mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 19:59:08 +08:00
Merge c4202b70a5
into 9e18169959
This commit is contained in:
commit
21d262a183
@ -1560,3 +1560,12 @@
|
||||
year = {2014},
|
||||
url = {http://www.marcozuliani.com/docs/RANSAC4Dummies.pdf}
|
||||
}
|
||||
@article{Aggarwal1985,
|
||||
author = {Aggarwal, A. and Chang, J. and Yap, Chee K.},
|
||||
title = {Minimum area circumscribing Polygons},
|
||||
year = {1985},
|
||||
pages = {112--117},
|
||||
journal = {The Visual Computer},
|
||||
volume = {7},
|
||||
url = {https://doi.org/10.1007/BF01898354}
|
||||
}
|
||||
|
@ -3070,10 +3070,9 @@ Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with o
|
||||
above values. In these cases, the function determines the optimal threshold value using the Otsu's
|
||||
or Triangle algorithm and uses it instead of the specified thresh.
|
||||
|
||||
@note Currently, the Otsu's method is implemented only for CV_8UC1 and CV_16UC1 images,
|
||||
and the Triangle's method is implemented only for CV_8UC1 images.
|
||||
@note Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.
|
||||
|
||||
@param src input array (multiple-channel, CV_8U, CV_16S, CV_16U, CV_32F or CV_64F).
|
||||
@param src input array (multiple-channel, 8-bit or 32-bit floating point).
|
||||
@param dst output array of the same size and type and the same number of channels as src.
|
||||
@param thresh threshold value.
|
||||
@param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
|
||||
@ -3081,30 +3080,11 @@ types.
|
||||
@param type thresholding type (see #ThresholdTypes).
|
||||
@return the computed threshold value if Otsu's or Triangle methods used.
|
||||
|
||||
@sa thresholdWithMask, adaptiveThreshold, findContours, compare, min, max
|
||||
@sa adaptiveThreshold, findContours, compare, min, max
|
||||
*/
|
||||
CV_EXPORTS_W double threshold( InputArray src, OutputArray dst,
|
||||
double thresh, double maxval, int type );
|
||||
|
||||
/** @brief Same as #threshold, but with an optional mask
|
||||
|
||||
@note If the mask is empty, #thresholdWithMask is equivalent to #threshold.
|
||||
If the mask is not empty, dst *must* be of the same size and type as src, so that
|
||||
outliers pixels are left as-is
|
||||
|
||||
@param src input array (multiple-channel, 8-bit or 32-bit floating point).
|
||||
@param dst output array of the same size and type and the same number of channels as src.
|
||||
@param mask optional mask (same size as src, 8-bit).
|
||||
@param thresh threshold value.
|
||||
@param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
|
||||
types.
|
||||
@param type thresholding type (see #ThresholdTypes).
|
||||
@return the computed threshold value if Otsu's or Triangle methods used.
|
||||
|
||||
@sa threshold, adaptiveThreshold, findContours, compare, min, max
|
||||
*/
|
||||
CV_EXPORTS_W double thresholdWithMask( InputArray src, InputOutputArray dst, InputArray mask,
|
||||
double thresh, double maxval, int type );
|
||||
|
||||
/** @brief Applies an adaptive threshold to an array.
|
||||
|
||||
@ -4160,11 +4140,7 @@ CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false );
|
||||
/** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
|
||||
|
||||
The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
|
||||
specified point set. The angle of rotation represents the angle between the line connecting the starting
|
||||
and ending points (based on the clockwise order with greatest index for the corner with greatest \f$y\f$)
|
||||
and the horizontal axis. This angle always falls between \f$[-90, 0)\f$ because, if the object
|
||||
rotates more than a rect angle, the next edge is used to measure the angle. The starting and ending points change
|
||||
as the object rotates.Developer should keep in mind that the returned RotatedRect can contain negative
|
||||
specified point set. Developer should keep in mind that the returned RotatedRect can contain negative
|
||||
indices when data is close to the containing Mat element boundary.
|
||||
|
||||
@param points Input vector of 2D points, stored in std::vector\<\> or Mat
|
||||
@ -4173,9 +4149,7 @@ CV_EXPORTS_W RotatedRect minAreaRect( InputArray points );
|
||||
|
||||
/** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
|
||||
|
||||
The function finds the four vertices of a rotated rectangle. The four vertices are returned
|
||||
in clockwise order starting from the point with greatest \f$y\f$. If two points have the
|
||||
same \f$y\f$ coordinate the rightmost is the starting point. This function is useful to draw the
|
||||
The function finds the four vertices of a rotated rectangle. This function is useful to draw the
|
||||
rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
|
||||
visit the @ref tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information.
