mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 05:06:29 +08:00
Merge pull request #8754 from berak:fix_py_hog_svm_tut
This commit is contained in:
commit
2186ec7665
@ -17,16 +17,9 @@ vectors.
|
||||
|
||||
Here, before finding the HOG, we deskew the image using its second order moments. So we first define
|
||||
a function **deskew()** which takes a digit image and deskew it. Below is the deskew() function:
|
||||
@code{.py}
|
||||
def deskew(img):
|
||||
m = cv2.moments(img)
|
||||
if abs(m['mu02']) < 1e-2:
|
||||
return img.copy()
|
||||
skew = m['mu11']/m['mu02']
|
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
||||
img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
|
||||
return img
|
||||
@endcode
|
||||
|
||||
@snippet samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py deskew
|
||||
|
||||
Below image shows above deskew function applied to an image of zero. Left image is the original
|
||||
image and right image is the deskewed image.
|
||||
|
||||
@ -38,91 +31,15 @@ gradient is quantized to 16 integer values. Divide this image to four sub-square
|
||||
sub-square, calculate the histogram of direction (16 bins) weighted with their magnitude. So each
|
||||
sub-square gives you a vector containing 16 values. Four such vectors (of four sub-squares) together
|
||||
gives us a feature vector containing 64 values. This is the feature vector we use to train our data.
|
||||
@code{.py}
|
||||
def hog(img):
|
||||
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
|
||||
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
|
||||
mag, ang = cv2.cartToPolar(gx, gy)
|
||||
|
||||
# quantizing binvalues in (0...16)
|
||||
bins = np.int32(bin_n*ang/(2*np.pi))
|
||||
@snippet samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py hog
|
||||
|
||||
# Divide to 4 sub-squares
|
||||
bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
|
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
||||
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
|
||||
hist = np.hstack(hists)
|
||||
return hist
|
||||
@endcode
|
||||
Finally, as in the previous case, we start by splitting our big dataset into individual cells. For
|
||||
every digit, 250 cells are reserved for training data and remaining 250 data is reserved for
|
||||
testing. Full code is given below:
|
||||
@code{.py}
|
||||
import cv2
|
||||
import numpy as np
|
||||
testing. Full code is given below, you also can download it from [here](https://github.com/opencv/opencv/tree/master/samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py):
|
||||
|
||||
SZ=20
|
||||
bin_n = 16 # Number of bins
|
||||
@include samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py
|
||||
|
||||
|
||||
affine_flags = cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR
|
||||
|
||||
def deskew(img):
|
||||
m = cv2.moments(img)
|
||||
if abs(m['mu02']) < 1e-2:
|
||||
return img.copy()
|
||||
skew = m['mu11']/m['mu02']
|
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
||||
img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
|
||||
return img
|
||||
|
||||
def hog(img):
|
||||
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
|
||||
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
|
||||
mag, ang = cv2.cartToPolar(gx, gy)
|
||||
bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16)
|
||||
bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
|
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
||||
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
|
||||
hist = np.hstack(hists) # hist is a 64 bit vector
|
||||
return hist
|
||||
|
||||
img = cv2.imread('digits.png',0)
|
||||
|
||||
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)]
|
||||
|
||||
# First half is trainData, remaining is testData
|
||||
train_cells = [ i[:50] for i in cells ]
|
||||
test_cells = [ i[50:] for i in cells]
|
||||
|
||||
###### Now training ########################
|
||||
|
||||
deskewed = [map(deskew,row) for row in train_cells]
|
||||
hogdata = [map(hog,row) for row in deskewed]
|
||||
trainData = np.float32(hogdata).reshape(-1,64)
|
||||
responses = np.float32(np.repeat(np.arange(10),250)[:,np.newaxis])
|
||||
|
||||
svm = cv2.ml.SVM_create()
|
||||
svm.setKernel(cv2.ml.SVM_LINEAR)
|
||||
svm.setType(cv2.ml.SVM_C_SVC)
|
||||
svm.setC(2.67)
|
||||
svm.setGamma(5.383)
|
||||
|
||||
svm.train(trainData, cv2.ml.ROW_SAMPLE, responses)
|
||||
svm.save('svm_data.dat')
|
||||
|
||||
###### Now testing ########################
|
||||
|
||||
deskewed = [map(deskew,row) for row in test_cells]
|
||||
hogdata = [map(hog,row) for row in deskewed]
|
||||
testData = np.float32(hogdata).reshape(-1,bin_n*4)
|
||||
result = svm.predict(testData)
|
||||
|
||||
####### Check Accuracy ########################
|
||||
mask = result==responses
|
||||
correct = np.count_nonzero(mask)
|
||||
print correct*100.0/result.size
|
||||
@endcode
|
||||
This particular technique gave me nearly 94% accuracy. You can try different values for various
|
||||
parameters of SVM to check if higher accuracy is possible. Or you can read technical papers on this
|
||||
area and try to implement them.
