mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
added leaveBiggestComponent function into opencv_stitching
This commit is contained in:
parent
f3b45af876
commit
21d89cc420
@ -15,7 +15,7 @@ void printUsage()
|
||||
cout << "Usage: opencv_stitching img1 img2 [...imgN]\n"
|
||||
<< "\t[--matchconf <float>]\n"
|
||||
<< "\t[--ba (ray|focal_ray)]\n"
|
||||
<< "\t[--ba_thresh <float>]\n"
|
||||
<< "\t[--conf_thresh <float>]\n"
|
||||
<< "\t[--wavecorrect (no|yes)]\n"
|
||||
<< "\t[--warp (plane|cylindrical|spherical)]\n"
|
||||
<< "\t[--seam (no|voronoi|graphcut)]\n"
|
||||
@ -23,7 +23,7 @@ void printUsage()
|
||||
<< "\t[--output <result_img>]\n\n";
|
||||
cout << "--matchconf\n"
|
||||
<< "\tGood values are in [0.2, 0.8] range usually.\n\n";
|
||||
cout << "--ba_thresh\n"
|
||||
cout << "--conf_thresh\n"
|
||||
<< "\tGood values are in [0.3, 1.0] range usually.\n";
|
||||
}
|
||||
|
||||
@ -34,7 +34,7 @@ int main(int argc, char* argv[])
|
||||
vector<Mat> images;
|
||||
string result_name = "result.png";
|
||||
int ba_space = BundleAdjuster::FOCAL_RAY_SPACE;
|
||||
float ba_thresh = 1.f;
|
||||
float conf_thresh = 1.f;
|
||||
bool wave_correct = true;
|
||||
int warp_type = Warper::SPHERICAL;
|
||||
bool user_match_conf = false;
|
||||
@ -74,9 +74,9 @@ int main(int argc, char* argv[])
|
||||
}
|
||||
i++;
|
||||
}
|
||||
else if (string(argv[i]) == "--ba_thresh")
|
||||
else if (string(argv[i]) == "--conf_thresh")
|
||||
{
|
||||
ba_thresh = static_cast<float>(atof(argv[i + 1]));
|
||||
conf_thresh = static_cast<float>(atof(argv[i + 1]));
|
||||
i++;
|
||||
}
|
||||
else if (string(argv[i]) == "--wavecorrect")
|
||||
@ -154,7 +154,7 @@ int main(int argc, char* argv[])
|
||||
}
|
||||
}
|
||||
|
||||
const int num_images = static_cast<int>(images.size());
|
||||
int num_images = static_cast<int>(images.size());
|
||||
if (num_images < 2)
|
||||
{
|
||||
cout << "Need more images\n";
|
||||
@ -173,6 +173,9 @@ int main(int argc, char* argv[])
|
||||
matcher = BestOf2NearestMatcher(true, match_conf);
|
||||
matcher(images, features, pairwise_matches);
|
||||
|
||||
leaveBiggestComponent(images, features, pairwise_matches, conf_thresh);
|
||||
num_images = static_cast<int>(images.size());
|
||||
|
||||
LOGLN("Estimating rotations...");
|
||||
HomographyBasedEstimator estimator;
|
||||
vector<CameraParams> cameras;
|
||||
@ -187,7 +190,7 @@ int main(int argc, char* argv[])
|
||||
}
|
||||
|
||||
LOGLN("Bundle adjustment...");
|
||||
BundleAdjuster adjuster(ba_space, ba_thresh);
|
||||
BundleAdjuster adjuster(ba_space, conf_thresh);
|
||||
adjuster(images, features, pairwise_matches, cameras);
|
||||
|
||||
if (wave_correct)
|
||||
|
@ -123,22 +123,19 @@ void SurfFeaturesFinder::find(const vector<Mat> &images, vector<ImageFeatures> &
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0) {}
|
||||
|
||||
|
||||
MatchesInfo::MatchesInfo(const MatchesInfo &other)
|
||||
{
|
||||
*this = other;
|
||||
}
|
||||
MatchesInfo::MatchesInfo() : src_img_idx(-1), dst_img_idx(-1), num_inliers(0), confidence(0) {}
|
||||
|
||||
MatchesInfo::MatchesInfo(const MatchesInfo &other) { *this = other; }
|
||||
|
||||
const MatchesInfo& MatchesInfo::operator =(const MatchesInfo &other)
|
||||
{
|
||||
src_img_idx = other.src_img_idx;
|
||||
dst_img_idx = other.dst_img_idx;
|
||||
matches = other.matches;
|
||||
