mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge pull request #14454 from dkurt:dnn_tf_subgraph_fusion
This commit is contained in:
commit
1c092a181d
@ -79,9 +79,9 @@ public:
|
||||
}
|
||||
}
|
||||
|
||||
static const tensorflow::NodeDef& getInputNode(const tensorflow::GraphDef& net,
|
||||
const tensorflow::NodeDef& node,
|
||||
int inpId)
|
||||
static int getInputNodeId(const tensorflow::GraphDef& net,
|
||||
const tensorflow::NodeDef& node,
|
||||
int inpId)
|
||||
{
|
||||
CV_Assert(inpId < node.input_size());
|
||||
std::string name = node.input(inpId);
|
||||
@ -92,7 +92,7 @@ public:
|
||||
for (int i = 0; i < numNodes; ++i)
|
||||
{
|
||||
if (net.node(i).name() == name)
|
||||
return net.node(i);
|
||||
return i;
|
||||
}
|
||||
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
|
||||
}
|
||||
@ -104,36 +104,46 @@ public:
|
||||
matchedNodesIds.clear();
|
||||
matchedNodesIds.reserve(nodesToFuse.size());
|
||||
|
||||
int numNodes = net.node_size();
|
||||
for (int i = 0; i < nodesToFuse.size(); ++i)
|
||||
std::queue<int> nodesToMatch;
|
||||
std::queue<int> targetNodes;
|
||||
nodesToMatch.push(nodeId);
|
||||
targetNodes.push(nodesToFuse.back());
|
||||
while (!nodesToMatch.empty())
|
||||
{
|
||||
while (nodeId < numNodes && net.node(nodeId).op() == "Const")
|
||||
{
|
||||
nodeId += 1;
|
||||
}
|
||||
if (nodeId > numNodes - 1)
|
||||
int nodeToMatch = nodesToMatch.front();
|
||||
int targetNodeId = targetNodes.front();
|
||||
nodesToMatch.pop();
|
||||
targetNodes.pop();
|
||||
|
||||
if (std::find(matchedNodesIds.begin(), matchedNodesIds.end(), nodeToMatch) !=
|
||||
matchedNodesIds.end())
|
||||
continue;
|
||||
|
||||
const tensorflow::NodeDef& node = net.node(nodeToMatch);
|
||||
if (node.op() != nodes[targetNodeId])
|
||||
return false;
|
||||
|
||||
const tensorflow::NodeDef& node = net.node(nodeId);
|
||||
|
||||
if (node.op() != nodes[nodesToFuse[i]])
|
||||
return false;
|
||||
|
||||
std::vector<int>& inputNodes = inputs[nodesToFuse[i]];
|
||||
std::vector<int>& inputNodes = inputs[targetNodeId];
|
||||
if (inputNodes.size() != node.input_size())
|
||||
return false;
|
||||
|
||||
for (int j = 0; j < inputNodes.size(); ++j)
|
||||
{
|
||||
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
|
||||
continue;
|
||||
const tensorflow::NodeDef& inpNode = getInputNode(net, node, j);
|
||||
if (inpNode.op() != nodes[inputNodes[j]])
|
||||
nodeId = getInputNodeId(net, node, j);
|
||||
const tensorflow::NodeDef& inpNode = net.node(nodeId);
|
||||
if (inpNode.op() != "Const")
|
||||
{
|
||||
nodesToMatch.push(nodeId);
|
||||
targetNodes.push(inputNodes[j]);
|
||||
}
|
||||
else if (nodes[inputNodes[j]] != "Const")
|
||||
return false;
|
||||
}
|
||||
|
||||
matchedNodesIds.push_back(nodeId);
|
||||
nodeId += 1;
|
||||
matchedNodesIds.push_back(nodeToMatch);
|
||||
}
|
||||
std::sort(matchedNodesIds.begin(), matchedNodesIds.end());
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -181,7 +191,7 @@ public:
|
||||
std::vector<tensorflow::NodeDef*> inputNodes(inputsNames.size());
|
||||
for (int i = 0; i < inputsNames.size(); ++i)
|
||||
{
|
||||
inputNodes[i] = (tensorflow::NodeDef*)&getInputNode(net, *node, i);
|
||||
inputNodes[i] = net.mutable_node(getInputNodeId(net, *node, i));
|
||||
}
|
||||
finalize(net, node, inputNodes);
|
||||
}
|
||||
@ -354,7 +364,7 @@ public:
|
||||
{
|
||||
if (!Subgraph::match(net, nodeId, matchedNodesIds))
|
||||
return false;
|
||||
Mat maxValue = getTensorContent(net.node(nodeId + 1).attr().at("value").tensor());
|
||||
Mat maxValue = getTensorContent(net.node(matchedNodesIds.front() + 1).attr().at("value").tensor());
|
||||
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6;
|
||||
}
|
||||
};
|
||||
@ -384,6 +394,17 @@ public:
|
||||
setFusedNode("Reshape", ids);
|
||||
}
|
||||
|
||||
virtual bool match(const tensorflow::GraphDef& net, int nodeId, std::vector<int>& matchedNodesIds) CV_OVERRIDE
|
||||
{
|
||||
const tensorflow::NodeDef& node = net.node(nodeId);
|
||||
if (node.input_size() == 0)
|
||||
return false;
|
||||
|
||||
inpName = node.input(0);
|
||||
return Subgraph::match(net, nodeId, matchedNodesIds);
|
||||
}
|
||||
|
||||
|
||||
