mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Merge pull request #9285 from arrybn:issue_9223
This commit is contained in:
commit
1ce9ffcc7f
@ -349,6 +349,12 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
static Ptr<ChannelsPReLULayer> create(const LayerParams& params);
|
||||
};
|
||||
|
||||
class CV_EXPORTS ELULayer : public ActivationLayer
|
||||
{
|
||||
public:
|
||||
static Ptr<ELULayer> create(const LayerParams ¶ms);
|
||||
};
|
||||
|
||||
class CV_EXPORTS TanHLayer : public ActivationLayer
|
||||
{
|
||||
public:
|
||||
|
@ -96,6 +96,7 @@ void initializeLayerFactory()
|
||||
CV_DNN_REGISTER_LAYER_CLASS(ChannelsPReLU, ChannelsPReLULayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Sigmoid, SigmoidLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(TanH, TanHLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(ELU, ELULayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(BNLL, BNLLLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(AbsVal, AbsLayer);
|
||||
CV_DNN_REGISTER_LAYER_CLASS(Power, PowerLayer);
|
||||
|
@ -302,6 +302,35 @@ struct SigmoidFunctor
|
||||
int64 getFLOPSPerElement() const { return 3; }
|
||||
};
|
||||
|
||||
struct ELUFunctor
|
||||
{
|
||||
typedef ELULayer Layer;
|
||||
|
||||
explicit ELUFunctor() {}
|
||||
|
||||
void apply(const float* srcptr, float* dstptr, int len, size_t planeSize, int cn0, int cn1) const
|
||||
{
|
||||
for( int cn = cn0; cn < cn1; cn++, srcptr += planeSize, dstptr += planeSize )
|
||||
{
|
||||
for(int i = 0; i < len; i++ )
|
||||
{
|
||||
float x = srcptr[i];
|
||||
dstptr[i] = x >= 0.f ? x : exp(x) - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef HAVE_HALIDE
|
||||
void attachHalide(const Halide::Expr& input, Halide::Func& top)
|
||||
{
|
||||
Halide::Var x("x"), y("y"), c("c"), n("n");
|
||||
top(x, y, c, n) = select(input >= 0.0f, input, exp(input) - 1);
|
||||
}
|
||||
#endif // HAVE_HALIDE
|
||||
|
||||
int64 getFLOPSPerElement() const { return 2; }
|
||||
};
|
||||
|
||||
struct AbsValFunctor
|
||||
{
|
||||
typedef AbsLayer Layer;
|
||||
@ -504,6 +533,14 @@ Ptr<SigmoidLayer> SigmoidLayer::create(const LayerParams& params)
|
||||
return l;
|
||||
}
|
||||
|
||||
Ptr<ELULayer> ELULayer::create(const LayerParams& params)
|
||||
{
|
||||
Ptr<ELULayer> l(new ElementWiseLayer<ELUFunctor>(ELUFunctor()));
|
||||
l->setParamsFrom(params);
|
||||
|
||||
return l;
|
||||
}
|
||||
|
||||
Ptr<AbsLayer> AbsLayer::create(const LayerParams& params)
|
||||
{
|
||||
Ptr<AbsLayer> l(new ElementWiseLayer<AbsValFunctor>());
|
||||
|
@ -677,6 +677,13 @@ void TFImporter::populateNet(Net dstNet)
|
||||
|
||||
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
|
||||
}
|
||||
else if (type == "Elu")
|
||||
{
|
||||
int id = dstNet.addLayer(name, "ELU", layerParams);
|
||||
layer_id[name] = id;
|
||||
|
||||
connectToAllBlobs(layer_id, dstNet, parsePin(layer.input(0)), id, layer.input_size());
|
||||
}
|
||||
else if (type == "MaxPool")
|
||||
{
|
||||
layerParams.set("pool", "max");
|
||||
|
@ -268,11 +268,29 @@ static void test_Reshape_Split_Slice_layers()
|
||||
|
||||
normAssert(input, output);
|
||||
}
|
||||
|
||||
TEST(Layer_Test_Reshape_Split_Slice, Accuracy)
|
||||
{
|
||||
test_Reshape_Split_Slice_layers();
|
||||
}
|
||||
|
||||
TEST(Layer_Conv_Elu, Accuracy)
|
||||
{
|
||||
Net net;
|
||||
{
|
||||
Ptr<Importer> importer = createTensorflowImporter(_tf("layer_elu_model.pb"));
|
||||
ASSERT_TRUE(importer != NULL);
|
||||
importer->populateNet(net);
|
||||
}
|
||||
Mat inp = blobFromNPY(_tf("layer_elu_in.npy"));
|
||||
Mat ref = blobFromNPY(_tf("layer_elu_out.npy"));
|
||||
|
||||
net.setInput(inp, "input");
|
||||
Mat out = net.forward();
|
||||
|
||||
normAssert(ref, out);
|
||||
}
|
||||
|
||||
class Layer_LSTM_Test : public ::testing::Test
|
||||
{
|
||||
public:
|
||||
|
Loading…
Reference in New Issue
Block a user