|
||||
|
71
samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py
Normal file
71
samples/python/tutorial_code/ml/py_svm_opencv/hogsvm.py
Normal file
@ -0,0 +1,71 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
SZ=20
|
||||
bin_n = 16 # Number of bins
|
||||
|
||||
|
||||
affine_flags = cv2.WARP_INVERSE_MAP|cv2.INTER_LINEAR
|
||||
|
||||
## [deskew]
|
||||
def deskew(img):
|
||||
m = cv2.moments(img)
|
||||
if abs(m['mu02']) < 1e-2:
|
||||
return img.copy()
|
||||
skew = m['mu11']/m['mu02']
|
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
||||
img = cv2.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
|
||||
return img
|
||||
## [deskew]
|
||||
|
||||
## [hog]
|
||||
def hog(img):
|
||||
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
|
||||
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
|
||||
mag, ang = cv2.cartToPolar(gx, gy)
|
||||
bins = np.int32(bin_n*ang/(2*np.pi)) # quantizing binvalues in (0...16)
|
||||
bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
|
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
||||
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
|
||||
hist = np.hstack(hists) # hist is a 64 bit vector
|
||||
return hist
|
||||
## [hog]
|
||||
|
||||
img = cv2.imread('digits.png',0)
|
||||
if img is None:
|
||||
raise Exception("we need the digits.png image from samples/data here !")
|
||||
|
||||
|
||||
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)]
|
||||
|
||||
# First half is trainData, remaining is testData
|
||||
train_cells = [ i[:50] for i in cells ]
|
||||
test_cells = [ i[50:] for i in cells]
|
||||
|
||||
###### Now training ########################
|
||||
|
||||
deskewed = [map(deskew,row) for row in train_cells]
|
||||
hogdata = [map(hog,row) for row in deskewed]
|
||||
trainData = np.float32(hogdata).reshape(-1,64)
|
||||
responses = np.repeat(np.arange(10),250)[:,np.newaxis]
|
||||
|
||||
svm = cv2.ml.SVM_create()
|
||||
svm.setKernel(cv2.ml.SVM_LINEAR)
|
||||
svm.setType(cv2.ml.SVM_C_SVC)
|
||||
svm.setC(2.67)
|
||||
svm.setGamma(5.383)
|
||||
|
||||
svm.train(trainData, cv2.ml.ROW_SAMPLE, responses)
|
||||
svm.save('svm_data.dat')
|
||||
|
||||
###### Now testing ########################
|
||||
|
||||
deskewed = [map(deskew,row) for row in test_cells]
|
||||
hogdata = [map(hog,row) for row in deskewed]
|
||||
testData = np.float32(hogdata).reshape(-1,bin_n*4)
|
||||
result = svm.predict(testData)[1]
|
||||
|
||||
####### Check Accuracy ########################
|
||||
mask = result==responses
|
||||
correct = np.count_nonzero(mask)
|
||||
print correct*100.0/result.size
|
Loading…
Reference in New Issue
Block a user