mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00
Merge pull request #20782 from YashasSamaga:cuda4dnn-eltwise-broadcast
This commit is contained in:
commit
1b70f94282
@ -5,13 +5,16 @@
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda_fp16.h>
|
||||
|
||||
#include "array.hpp"
|
||||
#include "functors.hpp"
|
||||
#include "grid_stride_range.hpp"
|
||||
#include "execution.hpp"
|
||||
#include "vector_traits.hpp"
|
||||
#include "kernel_dispatcher.hpp"
|
||||
|
||||
#include "../cuda4dnn/csl/stream.hpp"
|
||||
#include "../cuda4dnn/csl/span.hpp"
|
||||
#include "../cuda4dnn/csl/tensor.hpp"
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
|
||||
@ -40,6 +43,32 @@ namespace raw {
|
||||
v_store(output_vPtr[i], vec_x);
|
||||
}
|
||||
}
|
||||
|
||||
template <class T, class EltwiseOp, std::size_t Rank>
|
||||
__global__ void eltwise_op_bcast(
|
||||
Span<T> output, array<size_type, Rank> out_strides,
|
||||
View<T> x, array<size_type, Rank> x_strides, array<bool, Rank> x_bcast,
|
||||
View<T> y, array<size_type, Rank> y_strides, array<bool, Rank> y_bcast,
|
||||
const typename EltwiseOp::Params params) {
|
||||
EltwiseOp eltwise_op(params);
|
||||
|
||||
for (auto i : grid_stride_range(output.size())) {
|
||||
index_type out_index = i / out_strides[0];
|
||||
index_type x_index = x_bcast[0] ? 0 : out_index * x_strides[0];
|
||||
index_type y_index = y_bcast[0] ? 0 : out_index * y_strides[0];
|
||||
|
||||
for (int j = 1; j < Rank; j++)
|
||||
{
|
||||
out_index = (i % out_strides[j - 1]) / out_strides[j];
|
||||
if (!x_bcast[j])
|
||||
x_index += out_index * x_strides[j];
|
||||
if (!y_bcast[j])
|
||||
y_index += out_index * y_strides[j];
|
||||
}
|
||||
|
||||
output[i] = eltwise_op(x[x_index], y[y_index]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T, class EltwiseOp, std::size_t N> static
|
||||
@ -55,63 +84,251 @@ void launch_vectorized_eltwise_op(const Stream& stream, Span<T> output, View<T>
|
||||
launch_kernel(kernel, policy, output, x, y, params);
|
||||
}
|
||||
|
||||
template <class T, class EltwiseOp> static
|
||||
void eltwise_op(const Stream& stream, Span<T> output, View<T> x, View<T> y, const typename EltwiseOp::Params& params = {}) {
|
||||
CV_Assert(x.size() == y.size());
|
||||
CV_Assert(x.size() == output.size());
|
||||
template <class T, class EltwiseOp, std::size_t Rank> static
|
||||
void launch_eltwise_op_bcast(
|
||||
const Stream& stream,
|
||||
Span<T> output, const std::vector<std::size_t>& outStride,
|
||||
View<T> x, const std::vector<std::size_t>& inStride1, const std::vector<int>& inBcast1,
|
||||
View<T> y, const std::vector<std::size_t>& inStride2, const std::vector<int>& inBcast2,
|
||||
const typename EltwiseOp::Params& params)
|
||||
{
|
||||
CV_Assert(outStride.size() == Rank);
|
||||
CV_Assert(inStride1.size() == Rank);
|
||||
CV_Assert(inStride2.size() == Rank);
|
||||
CV_Assert(inBcast1.size() == Rank);
|
||||
CV_Assert(inBcast2.size() == Rank);
|
||||
|
||||
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
||||
launch_vectorized_eltwise_op<T, EltwiseOp, 4>(stream, output, x, y, params);
|
||||
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
||||
launch_vectorized_eltwise_op<T, EltwiseOp, 2>(stream, output, x, y, params);
|
||||
} else {
|
||||
launch_vectorized_eltwise_op<T, EltwiseOp, 1>(stream, output, x, y, params);
|
||||
array<size_type, Rank> outStride_k, inStride1_k, inStride2_k;
|
||||
outStride_k.assign(std::begin(outStride), std::end(outStride));
|
||||
inStride1_k.assign(std::begin(inStride1), std::end(inStride1));
|
||||
inStride2_k.assign(std::begin(inStride2), std::end(inStride2));
|
||||
|
||||
array<bool, Rank> inBcast1_k, inBcast2_k;
|
||||
inBcast1_k.assign(std::begin(inBcast1), std::end(inBcast1));
|
||||
inBcast2_k.assign(std::begin(inBcast2), std::end(inBcast2));
|
||||
|
||||
auto kernel = raw::eltwise_op_bcast<T, EltwiseOp, Rank>;
|
||||
auto policy = make_policy(kernel, output.size(), 0, stream);
|
||||
