 'shape_3', 'shape_4', 'shape_5']],
|
||||
@ -177,7 +180,8 @@ def createSSDGraph(modelPath, configPath, outputPath):
|
||||
for node in graph_def.node:
|
||||
inputs = {}
|
||||
fusedNodes = []
|
||||
if checkSubgraph(node, subgraphBatchNorm, inputs, fusedNodes):
|
||||
if checkSubgraph(node, subgraphBatchNorm, inputs, fusedNodes) or \
|
||||
checkSubgraph(node, subgraphBatchNormV2, inputs, fusedNodes):
|
||||
name = node.name
|
||||
node.Clear()
|
||||
node.name = name
|
||||
|
@ -17,6 +17,7 @@
|
||||
#define CL_USE_DEPRECATED_OPENCL_1_1_APIS
|
||||
#define CL_USE_DEPRECATED_OPENCL_1_2_APIS
|
||||
#define CL_USE_DEPRECATED_OPENCL_2_0_APIS // eliminate build warning
|
||||
#define CL_TARGET_OPENCL_VERSION 200 // 2.0
|
||||
|
||||
#ifdef __APPLE__
|
||||
#define CL_SILENCE_DEPRECATION
|
||||
@ -677,7 +678,7 @@ int App::initVideoSource()
|
||||
throw std::runtime_error(std::string("specify video source"));
|
||||
}
|
||||
|
||||
catch (const std::exception e)
|
||||
catch (const std::exception& e)
|
||||
{
|
||||
cerr << "ERROR: " << e.what() << std::endl;
|
||||
return -1;
|
||||
|
@ -26,7 +26,6 @@ import cv2 as cv
|
||||
|
||||
import video
|
||||
from common import anorm2, draw_str
|
||||
from time import clock
|
||||
|
||||
lk_params = dict( winSize = (15, 15),
|
||||
maxLevel = 2,
|
||||
|
@ -39,9 +39,6 @@ import re
|
||||
|
||||
from numpy import pi, sin, cos
|
||||
|
||||
# built-in modules
|
||||
from time import clock
|
||||
|
||||
# local modules
|
||||
from tst_scene_render import TestSceneRender
|
||||
import common
|
||||
|
Loading…
Reference in New Issue
Block a user