mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Merge pull request #1873 from abak:hough_24
This commit is contained in:
commit
19b88a17bf
@ -7,49 +7,101 @@
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace cv;
|
||||
|
||||
/**
|
||||
* @function main
|
||||
*/
|
||||
int main(int, char** argv)
|
||||
namespace
|
||||
{
|
||||
Mat src, src_gray;
|
||||
// windows and trackbars name
|
||||
const std::string windowName = "Hough Circle Detection Demo";
|
||||
const std::string cannyThresholdTrackbarName = "Canny threshold";
|
||||
const std::string accumulatorThresholdTrackbarName = "Accumulator Threshold";
|
||||
const std::string usage = "Usage : tutorial_HoughCircle_Demo <path_to_input_image>\n";
|
||||
|
||||
/// Read the image
|
||||
src = imread( argv[1], 1 );
|
||||
// initial and max values of the parameters of interests.
|
||||
const int cannyThresholdInitialValue = 200;
|
||||
const int accumulatorThresholdInitialValue = 50;
|
||||
const int maxAccumulatorThreshold = 200;
|
||||
const int maxCannyThreshold = 255;
|
||||
|
||||
if( !src.data )
|
||||
{ return -1; }
|
||||
|
||||
/// Convert it to gray
|
||||
cvtColor( src, src_gray, COLOR_BGR2GRAY );
|
||||
|
||||
/// Reduce the noise so we avoid false circle detection
|
||||
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
||||
|
||||
vector<Vec3f> circles;
|
||||
|
||||
/// Apply the Hough Transform to find the circles
|
||||
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );
|
||||
|
||||
/// Draw the circles detected
|
||||
for( size_t i = 0; i < circles.size(); i++ )
|
||||
void HoughDetection(const Mat& src_gray, const Mat& src_display, int cannyThreshold, int accumulatorThreshold)
|
||||
{
|
||||
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
||||
int radius = cvRound(circles[i][2]);
|
||||
// circle center
|
||||
circle( src, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
||||
// circle outline
|
||||
circle( src, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
||||
// will hold the results of the detection
|
||||
std::vector<Vec3f> circles;
|
||||
// runs the actual detection
|
||||
HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, cannyThreshold, accumulatorThreshold, 0, 0 );
|
||||
|
||||
// clone the colour, input image for displaying purposes
|
||||
Mat display = src_display.clone();
|
||||
for( size_t i = 0; i < circles.size(); i++ )
|
||||
{
|
||||
Point center(cvRound(circles[i][0]), cvRound(circles[i][1]));
|
||||
int radius = cvRound(circles[i][2]);
|
||||
// circle center
|
||||
circle( display, center, 3, Scalar(0,255,0), -1, 8, 0 );
|
||||
// circle outline
|
||||
circle( display, center, radius, Scalar(0,0,255), 3, 8, 0 );
|
||||
}
|
||||
|
||||
// shows the results
|
||||
imshow( windowName, display);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
Mat src, src_gray;
|
||||
|
||||
if (argc < 2)
|
||||
{
|
||||
std::cerr<<"No input image specified\n";
|
||||
std::cout<<usage;
|
||||
return -1;
|
||||
}
|
||||
|
||||
/// Show your results
|
||||
namedWindow( "Hough Circle Transform Demo", WINDOW_AUTOSIZE );
|
||||
imshow( "Hough Circle Transform Demo", src );
|
||||
// Read the image
|
||||
src = imread( argv[1], 1 );
|
||||
|
||||
if( !src.data )
|
||||
{
|
||||
std::cerr<<"Invalid input image\n";
|
||||
std::cout<<usage;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Convert it to gray
|
||||
cvtColor( src, src_gray, COLOR_BGR2GRAY );
|
||||
|
||||
// Reduce the noise so we avoid false circle detection
|
||||
GaussianBlur( src_gray, src_gray, Size(9, 9), 2, 2 );
|
||||
|
||||
//declare and initialize both parameters that are subjects to change
|
||||
int cannyThreshold = cannyThresholdInitialValue;
|
||||
int accumulatorThreshold = accumulatorThresholdInitialValue;
|
||||
|
||||
// create the main window, and attach the trackbars
|
||||
namedWindow( windowName, WINDOW_AUTOSIZE );
|
||||
createTrackbar(cannyThresholdTrackbarName, windowName, &cannyThreshold,maxCannyThreshold);
|
||||
createTrackbar(accumulatorThresholdTrackbarName, windowName, &accumulatorThreshold, maxAccumulatorThreshold);
|
||||
|
||||
// infinite loop to display
|
||||
// and refresh the content of the output image
|
||||
// until the user presses q or Q
|
||||
int key = 0;
|
||||
while(key != 'q' && key != 'Q')
|
||||
{
|
||||
// those paramaters cannot be =0
|
||||
// so we must check here
|
||||
cannyThreshold = std::max(cannyThreshold, 1);
|
||||
accumulatorThreshold = std::max(accumulatorThreshold, 1);
|
||||
|
||||
//runs the detection, and update the display
|
||||
HoughDetection(src_gray, src, cannyThreshold, accumulatorThreshold);
|
||||
|
||||
// get user key
|
||||
key = waitKey(10);
|
||||
}
|
||||
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user