launch_kernel(kernel, policy, output, outStride_k, x, inStride1_k, inBcast1_k, y, inStride2_k, inBcast2_k, params);
|
||||
}
|
||||
|
||||
GENERATE_KERNEL_DISPATCHER_2TP(eltwise_op_bcast_dispatcher, launch_eltwise_op_bcast);
|
||||
|
||||
template <class T, class EltwiseOp> static
|
||||
void eltwise_op(const Stream& stream, TensorSpan<T> output, TensorView<T> x, TensorView<T> y, const typename EltwiseOp::Params& params = {}) {
|
||||
if (is_shape_same(output, x) && is_shape_same(output, y))
|
||||
{
|
||||
/* no broadcasting; use fast path */
|
||||
CV_Assert(x.size() == y.size());
|
||||
CV_Assert(x.size() == output.size());
|
||||
|
||||
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
|
||||
launch_vectorized_eltwise_op<T, EltwiseOp, 4>(stream, output, x, y, params);
|
||||
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
|
||||
launch_vectorized_eltwise_op<T, EltwiseOp, 2>(stream, output, x, y, params);
|
||||
} else {
|
||||
launch_vectorized_eltwise_op<T, EltwiseOp, 1>(stream, output, x, y, params);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Assert(is_shape_compatible(output, x));
|
||||
CV_Assert(is_shape_compatible(output, y));
|
||||
|
||||
/* matching singleton axes in both input tensors can be eliminated
|
||||
*
|
||||
* Reasoning:
|
||||
* ----------
|
||||
* Singleton axes do not contribute towards address calculation. They are redundant
|
||||
* unless there is broadcasting. If both input tensors have singleton axis at a
|
||||
* specified position, there is no broadcasting on that axis.
|
||||
*
|
||||
* Example:
|
||||
* ---------
|
||||
* x: [1, 256, 32, 32] -> [256, 32, 32]
|
||||
* y: [1, 256, 1, 1] -> [256, 1, 1]
|
||||
*/
|
||||
for (int r = 0; r < output.rank(); r++)
|
||||
{
|
||||
while (x.get_axis_size(r) == 1 && y.get_axis_size(r) == 1) {
|
||||
CV_Assert(output.get_axis_size(r) == 1);
|
||||
|
||||
x.squeeze(r);
|
||||
y.squeeze(r);
|
||||
output.squeeze(r);
|
||||
}
|
||||
}
|
||||
|
||||
auto inShape1 = x.shape_as_vector();
|
||||
auto inShape2 = y.shape_as_vector();
|
||||
auto outShape = output.shape_as_vector();
|
||||
|
||||
/* contiguous axes that do not broadcast can be merged into one axis
|
||||
*
|
||||
* Example:
|
||||
* ---------
|
||||
* x: [32, 8, 8] -> [32, 64]
|
||||
* y: [1, 8, 8] -> [1, 64]
|
||||
*/
|
||||
for (int i = 0; i < inShape1.size(); i++) {
|
||||
/* check if axis `i` requires any broadcasting */
|
||||
if (inShape1[i] == inShape2[i]) {
|
||||
/* loop invariant: `i` is the first axis in the contiguous axis sequence */
|
||||
|
||||
int j = i + 1; /* `j` is the axis which we will attempt to merge */
|
||||
while (j < inShape1.size() && inShape1[j] == inShape2[j]) {
|
||||
CV_Assert(outShape[j] == inShape1[j]);
|
||||
|
||||
/* `j` axis is also used fully; merge `i` and `j` */
|
||||
auto new_size = inShape1[i] * inShape1[j];
|
||||
inShape1[i] = new_size;
|
||||
inShape2[i] = new_size;
|
||||
|
||||
/* delete axis `j` */
|
||||
inShape1.erase(std::begin(inShape1) + j);
|
||||
inShape2.erase(std::begin(inShape2) + j);
|
||||
outShape.erase(std::begin(outShape) + j);
|
||||
|
||||
/* optimizations should not break the invariants */
|
||||
CV_Assert(inShape1.size() == outShape.size());
|
||||
CV_Assert(inShape2.size() == outShape.size());
|
||||
CV_Assert(inShape1[i] == outShape[i]);
|
||||
CV_Assert(inShape2[i] == outShape[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* contiguous broadcasting axes on the same tensor can be merged into one axis
|
||||
*
|
||||
* Example:
|
||||
* ---------
|
||||
* x: [256, 8, 8] -> [256, 64]
|
||||
* y: [256, 1, 1] -> [256, 1]
|
||||
*/
|
||||
for (int i = 0; i < inShape1.size(); i++) {
|
||||
/* check if axis `i` requires any broadcasting in tensor 1 */
|
||||
if (inShape1[i] == 1 && inShape2[i] != 1) {
|
||||
/* loop invariant: `i` is the first axis in the contiguous axis sequence */
|
||||
|
||||
int j = i + 1; /* `j` is the axis which we will attempt to merge */
|
||||
while (j < inShape1.size() && inShape1[j] == 1 && inShape2[j] != 1) {
|
||||
CV_Assert(outShape[j] == inShape2[j]);