|
||||
|
||||
@ -4219,6 +4193,30 @@ of the OutputArray must be CV_32F.
|
||||
*/
|
||||
CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle );
|
||||
|
||||
|
||||
/**
|
||||
@brief Finds a convex polygon of minimum area enclosing a 2D point set and returns its area.
|
||||
|
||||
This function takes a given set of 2D points and finds the enclosing polygon with k vertices and minimal
|
||||
area. It takes the set of points and the parameter k as input and returns the area of the minimal
|
||||
enclosing polygon.
|
||||
|
||||
The Implementation is based on a paper by Aggarwal, Chang and Yap @cite Aggarwal1985. They
|
||||
provide a \f$\theta(n²log(n)log(k))\f$ algorighm for finding the minimal convex polygon with k
|
||||
vertices enclosing a 2D convex polygon with n vertices (k < n). Since the #minEnclosingConvexPolygon
|
||||
function takes a 2D point set as input, an additional preprocessing step of computing the convex hull
|
||||
of the 2D point set is required. The complexity of the #convexHull function is \f$O(n log(n))\f$ which
|
||||
is lower than \f$\theta(n²log(n)log(k))\f$. Thus the overall complexity of the function is
|
||||
\f$O(n²log(n)log(k))\f$.
|
||||
|
||||
@param points Input vector of 2D points, stored in std::vector\<\> or Mat
|
||||
@param polygon Output vector of 2D points defining the vertices of the enclosing polygon
|
||||
@param k Number of vertices of the output polygon
|
||||
*/
|
||||
|
||||
CV_EXPORTS_W double minEnclosingConvexPolygon ( InputArray points, OutputArray polygon, int k );
|
||||
|
||||
|
||||
/** @brief Compares two shapes.
|
||||
|
||||
The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments)
|
||||
|
1185
modules/imgproc/src/min_enclosing_convex_polygon.cpp
Normal file
1185
modules/imgproc/src/min_enclosing_convex_polygon.cpp
Normal file
File diff suppressed because it is too large
Load Diff
@ -1069,5 +1069,130 @@ TEST(minEnclosingCircle, three_points)
|
||||
EXPECT_LE(delta, 1.f);
|
||||
}
|
||||
|
||||
|
||||
//============================ minEnclosingPolygon tests ============================
|
||||
|
||||
TEST(minEnclosingPolygon, input_errors)
|
||||
{
|
||||
std::vector<cv::Point2f> kgon;
|
||||
std::vector<cv::Point2f> ngon;
|
||||
|
||||
std::cout << "Four lines of \'invalid argument: ...\' are expected:" << std::endl;
|
||||
|
||||
ngon = {{0.0, 0.0}, {1.0, 1.0}};
|
||||
EXPECT_NO_THROW(minEnclosingConvexPolygon(ngon, kgon, 3))
|
||||
<< "unexpected exception: not enough points in input ngon (n < 3)";
|
||||
|
||||
ngon = {{0.0, 0.0}, {0.0, 0.0}, {1.0, 1.0}, {1.0, 1.0}};
|
||||
EXPECT_NO_THROW(minEnclosingConvexPolygon(ngon, kgon, 3))
|
||||
<< "unexpected exception: not enough different points in input ngon (double points)";
|
||||
|
||||
ngon = {{0.0, 0.0}, {1.0, 1.0}, {2.0, 2.0}, {3.0, 3.0}, {4.0, 4.0}};
|
||||
EXPECT_NO_THROW(minEnclosingConvexPolygon(ngon, kgon, 3))
|
||||
<< "unexpected exception: all points on line";
|
||||
|
||||
ngon = {{0.0, 0.0}, {0.0, 1.0}, {1.0, 0.0}, {1.0, 1.0}};
|
||||
EXPECT_NO_THROW(minEnclosingConvexPolygon(ngon, kgon, 2)) << "unexpected exception: k < 3";