inliers_mask = other.inliers_mask;
|
||||
num_inliers = other.num_inliers;
|
||||
H = other.H.clone();
|
||||
confidence = other.confidence;
|
||||
return *this;
|
||||
}
|
||||
|
||||
@ -303,14 +300,14 @@ void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features
|
||||
Mat dst_points(1, matches_info.matches.size(), CV_32FC2);
|
||||
for (size_t i = 0; i < matches_info.matches.size(); ++i)
|
||||
{
|
||||
const DMatch& r = matches_info.matches[i];
|
||||
const DMatch& m = matches_info.matches[i];
|
||||
|
||||
Point2f p = features1.keypoints[r.queryIdx].pt;
|
||||
Point2f p = features1.keypoints[m.queryIdx].pt;
|
||||
p.x -= img1.cols * 0.5f;
|
||||
p.y -= img1.rows * 0.5f;
|
||||
src_points.at<Point2f>(0, i) = p;
|
||||
|
||||
p = features2.keypoints[r.trainIdx].pt;
|
||||
p = features2.keypoints[m.trainIdx].pt;
|
||||
p.x -= img2.cols * 0.5f;
|
||||
p.y -= img2.rows * 0.5f;
|
||||
dst_points.at<Point2f>(0, i) = p;
|
||||
@ -325,6 +322,8 @@ void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features
|
||||
if (matches_info.inliers_mask[i])
|
||||
matches_info.num_inliers++;
|
||||
|
||||
matches_info.confidence = matches_info.num_inliers / (8 + 0.3*matches_info.matches.size());
|
||||
|
||||
// Check if we should try to refine motion
|
||||
if (matches_info.num_inliers < num_matches_thresh2_)
|
||||
return;
|
||||
@ -338,14 +337,14 @@ void BestOf2NearestMatcher::match(const Mat &img1, const ImageFeatures &features
|
||||
if (!matches_info.inliers_mask[i])
|
||||
continue;
|
||||
|
||||
const DMatch& r = matches_info.matches[i];
|
||||
const DMatch& m = matches_info.matches[i];
|
||||
|
||||
Point2f p = features1.keypoints[r.queryIdx].pt;
|
||||
Point2f p = features1.keypoints[m.queryIdx].pt;
|
||||
p.x -= img1.cols * 0.5f;
|
||||
p.y -= img2.rows * 0.5f;
|
||||
src_points.at<Point2f>(0, inlier_idx) = p;
|
||||
|
||||
p = features2.keypoints[r.trainIdx].pt;
|
||||
p = features2.keypoints[m.trainIdx].pt;
|
||||
p.x -= img2.cols * 0.5f;
|
||||
p.y -= img2.rows * 0.5f;
|
||||
dst_points.at<Point2f>(0, inlier_idx) = p;
|
||||
|
@ -43,11 +43,12 @@ struct MatchesInfo
|
||||
MatchesInfo(const MatchesInfo &other);
|
||||
const MatchesInfo& operator =(const MatchesInfo &other);
|
||||
|
||||
int src_img_idx, dst_img_idx; // Optional images indices
|
||||
int src_img_idx, dst_img_idx; // Images indices (optional)
|
||||
std::vector<cv::DMatch> matches;
|
||||
std::vector<uchar> inliers_mask;
|
||||
int num_inliers; // Number of geometrically consistent matches
|
||||
cv::Mat H; // Homography
|
||||
std::vector<uchar> inliers_mask; // Geometrically consistent matches mask
|
||||
int num_inliers; // Number of geometrically consistent matches
|
||||
cv::Mat H; // Estimated homography
|
||||
double confidence; // Confidence two images are from the same panorama
|
||||
};
|
||||
|
||||
|
||||
|
@ -13,12 +13,7 @@ using namespace cv;
|
||||
|
||||
CameraParams::CameraParams() : focal(1), R(Mat::eye(3, 3, CV_64F)), t(Mat::zeros(3, 1, CV_64F)) {}
|
||||
|
||||
|
||||
CameraParams::CameraParams(const CameraParams &other)
|
||||
{
|
||||
*this = other;
|
||||
}
|
||||
|
||||
CameraParams::CameraParams(const CameraParams &other) { *this = other; }
|
||||
|
||||
const CameraParams& CameraParams::operator =(const CameraParams &other)
|
||||
{
|
||||
@ -84,13 +79,14 @@ void HomographyBasedEstimator::estimate(const vector<Mat> &images, const vector<