|
||||
|
||||
/* `j` axis is also used fully; merge `i` and `j` */
|
||||
inShape1[i] = 1;
|
||||
inShape2[i] = inShape2[i] * inShape2[j];
|
||||
outShape[i] = inShape2[i];
|
||||
|
||||
/* delete axis `j` */
|
||||
inShape1.erase(std::begin(inShape1) + j);
|
||||
inShape2.erase(std::begin(inShape2) + j);
|
||||
outShape.erase(std::begin(outShape) + j);
|
||||
|
||||
/* optimizations should not break the invariants */
|
||||
CV_Assert(inShape1.size() == outShape.size());
|
||||
CV_Assert(inShape2.size() == outShape.size());
|
||||
CV_Assert(inShape1[i] == 1);
|
||||
CV_Assert(inShape2[i] == outShape[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/* check if axis `i` requires any broadcasting in tensor 2 */
|
||||
if (inShape1[i] != 1 && inShape2[i] == 1) {
|
||||
/* loop invariant: `i` is the first axis in the contiguous axis sequence */
|
||||
|
||||
int j = i + 1; /* `j` is the axis which we will attempt to merge */
|
||||
while (j < inShape1.size() && inShape1[j] != 1 && inShape2[j] == 1) {
|
||||
CV_Assert(outShape[j] == inShape1[j]);
|
||||
|
||||
/* `j` axis is also used fully; merge `i` and `j` */
|
||||
inShape1[i] = inShape1[i] * inShape1[j];
|
||||
inShape2[i] = 1;
|
||||
outShape[i] = inShape1[i];
|
||||
|
||||
/* delete axis `j` */
|
||||
inShape1.erase(std::begin(inShape1) + j);
|
||||
inShape2.erase(std::begin(inShape2) + j);
|
||||
outShape.erase(std::begin(outShape) + j);
|
||||
|
||||
/* optimizations should not break the invariants */
|
||||
CV_Assert(inShape1.size() == outShape.size());
|
||||
CV_Assert(inShape2.size() == outShape.size());
|
||||
CV_Assert(inShape1[i] == outShape[i]);
|
||||
CV_Assert(inShape2[i] == 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
auto rank = outShape.size();
|
||||
|
||||
std::vector<std::size_t> inStride1(rank), inStride2(rank), outStride(rank);
|
||||
inStride1.back() = 1;
|
||||
inStride2.back() = 1;
|
||||
outStride.back() = 1;
|
||||
/* garbage, ..., garbage, 1 */
|
||||
|
||||
std::copy(std::begin(inShape1) + 1, std::end(inShape1), std::begin(inStride1));
|
||||
std::copy(std::begin(inShape2) + 1, std::end(inShape2), std::begin(inStride2));
|
||||
std::copy(std::begin(outShape) + 1, std::end(outShape), std::begin(outStride));
|
||||
/* dim[0], dim[1], ..., dim[-1], 1 */
|
||||
|
||||
std::partial_sum(inStride1.rbegin(), inStride1.rend(), inStride1.rbegin(), std::multiplies<std::size_t>());
|
||||
std::partial_sum(inStride2.rbegin(), inStride2.rend(), inStride2.rbegin(), std::multiplies<std::size_t>());
|
||||
std::partial_sum(outStride.rbegin(), outStride.rend(), outStride.rbegin(), std::multiplies<std::size_t>());
|
||||
/* stride[0], stride[1], ..., stride[-2], 1 */
|
||||
|
||||
std::vector<int> inBcast1(rank), inBcast2(rank);
|
||||
std::transform(std::begin(inShape1), std::end(inShape1), std::begin(inBcast1), [](std::size_t sz) { return sz == 1; });
|
||||
std::transform(std::begin(inShape2), std::end(inShape2), std::begin(inBcast2), [](std::size_t sz) { return sz == 1; });
|
||||
|
||||
CV_Assert(1 <= rank && rank <= CSL_MAX_TENSOR_RANK);
|
||||
eltwise_op_bcast_dispatcher<T, EltwiseOp, 1, CSL_MAX_TENSOR_RANK>(rank, stream, output, outStride, x, inStride1, inBcast1, y, inStride2, inBcast2, params);
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void eltwise_max_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||||
void eltwise_max_2(const Stream& stream, TensorSpan<T> output, TensorView<T> x, TensorView<T> y) {
|
||||
eltwise_op<T, MaxFunctor<T>>(stream, output, x, y);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void eltwise_min_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||||
void eltwise_min_2(const Stream& stream, TensorSpan<T> output, TensorView<T> x, TensorView<T> y) {
|
||||
eltwise_op<T, MinFunctor<T>>(stream, output, x, y);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void eltwise_sum_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||||
void eltwise_sum_2(const Stream& stream, TensorSpan<T> output, TensorView<T> x, TensorView<T> y) {