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
|
||||
std::vector<tensorflow::NodeDef*>& inputNodes) CV_OVERRIDE
|
||||
{
|
||||
@ -395,6 +416,7 @@ public:
|
||||
}
|
||||
tensorflow::TensorProto* shapeTensor = inputNodes[1]->mutable_attr()->at("value").mutable_tensor();
|
||||
fusedNode->mutable_input()->DeleteSubrange(2, numOutDims - 1);
|
||||
fusedNode->set_input(0, inpName);
|
||||
|
||||
shapeTensor->clear_int_val();
|
||||
for (int i = 0; i < shape.size(); ++i)
|
||||
@ -405,6 +427,7 @@ public:
|
||||
|
||||
private:
|
||||
int numOutDims;
|
||||
std::string inpName;
|
||||
};
|
||||
|
||||
class L2NormalizeSubgraph : public Subgraph
|
||||
@ -685,9 +708,9 @@ void simplifySubgraphs(tensorflow::GraphDef& net)
|
||||
subgraphs.push_back(Ptr<Subgraph>(new DeconvolutionSameKerasSubgraph()));
|
||||
subgraphs.push_back(Ptr<Subgraph>(new ResizeBilinearSubgraph()));
|
||||
subgraphs.push_back(Ptr<Subgraph>(new UpsamplingKerasSubgraph()));
|
||||
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph()));
|
||||
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxSlimSubgraph()));
|
||||
subgraphs.push_back(Ptr<Subgraph>(new SoftMaxSlimV2Subgraph()));
|
||||
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph()));
|
||||
|
||||
int numNodes = net.node_size();
|
||||
std::vector<int> matchedNodesIds;
|
||||
|
@ -1126,25 +1126,28 @@ void TFImporter::populateNet(Net dstNet)
|
||||
{
|
||||
Mat newShape = getTensorContent(getConstBlob(layer, value_id, 1));
|
||||
|
||||
if (newShape.total() != 4 && inpLayout == DATA_LAYOUT_NHWC)
|
||||
if (inpLayout == DATA_LAYOUT_NHWC)
|
||||
{
|
||||
LayerParams permLP;
|
||||
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
|
||||
permLP.set("order", DictValue::arrayInt<int*>(order, 4));
|
||||
if (newShape.total() == 4)
|
||||
{
|
||||
// NHWC->NCHW
|
||||
std::swap(*newShape.ptr<int32_t>(0, 2), *newShape.ptr<int32_t>(0, 3));
|
||||
std::swap(*newShape.ptr<int32_t>(0, 1), *newShape.ptr<int32_t>(0, 2));
|
||||
}
|
||||
if (newShape.total() != 4 || newShape.at<int>(1) == 1)
|
||||
{
|
||||
LayerParams permLP;
|
||||
int order[] = {0, 2, 3, 1}; // From OpenCV's NCHW to NHWC.
|
||||
permLP.set("order", DictValue::arrayInt<int*>(order, 4));
|
||||
|
||||
std::string permName = name + "/nchw";
|
||||
CV_Assert(layer_id.find(permName) == layer_id.end());
|
||||
int permId = dstNet.addLayer(permName, "Permute", permLP);
|
||||
layer_id[permName] = permId;
|
||||
connect(layer_id, dstNet, inpId, permId, 0);
|
||||
inpId = Pin(permName);
|
||||
inpLayout = DATA_LAYOUT_NCHW;
|
||||
}
|
||||
else if (newShape.total() == 4 && inpLayout == DATA_LAYOUT_NHWC)
|
||||
{
|
||||
// NHWC->NCHW
|
||||
std::swap(*newShape.ptr<int32_t>(0, 2), *newShape.ptr<int32_t>(0, 3));
|
||||
std::swap(*newShape.ptr<int32_t>(0, 1), *newShape.ptr<int32_t>(0, 2));
|
||||
std::string permName = name + "/nchw";
|
||||
CV_Assert(layer_id.find(permName) == layer_id.end());
|
||||
int permId = dstNet.addLayer(permName, "Permute", permLP);
|
||||
layer_id[permName] = permId;
|
||||
connect(layer_id, dstNet, inpId, permId, 0);
|
||||
inpId = Pin(permName);
|
||||
inpLayout = DATA_LAYOUT_NCHW;
|
||||
}
|
||||
}
|
||||
layerParams.set("dim", DictValue::arrayInt<int*>(newShape.ptr<int>(), newShape.total()));
|
||||
|
||||
@ -1381,7 +1384,9 @@ void TFImporter::populateNet(Net dstNet)
|
||||
// num_split
|
||||
// 1st blob is dims tensor
|
||||
int axis = getConstBlob(layer, value_id, 0).int_val().Get(0);
|
||||
layerParams.set("axis", toNCHW(axis));
|
||||
if (getDataLayout(name, data_layouts) == DATA_LAYOUT_NHWC)
|
||||
axis = toNCHW(axis);
|
||||
layerParams.set("axis", axis);
|
||||
|
||||
int id = dstNet.addLayer(name, "Slice", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
@ -675,6 +675,13 @@ TEST_P(Test_TensorFlow_layers, relu6)
|
||||
runTensorFlowNet("keras_relu6", /*hasText*/ true);
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, subpixel)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
throw SkipTestException("");
|
||||
runTensorFlowNet("subpixel");
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, keras_mobilenet_head)
|
||||
{
|
||||
runTensorFlowNet("keras_mobilenet_head");
|
||||
|
Loading…
Reference in New Issue
Block a user