|
||||
int pair_idx = i * num_images + j;
|
||||
if (pairwise_matches[pair_idx].H.empty())
|
||||
continue;
|
||||
|
||||
double f_to, f_from;
|
||||
bool f_to_ok, f_from_ok;
|
||||
focalsFromHomography(pairwise_matches[pair_idx].H.inv(), f_to, f_from, f_to_ok, f_from_ok);
|
||||
if (f_from_ok)
|
||||
focals.push_back(f_from);
|
||||
if (f_to_ok)
|
||||
focals.push_back(f_to);
|
||||
|
||||
if (f_from_ok) focals.push_back(f_from);
|
||||
if (f_to_ok) focals.push_back(f_to);
|
||||
|
||||
if (f_from_ok && f_to_ok)
|
||||
{
|
||||
is_focal_estimated[i] = true;
|
||||
@ -98,6 +94,7 @@ void HomographyBasedEstimator::estimate(const vector<Mat> &images, const vector<
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
is_focals_estimated_ = true;
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
is_focals_estimated_ = is_focals_estimated_ && is_focal_estimated[i];
|
||||
@ -132,9 +129,12 @@ void BundleAdjuster::estimate(const vector<Mat> &images, const vector<ImageFeatu
|
||||
for (int i = 0; i < num_images_; ++i)
|
||||
{
|
||||
cameras_.at<double>(i * 4, 0) = cameras[i].focal;
|
||||
|
||||
svd(cameras[i].R, SVD::FULL_UV);
|
||||
Mat R = svd.u * svd.vt;
|
||||
if (determinant(R) < 0) R *= -1;
|
||||
if (determinant(R) < 0)
|
||||
R *= -1;
|
||||
|
||||
Mat rvec;
|
||||
Rodrigues(R, rvec); CV_Assert(rvec.type() == CV_32F);
|
||||
cameras_.at<double>(i * 4 + 1, 0) = rvec.at<float>(0, 0);
|
||||
@ -142,20 +142,19 @@ void BundleAdjuster::estimate(const vector<Mat> &images, const vector<ImageFeatu
|
||||
cameras_.at<double>(i * 4 + 3, 0) = rvec.at<float>(2, 0);
|
||||
}
|
||||
|
||||
// Select only consistent image pairs for futher adjustment
|
||||
edges_.clear();
|
||||
for (int i = 0; i < num_images_ - 1; ++i)
|
||||
{
|
||||
for (int j = i + 1; j < num_images_; ++j)
|
||||
{
|
||||
int pair_idx = i * num_images_ + j;
|
||||
const MatchesInfo& mi = pairwise_matches_[pair_idx];
|
||||
float ni = static_cast<float>(mi.num_inliers);
|
||||
float nf = static_cast<float>(mi.matches.size());
|
||||
if (ni / (8.f + 0.3f * nf) > dist_thresh_)
|
||||
{
|
||||
const MatchesInfo& matches_info = pairwise_matches_[i * num_images_ + j];
|
||||
if (matches_info.confidence > conf_thresh_)
|
||||
edges_.push_back(make_pair(i, j));
|
||||
}
|
||||
}
|
||||
|
||||
// Compute number of correspondences
|
||||
total_num_matches_ = 0;
|
||||
for (size_t i = 0; i < edges_.size(); ++i)
|
||||
total_num_matches_ += static_cast<int>(pairwise_matches[edges_[i].first * num_images_ + edges_[i].second].num_inliers);
|
||||
@ -369,7 +368,6 @@ void waveCorrect(vector<Mat> &rmats)
|
||||
normalize(r0, r0);
|
||||
|
||||
r1.cross(r0).copyTo(r2);
|
||||
|
||||
if (determinant(R) < 0)
|
||||
R *= -1;
|
||||
|
||||
@ -380,6 +378,64 @@ void waveCorrect(vector<Mat> &rmats)
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void leaveBiggestComponent(vector<Mat> &images, vector<ImageFeatures> &features,
|
||||
vector<MatchesInfo> &pairwise_matches, float conf_threshold)
|
||||
{
|
||||
const int num_images = static_cast<int>(images.size());
|
||||
|
||||
DjSets comps(num_images);
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
{
|
||||
for (int j = 0; j < num_images; ++j)
|
||||
{
|
||||
if (pairwise_matches[i*num_images + j].confidence < conf_threshold)
|
||||
continue;
|
||||