|
||||
eltwise_op<T, SumFunctor<T>>(stream, output, x, y);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void eltwise_sum_coeff_2(const Stream& stream, Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
|
||||
void eltwise_sum_coeff_2(const Stream& stream, TensorSpan<T> output, T coeff_x, TensorView<T> x, T coeff_y, TensorView<T> y) {
|
||||
eltwise_op<T, ScaledSumFunctor<T>>(stream, output, x, y, {coeff_x, coeff_y});
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void eltwise_prod_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||||
void eltwise_prod_2(const Stream& stream, TensorSpan<T> output, TensorView<T> x, TensorView<T> y) {
|
||||
eltwise_op<T, ProductFunctor<T>>(stream, output, x, y);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void eltwise_div_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
|
||||
void eltwise_div_2(const Stream& stream, TensorSpan<T> output, TensorView<T> x, TensorView<T> y) {
|
||||
eltwise_op<T, DivFunctor<T>>(stream, output, x, y);
|
||||
}
|
||||
|
||||
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
|
||||
template void eltwise_div_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
||||
template void eltwise_prod_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
||||
template void eltwise_sum_coeff_2(const Stream&, Span<__half>, __half, View<__half>, __half, View<__half>);
|
||||
template void eltwise_sum_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
||||
template void eltwise_max_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
||||
template void eltwise_min_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
|
||||
template void eltwise_div_2(const Stream& stream, TensorSpan<__half> output, TensorView<__half> x, TensorView<__half> y);
|
||||
template void eltwise_prod_2(const Stream& stream, TensorSpan<__half> output, TensorView<__half> x, TensorView<__half> y);
|
||||
template void eltwise_sum_coeff_2(const Stream&, TensorSpan<__half>, __half, TensorView<__half>, __half, TensorView<__half>);
|
||||
template void eltwise_sum_2(const Stream& stream, TensorSpan<__half> output, TensorView<__half> x, TensorView<__half> y);
|
||||
template void eltwise_max_2(const Stream& stream, TensorSpan<__half> output, TensorView<__half> x, TensorView<__half> y);
|
||||
template void eltwise_min_2(const Stream& stream, TensorSpan<__half> output, TensorView<__half> x, TensorView<__half> y);
|
||||
#endif
|
||||
template void eltwise_div_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
||||
template void eltwise_prod_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
||||
template void eltwise_sum_coeff_2(const Stream&, Span<float>, float, View<float>, float, View<float>);
|
||||
template void eltwise_sum_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
||||
template void eltwise_max_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
||||
template void eltwise_min_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
|
||||
template void eltwise_div_2(const Stream& stream, TensorSpan<float> output, TensorView<float> x, TensorView<float> y);
|
||||
template void eltwise_prod_2(const Stream& stream, TensorSpan<float> output, TensorView<float> x, TensorView<float> y);
|
||||
template void eltwise_sum_coeff_2(const Stream&, TensorSpan<float>, float, TensorView<float>, float, TensorView<float>);
|
||||
template void eltwise_sum_2(const Stream& stream, TensorSpan<float> output, TensorView<float> x, TensorView<float> y);
|
||||
template void eltwise_max_2(const Stream& stream, TensorSpan<float> output, TensorView<float> x, TensorView<float> y);
|
||||
template void eltwise_min_2(const Stream& stream, TensorSpan<float> output, TensorView<float> x, TensorView<float> y);
|
||||
|
||||
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|
||||
|
@ -73,4 +73,22 @@
|
||||
name<T, start + 1, end, Args...>(selector, std::forward<Args>(args)...); \
|
||||
}
|
||||
|
||||
// Same as GENERATE_KERNEL_DISPATCHER but takes two class template parameters T and TP1 instead of just T