|
||||
}
|
||||
|
||||
TEST(minEnclosingPolygon, input_warnings)
|
||||
{
|
||||
double area = -1.0;
|
||||
std::vector<cv::Point2f> kgon;
|
||||
std::vector<cv::Point2f> ngon;
|
||||
|
||||
std::cout << "Two lines of \'Warning: ...\' are expected:" << std::endl;
|
||||
|
||||
ngon = {{0.0, 0.0}, {0.0, 1.0}, {1.0, 0.0}, {1.0, 1.0}};
|
||||
EXPECT_NO_THROW({
|
||||
area = minEnclosingConvexPolygon(ngon, kgon, 4);
|
||||
}) << "unexpected exception: n = k failed";
|
||||
EXPECT_NEAR(area, 1.0, 1e-4) << "n = k: area not equal " << ngon;
|
||||
|
||||
ngon = {{0.0, 0.0}, {0.0, 1.0}, {1.0, 0.0}, {1.0, 1.0}};
|
||||
EXPECT_NO_THROW({
|
||||
area = minEnclosingConvexPolygon(ngon, kgon, 5);
|
||||
}) << "unexpected exception: n < k failed";
|
||||
EXPECT_NEAR(area, 1.0, 1e-4) << "n < k: area not equal " << ngon;
|
||||
}
|
||||
|
||||
TEST(minEnclosingPolygon, unit_circle)
|
||||
{
|
||||
double area = -1.0;
|
||||
std::vector<cv::Point2f> kgon;
|
||||
std::vector<cv::Point2f> ngon;
|
||||
const int n = 64;
|
||||
const int k = 7;
|
||||
|
||||
for(int i = 0; i < n; i++)
|
||||
{
|
||||
cv::Point2f new_point(cos(i * 2.0 * M_PI / n), sin(i * 2.0 * M_PI / n));
|
||||
ngon.push_back(new_point);
|
||||
}
|
||||
|
||||
EXPECT_NO_THROW({
|
||||
area = minEnclosingConvexPolygon(ngon, kgon, k);
|
||||
});
|
||||
EXPECT_GT(area, cv::contourArea(ngon));
|
||||
EXPECT_EQ((int)kgon.size(), k);
|
||||
}
|
||||
|
||||
TEST(minEnclosingPolygon, random_points)
|
||||
{
|
||||
double area = -1.0;
|
||||
std::vector<cv::Point2f> kgon;
|
||||
std::vector<cv::Point2f> ngon;
|
||||
std::vector<cv::Point2f> ngonHull;
|
||||
const int n = 100;
|
||||
const int k = 7;
|
||||
|
||||
srand(0);
|
||||
for(int i = 0; i < n; i++)
|
||||
{
|
||||
cv::Point2f new_point(rand() % 100 + 1, rand() % 100 + 1);
|
||||
ngon.push_back(new_point);
|
||||
}
|
||||
|
||||
cv::convexHull(ngon, ngonHull, true);
|
||||
|
||||
EXPECT_NO_THROW({
|
||||
area = minEnclosingConvexPolygon(ngon, kgon, k);
|
||||
});
|
||||
EXPECT_GT(area, cv::contourArea(ngonHull));
|
||||
EXPECT_EQ(kgon.size(), (size_t)k);
|
||||
}
|
||||
|
||||
TEST(minEnclosingPolygon, pentagon)
|
||||
{
|
||||
double area;
|
||||
std::vector<cv::Point2f> kgon;
|
||||
std::vector<cv::Point2f> expectedKgon;
|
||||
std::vector<cv::Point2f> ngon;
|
||||
|
||||
ngon = {{1, 0}, {0, 8}, {4, 12}, {8, 8}, {7, 0}};
|
||||
EXPECT_NO_THROW({
|
||||
area = minEnclosingConvexPolygon(ngon, kgon, 4);
|
||||
});
|
||||
|
||||
expectedKgon = {{1, 0}, {-0.5, 12}, {8.5, 12}, {7, 0}};
|
||||
EXPECT_EQ(area, cv::contourArea(expectedKgon));
|
||||
ASSERT_EQ((int)kgon.size(), 4);
|
||||
|
||||
for (size_t i = 0; i < 4; i++)
|
||||
{
|
||||
bool match = false;
|
||||
for (size_t j = 0; j < 4; j++)
|
||||
{
|
||||
if(expectedKgon[i].x == kgon[j].x && expectedKgon[i].y == kgon[j].y)
|
||||
{
|
||||
match = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
EXPECT_EQ(match, true);
|
||||
}
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
||||
/* End of file. */
|
||||
|
Loading…
Reference in New Issue
Block a user