int comp1 = comps.find(i);
|
||||
int comp2 = comps.find(j);
|
||||
if (comp1 != comp2)
|
||||
comps.merge(comp1, comp2);
|
||||
}
|
||||
}
|
||||
|
||||
int max_comp = max_element(comps.size.begin(), comps.size.end()) - comps.size.begin();
|
||||
|
||||
vector<int> indices;
|
||||
vector<int> indices_removed;
|
||||
for (int i = 0; i < num_images; ++i)
|
||||
if (comps.find(i) == max_comp)
|
||||
indices.push_back(i);
|
||||
else
|
||||
indices_removed.push_back(i);
|
||||
|
||||
vector<Mat> images_subset;
|
||||
vector<ImageFeatures> features_subset;
|
||||
vector<MatchesInfo> pairwise_matches_subset;
|
||||
for (size_t i = 0; i < indices.size(); ++i)
|
||||
{
|
||||
images_subset.push_back(images[indices[i]]);
|
||||
features_subset.push_back(features[indices[i]]);
|
||||
for (size_t j = 0; j < indices.size(); ++j)
|
||||
{
|
||||
pairwise_matches_subset.push_back(pairwise_matches[indices[i]*num_images + indices[j]]);
|
||||
pairwise_matches_subset.back().src_img_idx = i;
|
||||
pairwise_matches_subset.back().dst_img_idx = j;
|
||||
}
|
||||
}
|
||||
|
||||
if (static_cast<int>(images_subset.size()) == num_images)
|
||||
return;
|
||||
|
||||
LOG("Removed some images, because can't match them: (");
|
||||
LOG(indices_removed[0]);
|
||||
for (size_t i = 1; i < indices_removed.size(); ++i) LOG(", " << indices_removed[i]);
|
||||
LOGLN(")");
|
||||
|
||||
images = images_subset;
|
||||
features = features_subset;
|
||||
pairwise_matches = pairwise_matches_subset;
|
||||
}
|
||||
|
||||
|
||||
void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_matches,
|
||||
Graph &span_tree, vector<int> ¢ers)
|
||||
{
|
||||
@ -391,6 +447,8 @@ void findMaxSpanningTree(int num_images, const vector<MatchesInfo> &pairwise_mat
|
||||
{
|
||||
for (int j = 0; j < num_images; ++j)
|
||||
{
|
||||
if (pairwise_matches[i * num_images + j].H.empty())
|
||||
continue;
|
||||
float conf = static_cast<float>(pairwise_matches[i * num_images + j].num_inliers);
|
||||
graph.addEdge(i, j, conf);
|
||||
edges.push_back(GraphEdge(i, j, conf));
|
||||
|
@ -52,8 +52,8 @@ class BundleAdjuster : public Estimator
|
||||
public:
|
||||
enum { RAY_SPACE, FOCAL_RAY_SPACE };
|
||||
|
||||
BundleAdjuster(int cost_space = FOCAL_RAY_SPACE, float dist_thresh = 1.f)
|
||||
: cost_space_(cost_space), dist_thresh_(dist_thresh) {}
|
||||
BundleAdjuster(int cost_space = FOCAL_RAY_SPACE, float conf_thresh = 1.f)
|
||||
: cost_space_(cost_space), conf_thresh_(conf_thresh) {}
|
||||
|
||||
private:
|
||||
void estimate(const std::vector<cv::Mat> &images, const std::vector<ImageFeatures> &features,
|
||||
@ -71,7 +71,7 @@ private:
|
||||
std::vector<std::pair<int,int> > edges_;
|
||||
|
||||
int cost_space_;
|
||||
float dist_thresh_;
|
||||
float conf_thresh_;
|
||||
cv::Mat err_, err1_, err2_;
|
||||
cv::Mat J_;
|
||||
};
|
||||
@ -83,6 +83,9 @@ void waveCorrect(std::vector<cv::Mat> &rmats);
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Auxiliary functions
|
||||
|
||||
void leaveBiggestComponent(std::vector<cv::Mat> &images, std::vector<ImageFeatures> &features,
|
||||
std::vector<MatchesInfo> &pairwise_matches, float conf_threshold);
|
||||
|
||||
void findMaxSpanningTree(int num_images, const std::vector<MatchesInfo> &pairwise_matches,
|
||||
Graph &span_tree, std::vector<int> ¢ers);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user