|
||||
#define GENERATE_KERNEL_DISPATCHER_2TP(name,func); \
|
||||
template <class TP1, class TP2, std::size_t start, std::size_t end, class... Args> static \
|
||||
typename std::enable_if<start == end, void> \
|
||||
::type name(int selector, Args&& ...args) { \
|
||||
if(selector == start) \
|
||||
func<TP1, TP2, start>(std::forward<Args>(args)...); \
|
||||
} \
|
||||
\
|
||||
template <class TP1, class TP2, std::size_t start, std::size_t end, class... Args> static \
|
||||
typename std::enable_if<start != end, void> \
|
||||
::type name(int selector, Args&& ...args) { \
|
||||
if(selector == start) \
|
||||
func<TP1, TP2, start>(std::forward<Args>(args)...); \
|
||||
else \
|
||||
name<TP1, TP2, start + 1, end, Args...>(selector, std::forward<Args>(args)...); \
|
||||
}
|
||||
|
||||
#endif /* OPENCV_DNN_SRC_CUDA_KERNEL_DISPATCHER_HPP */
|
||||
|
@ -6,29 +6,29 @@
|
||||
#define OPENCV_DNN_SRC_CUDA4DNN_KERNELS_ELTWISE_OPS_HPP
|
||||
|
||||
#include "../csl/stream.hpp"
|
||||
#include "../csl/span.hpp"
|
||||
#include "../csl/tensor.hpp"
|
||||
|
||||
#include <cstddef>
|
||||
|
||||
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
|
||||
template <class T>
|
||||
void eltwise_max_2(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y);
|
||||
void eltwise_max_2(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> x, csl::TensorView<T> y);
|
||||
|
||||
template <class T>
|
||||
void eltwise_min_2(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y);
|
||||
void eltwise_min_2(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> x, csl::TensorView<T> y);
|
||||
|
||||
template <class T>
|
||||
void eltwise_sum_2(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y);
|
||||
void eltwise_sum_2(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> x, csl::TensorView<T> y);
|
||||
|
||||
template <class T>
|
||||
void eltwise_sum_coeff_2(const csl::Stream& stream, csl::Span<T> output, T coeff_x, csl::View<T> x, T coeff_y, csl::View<T> y);
|
||||
void eltwise_sum_coeff_2(const csl::Stream& stream, csl::TensorSpan<T> output, T coeff_x, csl::TensorView<T> x, T coeff_y, csl::TensorView<T> y);
|
||||
|
||||
template <class T>
|
||||
void eltwise_prod_2(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y);
|
||||
void eltwise_prod_2(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> x, csl::TensorView<T> y);
|
||||
|
||||
template <class T>
|
||||
void eltwise_div_2(const csl::Stream& stream, csl::Span<T> output, csl::View<T> x, csl::View<T> y);
|
||||
void eltwise_div_2(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> x, csl::TensorView<T> y);
|
||||
|
||||
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
|
||||
|
||||
|
@ -2710,7 +2710,19 @@ struct Net::Impl : public detail::NetImplBase
|
||||
// we create a temporary backend node for eltwise layer to obtain the eltwise configuration
|
||||
cuda4dnn::csl::CSLContext context; // assume that initCUDA and EltwiseOp do not use the context during init
|
||||
const auto node = nextData->layerInstance->initCUDA(&context, nextData->inputBlobsWrappers, nextData->outputBlobsWrappers);
|
||||
const auto eltwiseNode = node.dynamicCast<cuda4dnn::EltwiseOpBase>();
|
||||
auto eltwiseNode = node.dynamicCast<cuda4dnn::EltwiseOpBase>();
|
||||
|
||||
// broadcasting not supported in fused ops
|
||||
auto required_shape = shape(nextData->outputBlobs[0]);
|
||||
for (int i = 0; i < nextData->inputBlobs.size(); i++)
|
||||
{
|
||||
if (shape(*nextData->inputBlobs[i]) != required_shape)
|
||||
{
|
||||
eltwiseNode.reset();
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// CUDA backend uses EltwiseOp when all operands have the same number of channels; otherwise, ShortcutOp is used.
|
||||
// Hence, a successful cast to EltwiseOp implies that the number of channels is same in all operand tensors.
|
||||
if (eltwiseNode.empty() || eltwiseNode->op != cuda4dnn::EltwiseOpType::SUM || !eltwiseNode->coeffs.empty())
|
||||
|
Loading…
Reference in New Issue
Block a user